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Abstract

Advancements in modern deep learning have shown that deeper networks with larger datasets can achieve state of the
art results in many different tasks. As networks become deeper, the memory requirement of neural network training proves
to be the primary bottleneck of single-machine training. In this paper, we first study the characteristics of neural network
weight, gradient, feature map, gradient map, and optimizer state distributions for some popular neural network architectures.
Our investigation shows that the majority of the data structures used by neural networks can have their value distributions be
approximated with normal distributions. We then introduce Smart Quantization (SmaQ), a quantization scheme that exploits
this observed normal distribution to quantize the data structures. Our dynamic quantization method calculates the sampled
mean and standard deviation of tensors and quantizes each tensor element to 6 or 8 bits based on the z-score of that value.
Our scheme reduces the memory usage during training by up to 6.7x with minor losses in accuracy.
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SmaQ: Smart Quantization for DNN Training
by Exploiting Value Clustering

1 INTRODUCTION

D EEP neural networks have been very successful at
many different tasks, such as computer vision and

natural language processing. The abundance of available
training data, as well as the existence of ever more pow-
erful processing units (GPGPUs and TPUs), have resulted
in deeper models capable of learning more complex rela-
tionships. Recent deep learning research has shown that
increasing the model depth and the dataset size leads to
higher performance in most deep learning tasks. At the
same time, this increase can be problematic, as the memory
capacity of GPUs and TPUs is quite limited. Traditional data
parallelism techniques will, thus, struggle to fit the architec-
ture’s weights, gradients, and feature maps onto memory,
which has become a bottleneck. As a result, methods that
decrease memory utilization during training can be very
valuable, as they allow for deeper models to be trained at
higher training batch sizes.

We study the value distribution of different neural net-
work data structures and observe that these distributions
have the majority of their data in clusters close to the
mean and thus can be modeled with a normal distribution.
We therefore introduce a quantization technique, SmaQ,
that exploits this observed distribution and, thus, utilizes
estimated statistical variables, mean and standard deviation,
to convey the tensor information in a summarized, encoded
form. We then evaluate our method, comparing our tech-
nique’s memory usage and neural network inaccuracy as a
product of data loss to other similar methods.

In this work, we aim to make progress towards a
fully quantized training technique. While there is signifi-
cant active research into reducing the memory footprint of
DNN training, the existing solutions either are too complex,
expensive, do not reduce the memory usage enough, or
degrade training-accuracy.

In general, reduced precision datatypes and quantization
have been the techniques most recently investigated in
the pursuit of solutions. Reduced precision datatypes of
16 bits have been used before in practice. The IEEE 754-
2019 standard defines the IEEE FP16 format as containing
5 exponent bits and 10 mantissa bits. Note that it has 3
less bits on the exponent than the IEEE FP32 format, thus
reducing its dynamic range. To increase the dynamic range
while still using 16 bits only (including the sign bit), the
BFloat16 (BF16) [6] format uses 8 bits for the exponent and
7 for the mantissa.

Even lower bit-width precision datatypes and/or quan-
tizations that are suitable for DNN training have been
difficult to be achieve. These have resulted in a degree of
information loss and numerical instability issues such as
swamping [11], which is a characteristic of floating point
addition and it arises from the truncation that occurs when-
ever a large number is added to a small number [5]. Wang et

