
Hardware-based Always-On Heap Memory Safety
Yonghae Kim

Georgia Institute of Technology
yonghae@gatech.edu

Jaekyu Lee
Arm Research

jaekyu.lee@arm.com

Hyesoon Kim
Georgia Institute of Technology

hyesoon@cc.gatech.edu

Abstract—Memory safety violations, caused by illegal use of
pointers in unsafe programming languages such as C and C++,
have been a major threat to modern computer systems. However,
implementing a low-overhead yet robust runtime memory safety
solution is still challenging. Various hardware-based mechanisms
have been proposed, but their significant hardware requirements
have limited their feasibility, and their performance overhead is
too high to be an always-on solution.

In this paper, we propose AOS, a low-overhead always-on
heap memory safety solution that implements a novel bounds-
checking mechanism. We identify that the major challenges of
existing bounds-checking approaches are 1) the extra instruction
overhead for memory checking and metadata propagation and
2) the complex metadata addressing. To address these challenges,
using Arm PA primitives, we leverage unused upper bits of
a pointer to store a key and have it propagated along with
the pointer address, eliminating propagation overhead. Then,
we use the embedded key to index a hashed bounds table to
achieve efficient metadata management. We also introduce a
micro-architectural unit to remove the need for memory checking
instructions. We show that AOS overcomes all the aforementioned
challenges and demonstrate its feasibility as an efficient runtime
memory safety solution. Our evaluation for SPEC 2006 workloads
shows an 8.4% performance overhead on average.

Index Terms—Security; software and system safety; pointer
authentication;

I. INTRODUCTION

Memory safety violations have been a conventional but
persistent problem in computer systems. Memory safety issues
have inherently existed in unsafe programming languages such
as C and C++ because of the illicit use of pointers. Recent
industry reports [1], [2] revealed that memory safety errors
addressed in their products accounted for more than 70% of all
security issues. This demonstrates that memory safety errors
are still prevalent and exploitable by attackers.

Researchers have proposed extensive amounts of software-
and hardware-based work to prevent such vulnerabilities. Soft-
ware techniques [3]–[7] provide strong security guarantees, but
they are not suitable runtime solutions because of their sig-
nificant performance overhead. Instead, their primary purpose
is for testing and debugging. For example, AddressSanitizer
(ASan), one of the most popular memory error detectors,
showed a 73% slowdown [3].

Hardware-based mechanisms typically achieve less per-
formance overhead, but they do not attain desired proper-
ties altogether, such as broad security coverage, high per-
formance, and low hardware overhead. Instead, they trade
off one property for another. For example, hardware-based
blacklisting mechanisms [8], [9] set the surrounding regions

of memory objects as redzones and prohibit their access to
prevent over/underflow attacks. Such an approach is efficient
since monitoring could be performed in parallel with normal
operations, as in REST [8]. However, they cannot prevent non-
adjacent illegal accesses that jump over the redzones. Given
the upward trend of non-adjacent spatial safety violations (over
60% since 2014) [2], we expect that their effectiveness will
be increasingly limited.

Whitelisting mechanisms enforce memory operations to
only access allowed memory locations, providing stronger
security capabilities. For example, bounds-checking mecha-
nisms [10]–[13] associate bounds metadata with pointers to
protect and perform address range checking. Despite more
powerful security guarantees, they incur significant hardware
changes and design complexity. Their performance overhead
is also too high to be an always-on solution.

We observe that the major challenges of existing bounds-
checking approaches are 1) the extra instruction overhead
for memory checking and metadata propagation and 2) the
complex metadata addressing. For instance, Watchdog [11],
a prior hardware-based bounds-checking mechanism, showed
44% more dynamic instruction counts, causing significant
performance degradation. It also requires register extensions
(up to 256-bit) to propagate the metadata and use it inside a
CPU core, which significantly increases power consumption.
Moreover, prior approaches often require a complex address-
ing scheme for metadata accesses. For example, Intel Memory
Protection Extensions (MPX) [12] requires approximately
three register-to-register moves, three shifts, and two memory
loads to access its hierarchical bounds table.

To tackle these challenges, we propose AOS, a low-
overhead Always-On memory Safety solution for heap pro-
tection that implements a novel bounds-checking mechanism.
We utilize Arm pointer authentication (PA) primitives [14] to
store a pointer authentication code (PAC) into the unused high-
order bits of a pointer for memory safety. By doing so, we
allow the embedded PAC to be passed along with the pointer
address, removing extra instructions for metadata propagation.
Furthermore, we sign all data pointers returned by dynamic
memory allocation, i.e., placing a PAC into the pointer, and
use the PAC to index a hashed bounds table that stores bounds
metadata. This scheme enables efficient metadata management
since the addressing becomes simplified using the base address
of the table and the PAC as an offset.

To remove additional instructions required by prior
work [10]–[12] for bounds checking, we introduce a new

1153

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00095

micro-architectural structure, a memory check unit (MCU). In
AOS, every memory instruction is enqueued in the MCU when
it is issued to the load-store unit (LSU). If a pointer address
is signed, i.e., has an embedded PAC, we perform bounds
checking to validate the access, which enables an efficient
selective memory safety checking mechanism.

AOS achieves efficient yet complete spatial and temporal
memory safety for a heap region. AOS prevents spatial safety
violations (e.g., out-of-bounds access) by checking bounds
for all signed memory accesses. Moreover, AOS can detect
temporal errors, such as the use of a dangling pointer, use-
after-free (UAF), and double free. When a signed data pointer
is freed, AOS clears the associated bounds information while
leaving the pointer as being signed. Because of the absence
of its bounds metadata, subsequent use of the pointer will
fail in bounds checking. With the prevalence of heap memory
vulnerabilities, AOS provides robust protection against the
most prevailing attack vectors.

We also discuss how AOS can be extended to support
pointer integrity by utilizing Arm PA primitives and achieve
practical defenses against runtime control-flow attacks, such as
return-oriented programming (ROP) [15] and jump-oriented
programming (JOP) [16], and data-oriented attacks by cor-
rupted data pointers. AOS also provides precise exception
handling by delaying architectural state updates until an
instruction retires with a successful bounds checking. This
enables AOS to prevent leakage of secret data by an illegal
read and memory corruption by an illegal write.

Given the limited PAC size (11 to 32 bits) under typical
virtual address schemes in a processor, some memory objects
may have the same PAC value, causing PAC collisions. To
address this issue, we develop a multi-way bounds-table struc-
ture with gradual resizing to accommodate multiple bounds
metadata for each PAC. A process begins its execution with
a modest-size table and increases the associativity of the
table upon an insertion failure due to insufficient capacity.
This approach enables efficient and scalable bounds-table
management.

This paper claims the following contributions:
• We propose AOS, which overcomes the main challenges of

existing bounds-checking approaches and realizes a practi-
cal bounds-checking mechanism for heap protection.

• We implement the AOS design and present performance
evaluation for SPEC 2006 workloads. Our results show a
marginal 8.4% performance overhead on average.

• We describe how AOS can cooperate with pointer integrity
solutions, which demonstrates that the security capabilities
of AOS can be extended with little overhead.

• We present a security analysis and demonstrate the effec-
tiveness of the AOS protection mechanism.

II. BACKGROUND

A. Memory Safety Violations

Memory safety violations are a substantial threat to modern
computer systems since they can lead to system crashes and
security vulnerabilities. Fig. 1 shows an example of heap

1 struct fast_chunk {
2 size_t prev_size, size;
3 struct fast_chunk *fd, *bk;
4 char buf[0x20];
5 };
6

7 struct fast_chunk fchunk[2];
8 void *ptr, *victim;
9

10 // Craft chunks to pass security tests
11 fchunk[0].size = sizeof(struct fast_chunk);
12 fchunk[1].size = sizeof(struct fast_chunk);
13

14 // Attacker overwrites a pointer
15 ptr = (void *) &fchunk[0].fd;
16

17 // fchunk[0] gets inserted into fastbin
18 free(ptr);
19

20 // Returns 16 bytes ahead of fchunk[0]
21 victim = malloc(0x30);

Fig. 1. Heap exploitation example: House of Spirit.

