
Hardware-based Always-On
Heap Memory Safety

Yonghae Kim, Georgia Tech
Jaekyu Lee, Arm Research

Hyesoon Kim, Georgia Tech

?

Heap Memory Bugs

MICRO 2020

2

int *ptr, idx, val;
ptr = malloc(sizeof(int)*8);

scanf(“%d”, &idx);
// Vulnerable read
val = ptr[idx];

free (ptr);
// Use-after-free
val = ptr[1];

Heap Region

ptr[7] ptr[6]

ptr[5] ptr[4]

ptr[3] ptr[2]

ptr[1] ptr[0]

0

idx

2

10

-1

?

Spatial safety violation
• Out-of-bounds access
• Buffer overflow

1

ptr[2]

ptr[0]

ptr[7] ptr[6]

ptr[5] ptr[4]

ptr[3]

ptr[1]

ptr[2]

ptr[0]
Temporal safety violation
• Use-after-free
• Dangling pointer
• Double free

Controlled by a user

How to Prevent Such Violations?

MICRO 2020

3

} Bounds checking.
} Associate bounds metadata with a pointer to protect.
} Perform bounds checking upon pointer dereferencing.
} Can detect any out-of-bounds (OOB) access.

Heap Region

Heap Memory
ChunkPointer

Lower Bound

Upper Bound

Lower Bound

Upper Bound

How to efficiently maintain bounds?

How to efficiently access bounds?

Hashed Bounds
Table (HBT)

Our Approach: Always-On Memory Safety (AOS)

MICRO 2020

4

} Idea: Use the unused upper bits of pointers!
} Under typical VA schemes, 11 to 32 bits are available.

} However, not enough to store bounds metadata (16B).
} Solution: place a key in a pointer and use the key as a

hash to index a hashed bounds table, where bounds
are stored.

63 0VA_SIZE-1

Pointer AddrKeyB

Pointer AddrKeyAPointer A

Pointer B
Mem Chunk A

Mem Chunk B
HBT(KeyB)

HBT(KeyA)

Background: Arm Pointer Authentication (PA)

MICRO 2020

5

} To ensure pointer integrity,
} [Signing]: Place pointer authentication code (PAC) into upper bits.
} [Authentication]: Check the integrity of PAC before use.

} However, it does not provide spatial and temporal safety.

PAC VA

VA_SIZE-1 063

pacia lr, sp
stp fp, lr, [sp, #-FS]!
mov fp, sp
// function body
ldp fp, lr, [sp], #FS
autia lr, sp
ret lr

< Return address signing using Arm PA >

PAC is authenticated before use.

Sign return address.

Detect illicit pointer
modification!

We extend Arm PA to ensure heap memory safety.
• Using extended Arm PA ISAs, sign data pointers.

• Perform bounds checking for signed data pointers.

• Use PACs to index a hashed bounds table.

• Furthermore, we propose effective iterative bounds search.

AOS Overview

MICRO 2020

6

} ISA extensions.
} Arm PA extensions: AOS pointer signing (pacma, xpacm, ...).
} New instructions: Bounds store/clear (bndstr/bndclr).

} Hardware Extension.
} Memory Check Unit (MCU).

¨ Bounds store/clear.
¨ Selective bounds checking.

} Support for new AOS pointer signing.

} Hashed Bounds Table (HBT).
} A multi-way bounds table with gradual resizing.
} Allocated in the memory by OS when a process is initiated.

Load-Store
Unit (LSU)

Memory
Check Unit

(MCU)

L1 Cache

Load/store bndstr/bndclr

< Memory Check Unit (MCU) >

Way 0 ... Way T-1
BND BND

BND BND

BND BND ... BND BND ... BND BND ...

BND ... BND

< Hashed Bounds Table (HBT) >

Pointer Signing & Bounds Store

MICRO 2020

7

ptr = malloc (size);
pacma ptr, sp, size; // sign data pointer
bndstr ptr, size; // store bounds

Nonzero AHC indicates a signed pointer.

Pointer Addr

VA_SIZE-1 0

PAC

63

AHC

< AOS data pointer signing >

} Which pointer to check?
} Sign data pointers and store bounds.

} pacma <pointer>, <modifier>, <size>.
¨ Compute PAC and AHC (Address Hashing Code) and

insert into a pointer.

} bndstr <pointer>, <size>.
¨ Compress bounds to 8 bytes.
¨ Store bounds in HBT.

Blue instructions are inserted at the compile time.

Bounds Checking

MICRO 2020

8

} Validate memory access.
} If the pointer has been signed, perform bounds

checking.
¨ Bounds checking requires no explicit instructions.
¨ Metadata such as PAC and AHC are propagated

without any overhead.

} Iterative bounds searching in HBT.
} Iterate until bounds are found, which the

pointer address belongs to.
} If it cannot find the bounds, it fails!

!= 0? Perform bounds checking.

No bounds checking.

