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|  Heterogeneous computing has become a major architecture 
trend 
 CPU+GPU, Near data processing systems (NDP)  

|  How to design memory system 
 Strongly coupled with architecture design and programming model 
 Difficult to compare models 

|  Goal 
 Understand a trade-off in memory system design decisions 
 Evaluate the overhead of design options 

Sandy Bridge Fusion 
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|  Evaluate various memory system design options  
|  Decouple hardware architecture issues and programming 

models issues  

|  Evaluation categories  
 Memory space  
 Locality management  
 Communication overhead  
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|  Unified space: identical address space both for CPU and GPU 
|  Fully coherent memory space or virtually unified memory space (CUDA 4.0) 

  No explicit data transfer, but complicated TLB/MMU designs 
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|  Scalable and easy to implement, but need explicit data transfer 
|  c.f.) physically shared cache can be used as disjoint address space (e.g. 

Intel’s Sandia) 
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|  Partially-shared: only part of the space is shared 
|  Introduced at Intel’s LRB programming model 

  Ownership is maintained by programmers  
  Convenience of using shared memory, but overhead of managing between spaces 
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|  ADSM: one PU can access the entire memory, but the other 
cannot 
 Provide a shared space with discrete memories 

|  ADSM uses a special memory allocation function, adsmAlloc, to 
allocate data into the shared memory space 

|  Unlike the disjoint memory address space, there is no need to 
transfer data back to the host memory space 
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|  Implicit vs. Explicit management  
 Implicit: hardware manages locality (hardware cache) 
 Explicit: programmer manages locality (software managed cache) 

|  Shared memory space: all implicit, all explicit 
|  Various options in partially shared space  

 Implicit-private-explicit-shared  
 Explicit-private-Implicit-shared 
 Hybrid mechanisms  

}  Implicit-private-explicit-private-explicit-shared  (CPU and GPU have different 
management) 

}  Implicit-private-explicit-private-implicit-shared (CPU and GPU have different 
management) 

|  Partially shared space provides the most number of options  
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|  If CPU and GPU share a 
cache  

|  Tag bit to indicate Explicit 
management  

|  Explicit cache size should be 
smaller than shared cache  

|  cache replacement policy: 
Implicit cache block cannot 
evict an explicit cache block  
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|  None of the heterogeneous computing system has employed a 
unified, fully-coherent, strong-consistent memory system yet 

|  Most proposed/existing systems have disjoint memory systems 



|  MacSim (GT) cycle-level simulator  
|  Intel’s Sandy Bridge like configuration + NVIDIA’s Fermi like 

GPU configuration 
|  Benchmarks 

•  Parameters of modeling communication overhead 



|  Compare five systems 
  IDEAL-HETERO : unified and fully coherent 
  CPU+CUDA : disjoint space + PCI-E 
  LRB : partially-shared space + PCI aperture 
  GMAC : ADSM+PCI-E 
  Fusion : disjoint space + memory controller 
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|  Not much performance difference 
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|  Different programming options affect how easy/difficult it is to write 
programs 

|  Use the number of source lines to indicate programmability 
  The number of additional source lines that are required to handle 

explicit data communication and data handling operations 

|  Unified < partially-shared <= ADSM < disjoint  
  Unified space does not require any special APIs 
  Disjoint memory space requires the most additional source code lines 

The number of source lines to handle data communication 



|  We exploited the design space of heterogeneous 
computing memory systems 

|  memory space does not affect performance significantly 

|  Partially shared memory space is the most promising 
option  
 provides many hardware design options (locality managements)  

and moderately good programmability 
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