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

32 24 21 22 26 13 4 11 4 1 3 7 8

36 35
43 45 64

30 36
35 28 61 71 104 79

1 1
2 4 9

5
7

13 17 39
76 88

55

12 16
18 22 44

57
39

113
186 183

87
81

99

4
4

13 30 21

14
7 15

25

25 36
71 81

6
4 8

8 11

6
5 6

9

22 19 82 61

44 30 44 41 59
103 61 120

59
159 139 197 221

Stack Corruption
Heap Corruption

Heap OOB Read
Use After Free

Type Confusion
Uninitialized Use

Other

Fig. 2. The root cause trend of memory safety issues.

exploitation, House of Spirit, which is a data-oriented attack
on glibc. The attack crafts a data pointer controlled by an
attacker so it can bypass the security tests of free(). Once
freed, the pointer is inserted into a fastbin, which is one of
the linked lists holding free chunks. Then, the next malloc()
returns the address 16 bytes ahead of the crafted data pointer
and ends up allowing subsequent malicious operations on the
attacker-controlled memory locations.

Fig. 2 shows a root cause trend of memory safety vul-
nerabilities reported by Microsoft [2]. We observe that stack
corruption errors show a downward trend thanks to software
protection methods, including canaries, address space layout
randomization (ASLR), and pointer authentication. It also
shows that heap vulnerabilities, such as heap corruption, out-
of-bounds (OOB) read, and use-after-free, have been dominant
in recent years. Since other vulnerabilities, such as type con-
fusion and uninitialized use, can be detected and mitigated by
static analysis tools [17]–[19], we recognize that heap memory
vulnerabilities are the most problematic and challenging.

1154

1 pacia lr, sp // sign lr
2 stp fp, lr, [sp, #-FS]!
3 mov fp, sp
4 // function body
5 ldp fp, lr, [sp], #FS
6 autia lr, sp // authenticate lr
7 ret lr

Fig. 3. Return address signing using Arm PA.

B. Arm Pointer Authentication

Arm PA is a security primitive added in the Armv8.3-A
extension [14]. It is designed to prevent illicit pointer modifica-
tion by adding new instructions for signing and authenticating
pointer authentication codes (PACs). The PAC is calculated
using a cryptographic algorithm such as the QARMA block
cipher [20]. QARMA takes two inputs, a pointer, and a
context. The truncated output from QARMA becomes the
PAC. The effective virtual address space in 64-bit architectures
is typically less than 64 bits. By leveraging this idea, Arm
PA places a PAC into the unused high-order bits of a pointer
to protect and verifies its integrity by authenticating the PAC
before use. Depending on the virtual address scheme in a
processor, the PAC size ranges from 11 to 32 bits.

Fig. 3 shows a return address signing scheme using Arm
PA. In the prologue, pacia (line 1) computes and embeds a
PAC into the return address (lr) using a stack pointer (sp)
as a modifier and key A. In the epilogue, autia (line 6)
authenticates the return address using the same modifier and
key pair. If a pointer is corrupted, the authentication fails, and
any further use of the pointer leads to a translation fault. Prior
work [21] has reported a negligible performance overhead
(∼0.5%) by return address signing.

Despite its low overhead, Arm PA does not provide spatial
and temporal safety. It can detect neither out-of-bounds ac-
cesses nor temporal errors. The prevalence of such spatial (e.g.,
heap OOB read) and temporal (e.g., use-after-free) violations,
shown in Fig. 2, demonstrates that the PA mechanism cannot
be a sole security solution, and cooperation with a stricter
defense is essential.

III. AOS: ALWAYS-ON MEMORY SAFETY

In this section, we describe challenges in implementing
an efficient bounds-checking mechanism and how AOS over-
comes such challenges. Then, we outline AOS and its opera-
tions.

A. Challenges

Challenge 1. Register extension. Many prior studies [10], [11],
[22], [23] implement a fat pointer to hold metadata needed for
memory checking by extending every register. For example,
Watchdog [11] extends registers up to 256 bits for bounds
and use-after-free checking. A fat pointer itself contains the
metadata, as shown in Fig. 4a, and every pointer dereferencing
is checked with its associated metadata. However, such an
approach not only requires changes to almost the entire

Pointer address

063

Base
Length

Identifier or Permission
256
bits

(a) Fat pointer

Shadow Space

Original

addr

f(addr)

(b) Shadow memory

Bounds
Table

Bounds
Directory

Pointer address

base of BD

base of BT

UBound | LBound

63 0

(c) Two-level scheme

Hashed Bounds
Table

HBT(PACA)

Mem Chunk A

Mem Chunk B

HBT(PACB)

PACA Pointer address

PACB Pointer address
63 0

(d) AOS

Fig. 4. Comparison of metadata management methods.

1 // ¬ Heap Allocation
2 ptr = malloc(size)
3 key = unique_id++
4 lock = new_lock()
5 *(lock) = key
6 id = (key, lock)
7 q = setid(ptr, id)
8 // Heap Deallocation
9 id = getid(ptr)

10 *(id.lock) = INVALID
11 add_free_list(id.lock)
12 free(ptr)
13 // ® Load
14 check R2.id
15 ld R1.id <- ShadowMem[R2].id
16 ld R1 <- Mem[R2]
17 // ¯ Store
18 check R2.id
19 ShadowMem[R2].id <- R1.id
20 Mem[R2].val <- R1
21 // ° Add Immediate
22 R1.id <- R2.id
23 add R1 <- R2 + imm
24 // ± Add
25 if (R2.id != NULL)
26 R1.id <- R2.id
27 else
28 R1.id <- R3.id
29 add R1 <- R2 + R3

(a) Watchdog

1 // ¬ Heap Allocation
2 ptr = malloc(size)
3 pacma ptr, sp, size
4 bndstr ptr, size
5

6

7

8 // Heap Deallocation
9 bndclr ptr

10 xpacm ptr
11 free(ptr)
12 pacma ptr, sp
13 // ® Load
14 ld R1 <- Mem[R2]
15

16

17 // ¯ Store
18 Mem[R2].val <- R1
19

20

21 // ° Add Immediate
22 add R1 <- R2 + imm
23

24 // ± Add
25 add R1 <- R2 + R3
26

27

28

29

(b) AOS

Fig. 5. Comparison of memory safety operations between Watchdog and AOS.
Extra instructions are blue colored.

pipeline stages but also increases power consumption because
of the increased bit width of register read/write operations.

Challenge 2. Bounds-checking operation. Bounds checking
is typically performed by extra instructions [10]–[12]. For
instance, Watchdog inserts a check µop before every memory
access (® and ¯ in Fig. 5a). The check µop uses its identifier
(id) for use-after-free detection and bounds checking. Adding
check µops resulted in 29% more dynamic instructions in
their evaluation.

Challenge 3. Metadata propagation. Since the destination
register does not automatically inherit the metadata from
the source register, additional instructions are necessary to
propagate the metadata throughout program execution. For
example, Watchdog requires the extra instructions for the

1155

Load-Store
Unit (LSU)

Memory
Check Unit

(MCU)

L1 Cache

Load/store bndstr/bndclr

Tag Way

Bounds Way
Buffer (BWB)

Prog

LLVM

malloc()
pacma
bndstr
...
bndclr
xpacm
free()
pacma

Valid

Type

Addr

BndAddr

BndData

State

Committed

Way

Count

Memory Check
Queue (MCQ)

Tail Head

Way 0 ... WayT-1

8 Bounds 8 Bounds 8 Bounds

BndAddr

BoundsBounds
Checking

Hashed Bounds Table (HBT)

MemoryCoreInstrumentation

BndData

PAC PAC VA
55 VA_SIZE-1 063

AHC

!= 0? Signed.
Perform bounds checking.
Unsigned.
No bounds checking.

Addr:

Fig. 6. AOS overview.

pointer arithmetic (° and ± in Fig. 5a).
Challenge 4. High memory overhead. Bounds metadata often
incurs significant memory overhead. In particular, shadow
memory implementations mirror virtual address space to the
shadow space [3], [10], as shown in Fig. 4b, which results
in severe memory fragmentation caused by page-granularity
allocation. For instance, ASan reserves one-eighth of the
virtual address space for shadow space [3].
Challenge 5. Complex metadata addressing. To perform
bounds checking, the associated metadata of each pointer
needs to be loaded from memory. Intel MPX [12] imple-
ments a two-level address translation scheme to access bounds
metadata, as shown in Fig. 4c. This multi-stage translation
requires approximately three register-to-register moves, three
shifts, and two memory loads, causing significant performance
degradation for memory-intensive applications.

B. How We Overcome Challenges
To tackle the above challenges, we use Arm PA as a vehicle.

If we sign a data pointer as Arm PA does, which places a
PAC into its upper bits, the PAC is passed through along
with the pointer address without any hardware support or extra
operations. This scheme allows us to avoid register extension
(Challenge 1) and additional instructions for metadata propa-
gation (Challenge 3).

