
Jieun Lim*, Hyesoon Kim+

*Seoul National University, South Korea
+ Georgia Tech, USA

|  Heterogeneous computing has become a major architecture
trend
 CPU+GPU, Near data processing systems (NDP)

|  How to design memory system
 Strongly coupled with architecture design and programming model
 Difficult to compare models

|  Goal
 Understand a trade-off in memory system design decisions
 Evaluate the overhead of design options

Sandy Bridge Fusion

 3

|  Evaluate various memory system design options
|  Decouple hardware architecture issues and programming

models issues

|  Evaluation categories
 Memory space
 Locality management
 Communication overhead

 4

(Unified) (Disjoint) (Partially Shared)

Unified

CPU GPU

cache cache

memory

CPU GPU
Shared

CPU GPU

cache cache

memory

CPU GPU

CPU GPU

cache cache

memory

(ADSM)

CPU

CPU GPU

cache cache

memory

CPU/
GPU

 5

|  Unified space: identical address space both for CPU and GPU
|  Fully coherent memory space or virtually unified memory space (CUDA 4.0)

  No explicit data transfer, but complicated TLB/MMU designs

Unified

CPU GPU

cache cache

memory

+ +

+

a b

c

d e

f

f

GPU

CPU

CPU

 6

|  Scalable and easy to implement, but need explicit data transfer
|  c.f.) physically shared cache can be used as disjoint address space (e.g.

Intel’s Sandia)

CPU GPU

CPU GPU

cache cache

memory

Disjoint memory space

Explicit data
transfer: C2G

Explicit data
transfer: G2C

+ +

+

a b

c

d e

f

f

GPU

CPU

CPU

 7

|  Partially-shared: only part of the space is shared
|  Introduced at Intel’s LRB programming model

  Ownership is maintained by programmers
  Convenience of using shared memory, but overhead of managing between spaces

CPU GPU
Shared

CPU GPU

cache cache

memory

Partially-shared memory space

Ownership
control

Special
malloc
function

Ownership
control + +

+

a b

c

d e

f

f

GPU

CPU

CPU

 8

|  ADSM: one PU can access the entire memory, but the other
cannot
 Provide a shared space with discrete memories

|  ADSM uses a special memory allocation function, adsmAlloc, to
allocate data into the shared memory space

|  Unlike the disjoint memory address space, there is no need to
transfer data back to the host memory space

CPU

CPU GPU

cache cache

memory

CPU/
GPU

ADSM

Explicit data
transfer: C2G

+ +

+

a b

c

d e

f

f

GPU

CPU

CPU

| Gelado et al. ASPLOS10 (GMAC)

 9

|  Implicit vs. Explicit management
 Implicit: hardware manages locality (hardware cache)
 Explicit: programmer manages locality (software managed cache)

|  Shared memory space: all implicit, all explicit
|  Various options in partially shared space

 Implicit-private-explicit-shared
 Explicit-private-Implicit-shared
 Hybrid mechanisms

}  Implicit-private-explicit-private-explicit-shared (CPU and GPU have different
management)

}  Implicit-private-explicit-private-implicit-shared (CPU and GPU have different
management)

|  Partially shared space provides the most number of options

CPU GPU
Shared

CPU GPU

cache cache

memory

 10

|  If CPU and GPU share a
cache

|  Tag bit to indicate Explicit
management

|  Explicit cache size should be
smaller than shared cache

|  cache replacement policy:
Implicit cache block cannot
evict an explicit cache block

E
I

CPU GPU
Shared

CPU GPU

memory

shared $

Implicit Explicit

Cache coherence

CPU GPU

cache cache

On-chip
network

RA
M

RA
M

RA
M

Memory controllers

RA
M

RA
M

RA
M

CPU GPU

cache cache

Shared cache

Physically shared cache

Shared object can be directly updated
inside the shared cache

CPU GPU

cache cache
Mem.
Ctrls.

Mem.
Ctrls.

RA
M

RA
M

RA
M

RA
M

I/O
Hub

PCIe

I/O

System BUS such as PCI-E, or a processor
BUS

CPU GPU

cache cache

On-chip network

RA
M

RA
M

RA
M

Memory
controllers

RA
M

RA
M

RA
M

CPU GPU

cache cache

On-chip
network

RA
M

RA
M

RA
M

Memory controllers

RA
M

RA
M

RA
M

Memory
controllers

Memory controllers
XBOX360 allows direct communication
using the L2 cache for some graphics
data, but they do not fully shared data
using the cache
Does not require any software or
hardware coherence support

Interconnection network + DMA
Uses an interconnection network
system to directly communicate
without necessarily going through
memory controllers

e.g.)IBM cell

|  None of the heterogeneous computing system has employed a
unified, fully-coherent, strong-consistent memory system yet

|  Most proposed/existing systems have disjoint memory systems

|  MacSim (GT) cycle-level simulator
|  Intel’s Sandy Bridge like configuration + NVIDIA’s Fermi like

GPU configuration
|  Benchmarks

•  Parameters of modeling communication overhead

|  Compare five systems
  IDEAL-HETERO : unified and fully coherent
  CPU+CUDA : disjoint space + PCI-E
  LRB : partially-shared space + PCI aperture
  GMAC : ADSM+PCI-E
  Fusion : disjoint space + memory controller

 16

|  Not much performance difference

0	

5	

10	

15	

20	

25	

Ex
ec
u&

on
	 &
m
e	
(M

	 c
yc
le
s)
	

communica-on	

parallel	

sequen-al	

|  Different programming options affect how easy/difficult it is to write
programs

|  Use the number of source lines to indicate programmability
  The number of additional source lines that are required to handle

explicit data communication and data handling operations

|  Unified < partially-shared <= ADSM < disjoint
  Unified space does not require any special APIs
  Disjoint memory space requires the most additional source code lines

The number of source lines to handle data communication

|  We exploited the design space of heterogeneous
computing memory systems

|  memory space does not affect performance significantly

|  Partially shared memory space is the most promising
option
 provides many hardware design options (locality managements)

and moderately good programmability

 19