PAC Pointer Addr

55 VA_SIZE-1 063

AHC

ptr = malloc (size);
pacma ptr, sp, size; // sign data pointer
bndstr ptr, size; // store bounds
// ...
val = *ptr; // Trigger bounds checking
ptr2 = ptr + 1; // Pointer arithmetic
*ptr2 = 0; // Trigger bounds checking

< AOS bounds checking >

Hashed Bounds Table Access

MICRO 2020

9

< Hashed Bounds Table (HBT) >

Way 0 Way 1 ...
BND BND

BND BND

BND BND ... BND BND ... BND BND ...

BND ... BND

...

Memory

} Indexed by PACs.
} Simple bounds address calculation.

} Parallel bounds searching.
} Store 8 bounds (8 x 8B) in one way.
} Load 8 bounds at a time.

} Bounds Way Buffer (BWB)
} Keep track of recent bounds locations (ways).

load/store

bndclr

Bounds checking succeeds.

bndstr An empty space is found.

Iterate until

Bounds to clear are found.

BndAddr

Bounds

BND

2PAC_SIZE rows

No empty space!
Go to next way

8 Bounds

Base Addr

≪

+ Bounds Address
(BndAddr)

PAC

< Bounds Address Calculation >

Multiple iteration rarely occurs.
à With a 16-bit PAC size,

1-way HBT can cover up to 512K (= 216 x 8) bounds.

BWB can give a
correct location.

Ensuring Temporal Safety

MICRO 2020

10

} When a pointer is freed, clear bounds.
} bndclr <pointer>.

¨ Clear the corresponding bounds in HBT.
} xpacm <pointer>.

¨ Temporarily strip both PAC and AHC from a pointer.
¨ Used to avoid unnecessary bounds checking during free().

} pacma <pointer>, <modifier>, <size>.
¨ Re-sign a pointer to prevent further use.

bndclr ptr // clear bounds
xpacm ptr // strip data pointer
free (ptr);
pacma ptr, sp, xzr // re-sign data pointer

PAC AHC Pointer Addr

VA_SIZE-1 063

Blue instructions are inserted at the compile time.

Bounds

Bounds-checking failure occurs
à Its bounds do not exist anymore!
à Detect temporal errors

< Pointer to free >

Optimizations

MICRO 2020

11

} Bounds compression.
} Compress bounds information to 8 bytes.

} Bounds table access during resizing.
} Mitigate the cost of HBT resizing.

} Bounds cache (L1-B cache).
} An optional L1-B cache reduces cache pollution.

} Bounds store-to-load forwarding.
} Reduce memory accesses.

Please refer to the paper for the details.

Methodology

MICRO 2020

12

} Implemented using the gem5 simulator.
} Added new passes in LLVM.
} SPEC CPU 2006 workloads with reference input sets.
} Evaluated four system configurations,

} Watchdog1: Prior work that features user-after-free and bounds checking.
} PA2: Arm PA-based pointer integrity solution.
} AOS: AOS bounds-checking mechanism.
} PA+AOS: AOS integrated with PA.

1 “Watchdog: Hardware for safe and secure manual memory management and full memory safety,” S. Nagarakatte et al., ISCA (2012).
2 “PAC it up: Towards pointer integrity using ARM pointer authentication,” H. Liljestrand et al., USENIX Security (2019).

Performance Evaluation

MICRO 2020

13

bz
iS2 gc

c
Pc
f
Pi
Oc
na
PG

go
bP
k

so
SOe
x

So
vra
y

hP
Pe
r
sje
ng

Oib
qu
an
WuP

h2
64
ref ObP

oP
ne
WSSas

War

sS
hin
x3

Ge
oP
ea
n

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 e
xe

c.
 ti

m
e

WaWchGog 3A A26 3A+A26

} AOS shows an 8.4% overhead on average.
} Watchdog incurs 19.4% overhead on average.
} PA shows negligible overhead (< 1%) for most applications.
} Supporting pointer integrity on top of AOS (PA+AOS) imposes an additional 1.5% overhead.Cache pollution caused by

bounds metadata.

Delayed instruction retirement

due to bounds checking.

Instruction overhead from

frequent heap de-/allocations.

Conclusion

MICRO 2020

14

} We proposed AOS, a defense mechanism for heap spatial and temporal safety.

} In AOS, we introduced:
} A data pointer signing scheme for selective bounds checking.
} A micro-architectural unit (MCU) for efficient bounds operations.
} A multi-way bounds table with gradual resizing for an efficient bounds metadata management.

} AOS achieved marginal performance overhead (8.4%) while providing strong
security guarantees.

} We believe that AOS can serve as an effective runtime safety solution.

MICRO 2020

15

Thank you!
All questions are welcome.

MICRO 2020

16

Contact information: yonghae@gatech.edu

"This presentation and recording belong to
the authors. No distribution is allowed

without the authors' permission."

mailto:yonghae@gatech.edu