Furthermore, data-pointer signing leaves a mark in the
pointer, indicating that the memory access by the pointer needs
to be validated by bounds checking. Once we see a signed
data pointer being dereferenced, we perform bounds checking
and validate the access. Since the need for bounds checking
is determined only by examining the pointer address, this
approach removes the necessity of explicit extra instructions
for bounds checking (Challenge 2).

Last but not least, using a pointer’s PAC to index a bounds
table simplifies the addressing scheme, as shown in Fig. 4d.
We can calculate the metadata address by adding a PAC
to the base address of a bounds table, enabling efficient
bounds metadata accesses. Moreover, it alleviates the memory
overhead, as it neither mirrors memory pages into shadow
space nor causes significant memory fragmentation. As a
result, we tackle challenges 4 and 5.

C. AOS Operations

In this section, we briefly describe the operations of AOS.
Fig. 6 shows an overview of AOS.

1) Pointer Signing: We sign data pointers returned by
malloc() using extended Arm PA instruction set architec-
tures (ISAs) (§IV-A). We instrument all malloc and free

calls to generate a PAC and bounds-table management instruc-
tions (§IV-C) using our custom LLVM passes (§IV-B).

2) Bounds Checking: To enable bounds checking without
explicit instructions, we add a memory check unit (MCU)
(§V-A) in the core pipeline. When a memory instruction is
issued to the load-store unit (LSU), it is also sent to the MCU.
Since we sign every data pointer returned by malloc(), the
MCU can identify memory accesses that require validation
and perform selective bounds checking. For bounds-checking
failures, we develop a new class of exceptions handled by the
operating system (OS) (§IV-D).

3) Metadata Management: We store the bounds informa-
tion of all heap memory chunks in a hashed bounds table
(HBT) (§V-B), which is similar to a hash table. A key of the
HBT is a PAC value embedded in a pointer. To handle hash
collisions, i.e., too many bounds to store in a table row, we
dynamically resize the HBT. For an efficient bounds-searching
process, we keep track of recently used bounds in a tag buffer
(§V-C). To reduce memory overhead and traffic, we develop
a bounds-compression scheme (§V-D).

4) Precise Exception: We provide precise exception han-
dling by preventing architectural state updates until an in-
struction requiring validation retires with successful bounds-
checking. This prevents illegal memory accesses from reading
sensitive data or writing malicious data.

D. Threat Model

To demonstrate the effectiveness of our defense mechanism,
we follow the typical attacker capabilities consistent with prior
work. Our threat model assumes a powerful attacker who can
exploit one or more memory vulnerabilities that may exist
in a user space process, reading or writing arbitrary memory
locations. We do not limit the location of vulnerabilities and
possible attack vectors enabled by the attacker capabilities.
However, we assume that the attacker cannot infer PA keys,

1156

which are stored in special registers and must be invisible
to user space. We also assume that hardware components
are trustworthy and therefore leave out of scope any attacks
that exploit hardware vulnerabilities, such as row-hammer
attacks [24], side-channel attacks [25], [26], and speculative
execution attacks [27], [28].

With the prevalence of heap vulnerabilities, our work fo-
cuses on heap protection. We believe that our approach can
be applied to other data-pointer types (e.g., stack pointers) in
a similar manner but leave this as future work.

IV. SOFTWARE EXTENSIONS

A. ISA Extension

We introduce the following new instructions in AOS:
• pacma/pacmb <Xd>,<Xn|SP>,<Xm>: These are variants

of pacda/pacdb in Arm PA that compute a PAC and insert
it into a pointer <Xd> using a modifier <Xn|SP> and key
A or B. pacma/pacmb take the additional third operand
<Xm>, the size of a new memory chunk. This is used to
calculate a 2-bit address hashing code (AHC), which is used
to 1) indicate a signed (protected) pointer when the value is
nonzero and 2) indicate a type of invariant bits in a pointer
associated with a memory object. We detail how the AHC
is created and used in Section V-C.

• xpacm <Xd>: This instruction is a variant of xpacd. It
strips both PAC and AHC from a pointer.

• autm <Xd>: This is a variant of autda/autdb, Arm PA
authentication instructions. autm authenticates a pointer
<Xd> by checking whether the pointer was signed by AOS,
i.e., has a nonzero AHC. However, it does not strip the
AHC after authentication. If the AHC is zero, the pointer
is considered corrupted, and the authentication fails.

• bndstr <Xn>,<Xm>: This instruction encodes 8-byte
bounds metadata using a pointer address <Xn> and a size
<Xm>, and stores them in an entry of the HBT.

• bndclr <Xn>: This instruction clears the bounds metadata
associated with a pointer address <Xn> by writing an 8-byte
zero value into its corresponding bounds in the HBT.

B. Compiler Support

To instrument new instructions for bounds checking, we
implement new passes to the optimizer and the AArch64
backend in LLVM [29]. The AOS-opt-pass optimizer pass
is designed to detect memory allocation and deallocation calls
and insert new intrinsic functions. For the allocation call, the
aos_malloc intrinsic function is inserted with two operands
after the call, the pointer address returned by malloc() and
the size of a new memory chunk. Also, after the deallocation
call, the aos_free intrinsic function is inserted with one
operand, the signed pointer address to free. These intrinsics
are detected by the new pass, AOS-backend-pass, in the
AArch64 backend and replaced with new instructions, as
shown in Fig. 7.

1 ptr = malloc (size);
2 pacma ptr, sp, size
3 bndstr ptr, size
4 empty line

(a) AOS-malloc

1 bndclr ptr
2 xpacm ptr
3 free (ptr);
4 pacma ptr, sp, xzr

(b) AOS-free

Fig. 7. Data-pointer instrumentation.

C. Program Instrumentation

Assign bounds upon memory allocation. Fig. 7a shows data-
pointer signing and bounds storing. AOS inserts two new
instructions following malloc(). pacma (line 2) signs the
data pointer returned by malloc() using a stack pointer (sp)
as a modifier, and bndstr (line 3) computes bounds and stores
them in the HBT.

Release bounds upon memory deallocation. Fig. 7b shows
data-pointer stripping and bounds clearing. First, we insert
bndclr before free() (line 1). The bndclr instruction
clears the bounds metadata associated with the data pointer
to free. The initialized entry will be reused later by a newly
allocated memory object that has the same PAC. We also place
xpacm (line 2) because freeing a memory chunk inherently
invokes out-of-bounds accesses by the data pointer to free.
In many standard C libraries, such as glibc (GNU C library),
the memory allocator accesses the metadata of the prior and
next memory chunks and performs block coalescing to reduce
memory fragmentation. Since these accesses are legitimate,
we use xpacm to strip the pointer temporarily and avoid
unnecessary bounds checking during free(). Finally, we
place pacma after free() (line 4) to re-sign the pointer. Since
the size does not matter, we pass the zero register, xzr, as a
size operand. Re-signing a pointer here, i.e., leaving a freed
pointer as being signed, effectively locks the pointer. Any
subsequent use of the pointer would fail in bounds checking
because of the absence of its corresponding bounds in the
HBT. In this way, AOS detects temporal violations.

Unlike prior studies [3], [8], our approach does not demand
a quarantine pool to provide temporal safety. Given that the
REST [8] software framework’s use of a quarantine pool
mostly contributed to its performance overhead, avoiding
the use of a quarantine pool will be beneficial in terms of
performance.

D. OS Support

The OS handles bounds-table management (allocation and
resizing) and bounds-checking failures. The OS creates an
HBT when a process is initiated. AOS introduces a new
class of exceptions, an AOS exception, to handle a new type
of failure. If a CPU core detects an instruction faulted by a
bounds operation, it triggers an AOS exception, and the OS
handles it depending on the instruction type:
• bndstr: This indicates a bounds-store failure due to insuf-

ficient capacity in a row of the HBT. We allocate a new,
larger bounds table and copy entries of the old table into
the new one.

1157

• bndclr: This indicates a bounds-clear failure due to double
free or free() by an invalid address.

• Load/store: This indicates a bounds-checking failure, which
could occur by one of the memory safety violations.

Upon a failure, the information will be signaled to a user.
Developers can implement the exception handler to either 1)
terminate the process or 2) report an error and resume.

V. HARDWARE EXTENSIONS

A. Memory Check Unit

To perform memory safety checking without extra instruc-
tions, AOS adds a functional unit, called an MCU, inside a
core. The MCU comprises a memory check queue (MCQ)
and a bounds way buffer (BWB). It is located next to the LSU
and performs bounds-table management and bounds checking.
As shown in Fig. 6, we issue the bounds-table management
instructions, bndstr and bndclr, directly to the MCU. To
validate memory accesses when a memory instruction is issued
to the LSU, we also send the instruction to the MCU. Thus,
an instruction can be issued when both the LSU and the MCU
are not full.

Then, we check the instruction enqueued in the MCU to
see whether its pointer address has been signed by checking
the AHC value. For signed pointers, AOS performs bounds
checking, which may iterate over multiple entries in an HBT
row until it finds valid bounds. To reduce the overhead of
iterative bounds searching, we utilize 64-byte (a typical cache-
line size in a core) load requests and perform parallel bounds
checking using multiple bounds in the same cache line. Since
each bounds metadata is compressed to 8 bytes (§V-D), up
to eight bounds can be stored in one way of an HBT row.
Note that all the bounds-access operations in AOS conform to
existing cache coherence protocols and memory consistency
models.

1) Memory Check Queue: The MCQ stores in-flight bounds
store, clear, and checking operations. Each MCQ entry has the
following fields:
• Valid indicates the validity of an entry.
• Type differentiates the instruction type between bounds-

table management (bndstr/bndclr) and load/store.
• Addr stores a pointer address. During bounds checking, we

compare the address against the lower and upper bounds.
• BndData holds 8-byte bounds from a bndstr or bndclr

instruction to store them in the HBT.
• BndAddr stores the address of an HBT way.
• Way indicates which way to access in a row of the HBT.
• Count keeps the number of ways accessed so far for

the given bounds-checking operation. Count will be incre-
mented if valid bounds are not found at an attempt.

• Committed indicates whether the instruction has been com-
mitted from the ROB. To maintain the store-store ordering
enforced by memory consistency, bounds-store requests
should be sent in program order. Hence, they can be sent
to memory only after Committed is set.

• Finally, State stores the operation state of the current finite
state machine (FSM) in the MCQ.

!succeed

IncCnt Fail

BndChk Done

Init

Count <
Ways

Count ==
Ways

succeed

signed &
srcRegReady !signed

(a) Load/store

succeed

Init Done

IncCnt Fail

OccChk BndStr

!succeed

committed

Count <
Ways

Count ==
Ways

srcRegReady

(b) bndstr/bndclr

Fig. 8. Finite state machines in the MCQ.

2) Finite State Machines: Depending on the instruction
type, each MCQ entry operates in one of the FSM modes:
one for bndstr/bndclr (Fig. 8a) or another for load/store
(Fig. 8b). We describe the states and the transitions among
them as follows.
Init. In this state, BndAddr and BndData are calculated for
a bndstr or bndclr, and the current state transitions to the
OccChk state. In the case of a signed load/store, BndAddr is
calculated, and this state moves to the BndChk state. If the
pointer is not signed, it moves to the Done state.
OccChk. The multiple bounds addressed by BndAddr are
loaded from memory, and occupancy checking is performed.
bndstr looks for an empty (zero) bounds, and bndclr checks
if the loaded lower bound is the same as its pointer address.
If it succeeds, this state transitions to BndStr and IncCnt
otherwise.
BndChk. Parallel bounds checking is performed using the
multiple bounds addressed by BndAddr in this state. If the
valid bounds are found, this state moves to Done. Otherwise,
it goes to the IncCnt state.
BndStr. The instruction waits until Committed is set, i.e., waits
until the instruction is retired from the ROB. Once set, it sends
a bounds-store request and moves to the Done state.
IncCnt. Upon entering this state, the instruction increases its
Count by 1 and recalculates BndAddr to access the next way.
If Count reaches the associativity of the HBT, a bounds failure
occurs, and the state transitions to Fail. Otherwise, this state
transitions back to the previous state, OccChk in the case of
bndstr/bndclr or BndChk for a load or store.
Fail. This state indicates that the instruction has faulted
because of a bounds failure. When an entry retires from the
MCQ after becoming the head, an AOS exception is raised
and handled by the OS. Before becoming the head, this entry
can be replayed by the store-load replay mechanism, which is
explained in Section V-E.
Done. The instruction in this state has completed its bounds
operation and is ready to commit. The head entry in the Done
state with Committed set, i.e., the instruction is retired from
the ROB, can be deallocated from the MCQ.

B. Bounds Table with Gradual Resizing

We store bounds metadata in a per-process bounds table,
called an HBT, the design of which is inspired by Cuckoo

1158

hashing [30], which specializes in hash collision resolution.
Our HBT design shares some similarities with the Cuckoo
hash table, but there are notable differences. Whereas a hash
value in Cuckoo hashing is newly calculated whenever a hash
table is accessed, AOS calculates a PAC with the base address
of a newly allocated memory chunk and keeps the same PAC
for a pointer. Furthermore, as opposed to Cuckoo hashing,
which maintains multiple hash tables indexed with different
hash functions, AOS maintains one hash table indexed with
PACs that are embedded in pointers.

The table has a fixed number of rows, which is the same
as the range of PAC values. For example, we have 64K rows
for the 16-bit PAC size. An HBT is a multi-way structure
to accommodate multiple bounds of different heap memory
chunks that have the same PAC. To handle overflow, AOS
develops a gradual resizing scheme. The process begins with
a modest-size bounds table and dynamically resizes the table
when an insertion failure occurs. Upon resizing, we create
a new table that is twice the size of the original table by
doubling the associativity. To compute a bounds address, we
add two registers: 1) BND_BASE to store the base address of
the HBT and 2) BND_ASSOC1 to store the current associativity
of the HBT. The row offset is computed using a PAC and
BND_ASSOC, as shown in Eq. 1. Then, BndAddr is calculated
using Eq. 2, where W is the way to access. Note that BndAddr
is always 64B aligned to bring a single cache line.

RowO f f set = PAC << (log2BND ASSOC+6) (1)
BndAddr = BND BASE +RowO f f set +(W << 6) (2)

C. Bounds Way Buffer

Although we perform parallel bounds checking, bounds
searching that incurs multiple cache line accesses may degrade
performance since we prevent an instruction from being retired
until it finishes its validation. Hence, minimizing the number
of iterations is important to avoid performance loss. To opti-
mize the searching process, we introduce a tag buffer, BWB,
which keeps track of recent bounds-table accesses and gives
the correct location of valid bounds for subsequent bounds
checking. Each BWB entry stores a 32-bit tag and the last
used way in the HBT. Using only PACs as tags is not enough,
since all bounds in the same row have the same PAC. Thus, we
concatenate PACs with partial memory addresses and AHCs
and use as tags. However, native concatenation can result in
different tags for pointer addresses that belong to a same
memory chunk. This is because even the upper bits of pointer
addresses can change depending on the memory sizes. To
resolve this issue, we utilize an embedded AHC that indicates
the invariant bits within the memory region.

Algorithm 1 describes how we determine the invariant bits
and calculate the AHC. We categorize memory objects into
three groups based on the size: 1) small: about 64B size, 2)
medium: about 256B size, and 3) a large group. Note that
these are the bin sizes used by typical memory allocators.

1We consider only power-of-two associativities.

As explained in Section IV-A, pacma/pacmb embed an AHC
along with a PAC in a pointer upon pointer signing.

Algorithm 1 AHC calculation (Addr, Size)
1: tAddr := Addr ⊕ (Addr+Size-1)
2: if tAddr[VA-1:7] = 0 then // VA: virtual address size
3: AHC := 1 // ≈ 64-byte chunk
4: else if tAddr[VA-1:10] = 0 then
5: AHC := 2 // ≈ 256-byte chunk
6: else
7: AHC := 3 // >≈ 256-byte chunk
8: return AHC

Algorithm 2 describes how a tag is calculated. It takes three
inputs: 1) a pointer address, 2) an AHC, and 3) a PAC. Based
on the AHC value, we derive different bits from the pointer.
When checking bounds, we compute the tag and look up the
BWB to find a matching entry. If found, the corresponding way
is used to calculate the bounds address to access. Otherwise, a
searching process starts from way-0. bndstr always retrieves
way-0. When an instruction retires from the MCQ, the BWB
is updated with its tag and the last accessed HBT way.

Algorithm 2 BWB tag calculation (Addr, AHC, PAC)
1: if AHC = 1 then
2: return concat(PAC[15:0], Addr[20:7], AHC[1:0])
3: else if AHC = 2 then
4: return concat(PAC[15:0], Addr[23:10], AHC[1:0])
5: else
6: return concat(PAC[15:0], Addr[25:12], AHC[1:0])

D. Bounds Compression

Malloc-intensive applications require a larger HBT. Since
bounds are stored in the cache hierarchy, AOS incurs more
cache insertions, causing cache pollution. To alleviate such
side effects, AOS develops a bounds-compression scheme
that takes advantages of the following two observations:
1) malloc() returns a 16-byte aligned address, and 2)
malloc() takes a 32-bit size argument. Compared to 16-byte
(lower and upper bounds) and 12-byte (base and size) bounds,
we encode 8-byte bounds using a 29-bit partial address (bits
4 to 32) from the base address (lower bound) and a 32-bit
memory size. Fig. 9a shows the bounds-compression format.

Size[31:0]R LowBnd[32:4]
29 28 063 60

(a) 8-byte compressed bounds (R: reserved bits)

LowBnd[32:4]0 0
32 0333 4

dLowBnd

LowBnd[32:4]<<4 + Size[31:0]

033

dUppBnd

tAddr Addr[32:0]C
32 033

*C = LowBnd[32] & !Addr[32]

(b) Decompressed bounds and truncated address to be compared.

Fig. 9. Bounds compression and decompression format.

1159

For bounds checking, we first calculate the truncated address
(tAddr) from the current pointer address (Addr), as shown in
Fig. 9b. Then, tAddr is compared against the lower bound
(dLowBnd) and the upper bound (dUppBnd) decoded from
the compressed bounds. Note that C-bit in tAddr is used to
compensate for losing a carry bit, caused by partial address
encoding (LowBnd[32:4] in Fig. 9a).

While we preserve the lower 33 bits of the lower bound,
losing upper bits may cause false positives across pointer
addresses that share the same lower bits. However, we believe
that this is hardly exploitable because colliding addresses
should be at least 8GB apart in the virtual address layout.
Moreover, they should have the same PAC to pass bounds
checking, which is rare considering the high PAC entropy. We
further discuss false positives in Section VII-E.

E. Store-Load Replay

Modern micro-architectures are equipped with out-of-order
execution to improve performance, and AOS implements a
similar out-of-order MCQ execution. To conform to underlying
cache coherence protocols and memory consistency models,
we develop a store-load replay mechanism. To preserve store-
load ordering, when sending a bounds store request to the
cache, bndstr and bndclr check newer MCQ entries. All
newer entries with the same PAC need to be replayed with an
initialized Count unless an entry is in the Done state because
it has completed its execution with valid bounds. Since an
HBT is private to each process, AOS does not consider load-
load replay or other inter-process memory consistency issues
within a core or across multiple cores.

F. Optimization

1) Bounds Cache: Even with our novel bounds-
compression scheme, bounds metadata may occupy a
non-trivial portion of the L1 cache. To reduce the cache
pollution, AOS optionally adds a bounds cache, L1 B-cache,
which is similar to a lock location cache in Watchdog [11].
While the rest of the cache hierarchy remains the same, we
store all bounds metadata in the L1 B-cache, instead of in the
L1 D-cache. Since the size of bounds information is small
and constant (8-byte), regardless of a memory chunk size, a
modest-size cache (e.g., a few tens of KB) can be sufficient.

2) Bounds Forwarding: AOS allows bounds forwarding
from a store to a load. When sending a bounds-load request,
if an older bounds store with the same PAC is found, its
bounds are forwarded to the load, and bounds checking is
performed using the forwarded bounds. This forwarding can
improve performance by 1) reducing memory accesses for
loading bounds and 2) examining bounds early without waiting
for the bounds to arrive. Bounds forwarding can be effective,
especially when a pointer is dereferenced right after the
memory allocation.

3) Bounds Table Access During Resizing: Resizing an HBT
is expensive since we need to copy all the entries from the
old table into a new one. Stalling a process until resizing is
done would incur a non-trivial performance overhead. Inspired

T1 T2

PAC < RowPtr
W >= T1

HBT2(PAC)

T1 T2

PAC >= RowPtr
W >= T1

HBT2(PAC)

T1 T2

PAC < RowPtr
W < T1

HBT2(PAC)

①

T1 T2

PAC >= RowPtr
W < T1

HBT1(PAC)

② ③ ④

: Migrated Region

Fig. 10. Bounds-table access during HBT resizing.

TABLE I
HARDWARE OVERHEAD

Metric MCQ BWB L1-B
Cache

L1-D Cache
(for reference)

Size 1.3KB 384B 32KB 64KB
Area (mm2) 0.0096 0.00285 0.1573 0.2628
Access time (ns) 0.1383 0.12755 0.2984 0.3217
Dynamic access energy (pJ) 0.0014 0.00077 0.0347 0.0436
Leakage power (mW) 3.2269 1.10712 58.295 122.69

by a parallel hash table look-up in the Elastic Cuckoo Hash
Table [31], we develop a similar non-blocking bounds-table
access scheme and introduce a micro-architecture-based table
manager in charge of row-by-row bounds migration.

Fig. 10 depicts the bounds-table access during the HBT
resizing. HBT1 and HBT2 indicate the old and new tables,
each of which has T1 and T2 (=T1*2) ways, respectively. W
indicates the way of a row to access. During resizing, the
manager maintains two base addresses of old and new tables.
It also maintains a row pointer (RowPtr) pointing to a row in
the old table, splitting the table into two regions: the migrated
region and the live region. If accesses fall into out-of-way
in the old table (W ≥ T1) or the migrated region (PAC <
RowPtr), the new table will be accessed using the base address
of the new table. Otherwise, it accesses the old table. After
resizing is finished, the base address of the old HBT is cleared,
and the old HBT is deallocated.

G. Hardware Overhead

Table I summarizes the hardware overhead of AOS. To
estimate the area, access time, dynamic access energy, and
leakage power, we use CACTI-6.0 [32] at 45nm technology.
Overall, the AOS structures incur modest overhead.

VI. DISCUSSION ON PAC COLLISIONS

In AOS, PAC collisions affect both performance and se-
curity. With a high PAC collision rate, the average number
of bounds-table accesses taken to find valid bounds could
increase. It may also introduce false positives by data pointers
with the same PAC. In this section, we study PAC colli-
sions using QARMA [20]. We base our approach on two
assumptions: 1) the block cipher algorithm used to calculate
PACs does not suffer from severe hash collisions and 2) most
applications rarely maintain a large number of active, i.e.,
allocated but not yet deallocated, memory chunks.

To study the first assumption, we run a microbench-
mark that continuously calls malloc() 1 million times and

1160

0x0000 0x4000 0x8000 0xc000 0x10000
PAC value

0

10

20

30

40
O

cc
ur

re
nc

e
Avg:16.0, Max:36, Min:3, Stdev: 3.99

Fig. 11. PAC distributions by QARMA.

TABLE II
MEMORY USAGE PROFILES FOR SPEC 2006 WORKLOADS

Name Max Active # Allocation Deallocation

bzip2 10 29 25
gcc 81825 1846825 1829255
mcf 6 8 8
milc 61 6523 6474
namd 1316 1328 1326
gobmk 1021 137369 137358
soplex 140 98955 34025
povray 11667 2461247 2461107
hmmer 1450 1474128 1474128
sjeng 6 6 2
libquantum 5 180 180
h264ref 13857 38275 38273
lbm 5 7 7
omnetpp 1993737 21244416 21244416
astar 190984 1116621 1116621
sphinx3 200686 14224690 14024020

generates 16-bit PAC values. To compute a PAC, we use
a 64-bit context value (0x477d469dec0b8762), a 128-bit key
(0x84be85ce9804e94bec2802d4e0a488e9), and the pointer address
returned by malloc(). Fig. 11 shows that the PAC values are
well distributed, demonstrating QARMA’s usability as a hash
function.

For the second assumption, we analyze memory manage-
ment characteristics. Table II presents the memory usage
profiles from full program execution of SPEC 2006 work-
loads [35] with reference input. To gather the information, we
use Valgrind [6] with the --trace-malloc option enabled.
Interestingly, most of the workloads are not malloc-intensive,
i.e., memory allocations are not frequent. For example, mcf,
sjeng, and lbm have fewer than 10 malloc calls. More
importantly, for all the applications, we observe that the
average number of active memory chunks is significantly
smaller than the number of total allocation calls. povray and
hmmer have more than 1 million allocation calls but have
only a few thousand active chunks at most. This characteristic
matches our expectation because typical applications allocate
new memory chunks on demand and free them when they
are no longer needed. The analysis of real-world benchmarks
shown in Table III indicates a similar tendency. The number of
allocation and deallocation calls is proportional to the size of
the input (in pbzip2, pigz, axel) or the number of requests
(in apache, mysql), but all of them have a modest number
of maximum active memory chunks.

TABLE III
MEMORY USAGE PROFILES FOR REAL-WORLD BENCHMARKS

Name Description Max # Alloc. Dealloc.

pbzip2 Compress 1.4GB file, 8 threads 110 12425 12423
pigz Compress 1.4GB file, 8 threads 110 24511 24511
axel Download 1.4GB file, 8 threads 172 473 473
md5sum Calculate MD5 hash, 1.4GB file 32 34 34
apache Apache bench [33], 10K req. 7592 13.36M 13.36M
mysql Sysbench [34], 100K req. 5380 28622 28621

1 // Heap allocation, T: typename, N: # elements
2 T *ptr = (T *)malloc(sizeof(T)*N);
3 pacma ptr, sp, size; //size=sizeof(T)*N
4 bndstr ptr, size
5 // Heap OOB access
6 T varA = ptr[N+1];// Bounds-checking failure
7 ptr[N+1] = 0; // Bounds-checking failure
8 // Valid free()
9 bndclr ptr;

10 xpacm ptr;
11 free(ptr);
12 pacma ptr, sp, xzr;
13 // Dangling pointer or UAF
14 T varB = ptr[0]; // Cannot find valid bounds
15 // Double free
16 bndclr ptr; // Cannot find bounds to clear
17 xpacm ptr;
18 free(ptr);
19 pacma ptr, sp, xzr;

Fig. 12. Memory safety violations detected by AOS.

VII. SECURITY ANALYSIS

A. How AOS Detects Memory Safety Errors

In Fig. 12, we provide an example of memory safety errors
and describe how AOS can detect them. First, AOS signs
the pointer returned by malloc() and stores its bounds in
the HBT (lines 2-4). Any subsequent memory access by the
pointer triggers bounds checking. Hence, spatial safety viola-
tions (heap OOB accesses in lines 6-7) are detected by bounds
checking. Since a valid free() (lines 9-12) deallocates the
memory chunk and clears the associated bounds, any ensuing
use of the freed pointer will fail in bounds checking because of
the absence of the valid bounds. This prevents temporal safety
errors such as the use of a dangling pointer or use-after-free
(line 14) and double free (lines 16-19).

AOS can also prevent other various heap exploitation at-
tacks. In the example shown in Fig. 1, free() with the crafted
address (line 18) triggers the error. AOS prevents this attack
by ensuring that only valid, signed data pointers can be freed.
This is because any free() with a crafted or unsigned address
will be prevented by bndclr inserted before free().

B. Pointer Integrity

In many attack scenarios, corrupting pointers becomes a
preferred attack vector. For instance, control-flow attacks, such
as ROP and JOP, corrupt the return address of a function to
hijack the control flow of a program. In addition, Chen et
al. [36] demonstrated that non-control-data attacks can even
forge user credentials or change security-critical configura-
tions without compromising code pointers. This kind of data-

1161

1 ldr ptr, [SP, #0] ; load data pointer
2 autm ptr ; authenticate

Fig. 13. On-load authentication for AOS data pointers.

oriented attack exploits data pointers to corrupt variables that
influence program behavior.

By inheriting Arm PA’s primitives, AOS can be extended to
ensure pointer integrity, enabling effective protection against
pointer corruption attacks. For instance, Liljestrand et al. [21]
proposed a PA-based code- and data-pointer integrity, which
signs and authenticates PACs to prevent illicit pointer modi-
fication. While their return address and code-pointer signing
schemes can be easily deployed to AOS, we especially care
about how to cooperate with data-pointer signing. For data-
pointer integrity, the authors implement on-load authentica-
tion, in which data pointers are signed immediately before
they are stored in memory and authenticated immediately after
being loaded from memory.

Since the AOS data pointers would already have been
signed, AOS does not re-sign them when they are stored in
memory. Also, AOS does not authenticate them as in [21].
Because their PACs were calculated using the base address
of each memory chunk, the authentication will fail if the
current address differs from the base address. Instead, AOS
authenticates them using autm (§IV-A) by checking whether
the AHC value of a pointer is nonzero, as shown in Fig. 13.
To further enhance the security capabilities, we integrate AOS
with this pointer integrity mechanism and evaluate perfor-
mance overhead in Section IX.

C. PAC/AHC Forging

Since we store PAC and AHC in the upper bits of a pointer,
an attacker can try to manipulate the values via stack corrup-
tion or integer overflow. Deploying the autm authentication
(§VII-B) enhances protection against AHC forging attacks
that try to bypass the bounds-checking process. Regarding
PAC forging attacks, our authentication method cannot detect
arbitrary modification on a PAC. However, the attack surface
exposed by such attacks would be limited for the following
reasons. First, even if one can change the PAC of a pointer,
knowing the PAC of the target memory region is difficult.
Second, as long as we enforce bounds checking for memory
accesses, all data pointers signed by AOS cannot be used to
exploit common attack vectors outside the heap region, such
as procedure linkage table (PLT), global offset table (GOT),
virtual table (VTable), heap metadata, and kernel data.

D. Heap Protection

Heap vulnerabilities are typically exploited by data-pointer
manipulations. For example, an attacker can inject a malicious
offset to a data pointer and make it point to a target memory
location. Then, subsequent read/write operations using the
tainted pointer lead to illegal memory corruption errors or
leakage of sensitive information. Furthermore, heap safety
issues correlate with the continuous development of new

TABLE IV
SIMULATION PARAMETERS FOR PERFORMANCE EVALUATION

Parameter Value

Core 2GHz, 8-wide, out-of-order, L-TAGE [38], 32-entry load
and store queues, 192 ROB entries, 48 MCQ entries

Private L1-I cache 32KB, 4-way, 1-cycle, 64B line
Private L1-D cache 64KB, 8-way, 1-cycle, 64B line
Private L1-B cache 32KB, 4-way, 1-cycle, 8B bounds
Shared L2 cache 8MB, 16-way, 8-cycle local, 16-cycle remote, 64B line
DRAM 50ns access latency from L2, 12.8 GB/s
Arm PA 16-bit PAC size, signing/authentication: 4-cycle, strip-

ping: 1-cycle
HBT Initial 1 way, 4MB size
BWB 64 entries, 1-cycle, eviction policy: LRU

libraries. For instance, in glibc 2.26, the new thread local-
caching mechanism, tcache, exposed a new heap exploit,
double free. AOS provides an effective defense against those
attacks by ensuring inter-object isolation, heap metadata pro-
tection, and temporal safety.

E. False Positives
As described in Section VI, PAC collisions may introduce

false positives across data pointers with the same PAC. How-
ever, exploiting PAC collisions is difficult given the PAC en-
tropy. For instance, with a 16-bit PAC under typical AArch64
Linux systems, an attacker would require 45425 attempts to
achieve a 50% likelihood for a correct guess [21]. Since the
OS exception handler can terminate a process upon a bounds-
checking failure or a PAC authentication failure, a brute-force
attack would be infeasible.

F. Bounds Narrowing
Several bounds-checking mechanisms narrow bounds to

detect intra-object overflows (i.e., overflowing one field into
another field in the same struct), and they reported such type of
errors in SPEC CPU 2006 workloads [7], [12]. For example,
gcc and soplex use custom memory management that causes
intentional intra-object overruns. In h264ref and perlbench,
benign intra-object buffer overruns are reported. The current
AOS implementation does not support the bounds narrowing.
We leave this for future work.

VIII. METHODOLOGY

We evaluate SPEC CPU 2006 workloads [35] on Arm
AArch64 using the gem5 simulator [37]. We use reference
input sets and run the first 3 billion instructions. We do not
count instrumented instructions (§IV-C) to run the same num-
ber of instructions. Table IV shows the simulation parameters.
Note that we choose an initial 1-way HBT from an empirical
study. A compiler-based profiling method can be used to find
optimal associativity, but we leave this for future work.

We evaluate the following four system configurations:
• Baseline: the baseline without security features.
• Watchdog: prior work that features user-after-free and

bounds checking [11].
• PA: a PA-based solution for code- and data-pointer integrity.

We use the implementation of Liljestrand et al. [21], [39].
• AOS: the AOS bounds-checking mechanism.
• PA+AOS: AOS integrated with PA (§VII-B).

1162

bzi
p2 gcc mc

f
mi
lc
na
md
go
bm
k
sop

lex
po
vra
y

hm
me
r
sje
ng

libq
ua
ntu
m
h2
64
ref lbm

om
ne
tppast

ar

sph
inx
3

Ge
om
ea
n

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 e
xe

c.
 t

im
e

Watchdog PA AOS PA+AOS

Fig. 14. Normalized execution time.

bzi
p2 gcc mcf milc

na
md
go

bm
k
sop

lex
po

vra
y

hm
mer

sje
ng

libq
ua

ntu
m

h2
64

ref lbm

om
ne

tppast
ar

sph
inx

3

Geo
mea

n
0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 e
xe

c.
 t

im
e No optimization

L1-B
Bounds Compression
L1-B+Bounds Compression

Fig. 15. L1-B cache and bounds-compression results.

IX. PERFORMANCE EVALUATION

A. Execution Time

Fig. 14 shows the performance evaluation of various mech-
anisms. First, Watchdog incurs a 19.4% performance overhead
on average. Even with its in-core memory checking, many ap-
plications show non-trivial performance overhead (>10%). We
identify that the overhead is due to the extra instructions for
memory checking and metadata propagation. Also, Watchdog
has larger metadata of 24 bytes, compared to 8 bytes in AOS,
thus causing more cache pollution.

PA incurs negligible performance overhead, as reported
in [21]. Most applications show less than 1% overhead, except
for hmmer and omnetpp (∼10%). We discover that their
overhead is caused by frequent function calls that lead to a
large number of stack frame creations. Since the signing and
authentication instructions are inserted for every stack frame,
the overhead is proportional to the number of function calls.

AOS shows an 8.4% performance overhead, and support-
ing pointer integrity (PA+AOS) imposes a 1.5% additional
overhead. PA+AOS incurs negligible overhead for most ap-
plications, showing its feasibility as an always-on memory
safety solution. Applications such as milc, namd, gobmk, and
astar show slightly better performance than the baseline.
We identify that the back-pressure on the issue pipeline
stage due to the MCQ being full prevented aggressive branch
predictions, resulting in fewer branch mispredictions and thus
better performance. To find the root cause of the performance
overhead of other applications, we consider the following three
factors: 1) cache pollution, 2) delayed retirement, and 3) heap
memory de-/allocation.

Cache pollution. Cache pollution caused by bounds meta-
data can degrade performance, in particular for memory-
intensive applications. For instance, gcc has a large memory
footprint and exhibits the worst slowdown, 2.16x, because

bzi
p2 gcc mc

f
mi
lc
na
md
go
bm
k
sop

lex
po
vra
y

hm
me
r
sje
ng

libq
ua
ntu
m
h2
64
ref lbm

om
ne
tppast

ar

sph
inx
3

0
200
400
600

N
um

be
r

of
 in

st
ru

ct
io

ns
pe

r
1B

 In
st

ru
ct

io
ns

 (M
) UnsignedLoad

UnsignedStore
SignedLoad
SignedStore

bndstr/bndclr
pac*/aut*/xpac*

Fig. 16. Statistics of instructions of interest.

bzi
p2 gcc mcfmilc

na
md
go

bm
k

sop
lex
po

vra
y

hm
mer

sje
ng

libq
ua

ntu
m

h2
64

ref lbm

om
ne

tppast
ar

sph
inx

3
0.0
0.5
1.0
1.5
2.0

#
 a

cc
es

se
s

pe
r

in
st

ru
ct

io
n

Access Hit Rate

0
0.2
0.4
0.6
0.8
1.0

BW
B

hi
t

ra
te

Fig. 17. Analysis on bounds-table accesses.

of the increased cache misses. To see the impact of cache
pollution, we study the performance of AOS with and without
the L1-B cache (§V-F1) and bounds compression (§V-F3).
As shown in Fig. 15, both optimizations are effective, but
bounds compression brings a higher performance gain since
it reduces the L2 cache pollution as well. Compared to when
no optimization is used, the L1-B cache reduces the overhead
by 10%, and bounds compression further reduces it by 3% on
average. In particular, gcc and omnetpp show 60% and 68%
lower overhead, respectively, when using both optimizations.

Delayed retirement. In AOS, the validation process may
delay instruction retirement. Hence, the more memory ac-
cesses requiring bounds checking we have, the more likely the
degradation caused by delayed retirement increases. Fig. 16
shows the statistics of instructions of interest. In bzip2, gcc,
hmmer, and lbm, memory accesses by signed data pointers
account for more than 80% of the total accesses. In particular,
hmmer requires bounds checking for over 99% of all memory
accesses, resulting in a 41% overhead by AOS. In contrast,
although lbm requires bounds checking for most of its memory
accesses, it does not suffer from a high overhead because it is
not memory-intensive.

Frequent heap memory de-/allocations. This negatively
affects performance for two reasons: 1) Overhead from extra
instructions and 2) the high PAC collision rate, which could
increase the number of bounds-table accesses. For instance,
gcc and omnetpp invoke more than 20 million malloc calls
during program execution, as shown in Table II. In this case,
the slowdown imposed by extra instructions may not be trivial.
Fig. 17 shows the average number of bounds-table accesses per
instruction and the BWB hit rate. omnetpp shows the highest
average accesses, 1.17, and others show close to one access

1163

bzi
p2 gcc mc

f
mi
lc
na
md
go
bm
k
sop

lex
po
vra
y

hm
me
r
sje
ng

libq
ua
ntu
m
h2
64
ref lbm

om
ne
tppast

ar

sph
inx
3

Ge
om
ea
n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 t
ra

ffi
c

4.2

4.5

3.4

Watchdog PA AOS PA+AOS

Fig. 18. Normalized network traffic.

thanks to the high BWB hit rate. Most applications show a
BWB hit rate higher than 80%. This demonstrates that the
performance overhead caused by the way iteration in AOS is
not significant.

1) HBT Resizing: As explained in Section V-F3, resizing
an HBT can be costly. During our simulation, no resizing
occurred except for sphinx3 (1) and omnetpp (2) since the
initial 1-way HBT could cover up to 512K bounds. Also,
we found that the performance impact from resizing was
amortized at runtime because of non-blocking accesses to the
old table.

B. Network Traffic

To evaluate memory overhead from bounds-table accesses,
we measure the number of bytes transferred between caches
and between the last-level cache and DRAM. Fig. 18 shows
31% and 18% additional network traffic on average by Watch-
dog and PA+AOS, respectively. Although Watchdog keeps
bounds in extended registers in a core, it requires more traffic
because of its larger metadata size than that of AOS. While
most applications have modest traffic overhead (<10%) in
AOS, we observe relatively high overhead in gcc, povray,
and omnetpp because of frequent bounds-table accesses.

X. RELATED WORK

Trip-wire. This class places blacklisted regions around all
the objects to be protected. Any access to these regions is
prohibited. REST [8] stores randomized secret tokens around
sensitive data and detects any access to them using a value-
matching unit in the cache hierarchy. Califorms [9] achieves
memory safety at the granularity of individual objects. By
leveraging unused padding bytes, they mitigate the perfor-
mance overhead for fine-grained memory safety. Although
such trip-wire-based approaches are low cost, they cannot
prevent accesses from jumping over the blacklisted regions.
Memory tagging. These mechanisms tag memory regions to
enable the tracking of illegal memory operations. For instance,
HDFI [40] tags 1 bit with sensitive data and enforces data flow
isolation at the word granularity. SPARC Application Data
Integrity (ADI) [41] and Arm Memory Tagging Extension
(MTE) [14] place a 4-bit tag into the upper bits of a pointer
and associate the tag with the corresponding memory region.
These approaches impose moderate performance overhead, but
their implementations require significant hardware changes to
the entire memory hierarchy and interfaces, such as tag cache,

tag checking logic, and additional cache metadata extensions.
Also, the limited size of tags reduces security guarantees.
Given the probability of bug detection, specifically 94% with
4-bit tags, an attacker may bypass the protection with a
sufficient number of attempts. Increasing the tag size is not
trivial because of the memory overhead and hardware cost.
Compared to prior work, AOS utilizes more bits and has a
high PAC entropy, which makes the attacks less feasible.
Bounds checking. This class associates bounds metadata
with pointers and enforces every memory operation to access
memory regions within the bounds [10]–[13]. BOGO [13]
extended Intel MPX to guarantee temporal safety on top
of spatial safety supported by MPX. Despite its lightweight
scheme, it has a high performance overhead (∼60%) caused
by its underlying mechanism, Intel MPX.
Capability model. Capability models extend existing ISAs
and provide security guarantees at the entire system level. In
particular, CHERI architectures [22], [23], [42], [43] use a fat
pointer to fit metadata, such as bounds information and permis-
sion bits. Every memory access is checked with its embedded
metadata. However, the implementation requires changes to
the entire system, including the pipeline stages, compiler,
language runtime, and the OS. Although explorations of
system designs remain open to the research community, the
performance overhead and design complexity are high.

XI. CONCLUSION

This paper proposed AOS, a defense mechanism against
memory safety violations, to ensure heap spatial and temporal
safeties. By utilizing the Arm PA’s primitives, AOS signed
data pointers to protect and used PACs embedded in the
pointers to index a hashed bounds table. AOS also intro-
duced a micro-architectural unit to eliminate extra bounds-
checking instructions. Furthermore, this paper discussed how
AOS cooperates with pointer integrity solutions to enhance
security capabilities further. Our evaluations showed that AOS
overcame the major challenges of existing bounds-checking
mechanisms and achieved marginal performance overhead
while providing strong security guarantees. We believe that
AOS can serve as an effective runtime safety solution.

ACKNOWLEDGMENT

We would like to thank Sharjeel Khan, Taesoo Kim, Moin-
uddin Qureshi, Euna Kim, Hyojong Kim, other HPArch group
members, Dam Sunwoo, Krishnendra Nathella, Derek Miller,
Chris Reed, Mathias Brossard, Prakash Ramrakhyani, and the
anonymous reviewers for their feedback to improve the paper.

REFERENCES

[1] Google, “Google queue hardening,” https://security.googleblog.com/
2019/05/queue-hardening-enhancements.html, 2017.

[2] M. Miller, “Trends, challenges, and strategic shifts in the
software vulnerability mitigation landscape,” https://github.com/
microsoft/MSRC-Security-Research/blob/master/presentations/2019
02 BlueHatIL/2019 01%20-%20BlueHatIL%20-%20Trends%
2C%20challenge%2C%20and%20shifts%20in%20software%
20vulnerability%20mitigation.pdf, 2019.

1164

[3] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference (ATC),” USENIX,
2012, pp. 309–318.

[4] N. Hasabnis, A. Misra, and R. Sekar, “Light-weight bounds checking,”
in Proceedings of the 10th International Symposium on Code Generation
and Optimization (CGO),” Association for Computing Machinery, 2012,
pp. 135–144.

[5] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and
access errors,” in Proceedings of the Winter 1992 USENIX Conference,
1992, pp. 125–138.

[6] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI),” Association for Computing Machinery, 2007, pp.
89–100.

[7] G. J. Duck and R. H. C. Yap, “Effectivesan: Type and memory error
detection using dynamically typed c/c++,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI),” Association for Computing Machinery, 2018,
pp. 181–195.

[8] K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,”
in Proceedings of the 45th Annual International Symposium on Com-
puter Architecture (ISCA), 2018, pp. 600–611.

[9] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical byte-granular memory blacklisting using
califorms,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019, pp. 558–571.

[10] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
bound: Architectural support for spatial safety of the c programming
language,” in Proceedings of the 13th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2008, pp. 103–114.

[11] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog: Hard-
ware for safe and secure manual memory management and full memory
safety,” in Proceedings of the 39st Annual International Symposium on
Computer Architecture (ISCA), 2012, pp. 189–200.

[12] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: A cross-layer analysis of the Intel MPX system stack,”
Proceedings of the ACM Measurement and Analysis of Computing
Systems (POMACS), vol. 2, no. 2, Jun. 2018.

[13] T. Zhang, D. Lee, and C. Jung, “BOGO: Buy spatial memory safety,
get temporal memory safety (almost) free,” in Proceedings of the 24th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),” Association for
Computing Machinery, 2019, pp. 631–644.

[14] Arm, “Arm®architecture reference manual Armv8, for Armv8-
A architecture profile,” https://developer.arm.com/docs/ddi0487/fb/
arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile,
2020.

[15] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2007, pp. 552–561.

[16] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security (CCS), 2010, pp. 559–572.

[17] K. Lu, C. Song, T. Kim, and W. Lee, “Unisan: Proactive kernel memory
initialization to eliminate data leakages,” in Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security
(CCS),” Association for Computing Machinery, 2016, pp. 920–932.

[18] A. Milburn, H. Bos, and C. Giuffrida, “SafeInit: Comprehensive and
Practical Mitigation of Uninitialized Read Vulnerabilities,” in The Net-
work and Distributed System Security Symposium (NDSS), Feb. 2017.

[19] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “Typesan: Practical type confusion detection,” in Proceedings of
the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS),” Association for Computing Machinery, 2016, pp. 517–
528.

[20] R. Avanzi, “The QARMA block cipher family. Almost MDS matrices
over rings with zero divisors, nearly symmetric even-mansour construc-
tions with non-involutory central rounds, and search heuristics for low-

latency s-boxes,” IACR Transactions on Symmetric Cryptology (ToSC),
vol. 2017, no. 1, pp. 4–44, Mar. 2017.

[21] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “PAC it up: Towards pointer integrity using ARM pointer
authentication,” in Proceedings of the 27th USENIX Security Symposium
(Security),” USENIX Association, 2019, pp. 177–194.

[22] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in
Proceedings of the 41st Annual International Symposium on Computer
Architecture (ISCA),” IEEE Press, 2014, pp. 457–468.

[23] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. M. Norton, D. Chisnall,
B. Davis, K. Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G.
Neumann, R. N. M. Watson, and S. W. Moore, “CHERI concentrate:
Practical compressed capabilities,” IEEE Transactions on Computers
(TC), vol. 68, no. 10, pp. 1455–1469, 2019.

[24] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Proceedings
of the 41st Annual International Symposium on Computer Architecture
(ISCA),” IEEE Press, 2014, pp. 361–372.

[25] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of AES,” in Proceedings of the 2006 Cryptographers’
Track at the RSA Conference on Topics in Cryptology (CT-RSA),”
Springer-Verlag, 2006, pp. 1–20.

[26] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Security Symposium (Security),” USENIX Association, 2014, pp. 719–
732.

[27] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy (S&P), 2019, pp.
1–19.

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the 27th USENIX Security Symposium (Security), 2018, pp. 973–990.

[29] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO): Feedback-
Directed and Runtime Optimization,” IEEE Computer Society, 2004,
pp. 75–86.

[30] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, May 2004.

[31] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic cuckoo
page tables: Rethinking virtual memory translation for parallelism,” in
Proceedings of the 25th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS),” Association for Computing Machinery, 2020, pp. 1093–1108.

[32] N. P. J. Naveen Muralimanohar, Rajeev Balasubramonian, “CACTI 6.0:
A tool to model large caches,” https://www.hpl.hp.com/techreports/2009/
HPL-2009-85.pdf.

[33] “ab- apache http server benchmarking tool.” https://httpd.apache.org/
docs/2.4/programs/ab.html.

[34] “Scriptable database and system performance benchmark.” https://github.
com/akopytov/sysbench.

[35] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[36] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data
attacks are realistic threats,” in Proceedings of the 14th USENIX Security
Symposium (Security),” USENIX Association, 2005, pp. 177–191.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[38] A. Seznec, “The L-TAGE branch predictor,” Journal of Instruction-Level
Parallelism (JILP), vol. 9, pp. 1–13, 2007.

[39] “Parts-llvm,” https://github.com/pointer-authentication.
[40] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and

Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in Proceedings
of the 37th IEEE Symposium on Security and Privacy (S&P), 2016, pp.
1–17.

1165

[41] Oracle, “Hardware-assisted checking using Silicon Secured Memory
(SSM),” 2015. [Online]. Available: https://docs.oracle.com/cd/E37069
01/html/E37085/gphwb.html

[42] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richard-
son, P. Rugg, P. G. Neumann, S. W. Moore, R. N. M. Watson, and
T. M. Jones, “CHERIvoke: Characterising pointer revocation using
CHERI capabilities for temporal memory safety,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO),” Association for Computing Machinery, 2019, pp. 545–557.

[43] R. Sharifi and A. Venkat, “CHEx86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in Proceedings of
the 47th Annual International Symposium on Computer Architecture
(ISCA), 2020, pp. 762–775.

1166