al. [11] proposed an 8-bit floating point format, with a 5-bit
exponent and a 2-bit mantissa, but which requires chunk-
based accumulation, stochastic rounding, and maintaining
the first and the last layers in 16-bit precision. Park et. al.
proposed V-Quant [8], which is a quantization technique
similar to ours in philosophy in that it attempts to quantize
each element based on its value, relative to its distribution.
V-Quant uses full precision values for elements with large
values — identified through sorting the input data, and pro-
poses compressing such outliers with conventional sparse
data representation such as CSR. Finally, V-Quant only
quantizes feature maps in most experiments. For its LSTM
language model experiments, V-Quant only quantizes the
weights, noting that LSTM’s feature map distribution does
not follow the assumption of the paper and thus is not
well-suited for V-Quant. V-Quant’s need to sort the input
data and usage of the CSR format make it suboptimal
to use in large scales. In order to address the existing
challenges with the current methods, Cambier et al. [2]
proposed Shifted and Squeezed 8-bit floating point (S2FP8),
which is the most closely related work to our proposed
technique in that it uses mean and standard deviation of
the data to relay information. S2FP8 attempts to address
the precision challenge of 8-bit training without requiring
chunking, stochastic rounding, loss scaling, or maintaining
some full or half precision layers. It involves encoding
values into transformed values where the transformations
shift and squeeze the values in order to be able to cover the
wide dynamic range with the reduced bit-width. It uses 32-
bit floating point number statistics (the shift and the squeeze
statistics) to transform the values and requires expensive
exponentiation in calculating its squeeze parameter.

2 BACKGROUND AND MOTIVATION

2.1 Quantizing Neural Network Data Structures

The different data structures that we can attempt to quantize
during neural network training include weights, feature
maps (forward pass activation values), gradients, gradient
maps (intermediate partial derivatives calculated in the
backward pass and immediately used in the next layer), and
optimizer-specific data structures such as momentum vec-
tors. Different works in prior art have attempted to quantize
or compress different subsets of these data structures (e.g.,
weights only) or treat different data structures differently,
but our method quantizes all these data structures and
applies the same technique for all, reducing complexity.

2.2 Characteristics of Neural Network Memory

Figure 1 shows histograms for the weight, feature map,
gradient, and gradient map values values of one of the
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(d)Fig. 1: (a) and (b) show the weight distribution for a con-
volution and downsample layer in ResNet 34, respectively,
while (c) and (d) show the feature map and gradient values
for the same convolution layer. Normal distributions, using
the mean and standard deviation of the data, are overlayed
on the histograms.

convolution layers in ResNet 34 [4]. Most importantly, these
distributions are consistently observed across most evalu-
ated cases. We notice that the majority of the values within
these distributions are contained in a very close bounding
box around the mean and that these distributions are even
more tightly clustered around the mean than the normal
distribution. We believe that an encoding mechanism that
exploits this heavily concentrated nature of neural network
data structure distributions can potentially introduce some
major memory savings for both neural network training and
inference.

3 ALGORITHM
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Fig. 2: (a) shows an example of encoding a value within our
bounding box, which is quantized to 6 bits (outlier bit = 0).
(b) shows an example of encoding an outlier value, which is
quantized to 8 bits (outlier bit = 1).

The primary motivation behind our scheme is that, in the
observed distributions of neural network data structure val-
ues, the majority of the data is contained within the cluster

closest to the mean. We will refer to these values as inliers,
and the rest of the data as outliers. Our mechanism exploits
this property to use a lower-bit representation for inliers
and a higher-bit representation for outliers. To encode, we
first normalize the input to its z-score form, which has a
sensible range. We store the mean and standard deviation
as metadata. Then, we quantize the normalized tensor. To
decode, we dequantize the quantized tensor into the nor-
malized format. Then, we retrieve the tensor’s metadata and
use it to undo the normalization process. Figure 2 shows an
example of this encoding scheme in effect.

3.1 Normalizing the Data
One major challenge of using quantization is that we need
to find sensible lower and upper bounds for the input
data. Quantization methods for inference usually employ
observers during the training process to find these bounds
for weights. This is much harder to do for fully quantized
training, however, and involves tedious hyperparameter
adjustment. Our method does not require this kind of fine-
tuning.

Therefore, to encode some input, we first normalize it
to its z-score format, which has a sensible range of (µ −
2σ, µ + 2σ). As such, we define our normalization and de-
normalization functions, λ and λ−1, as:

λ(X ∼ (µ, σ)) =
X− µ
σ

(1)

λ−1(Xnormalized, µ, σ) = X · σ + µ (2)

3.2 Quantizing the Normalized Data
In uniform quantization to N bits, the real value input
space is uniformly divided into 2N discrete buckets, and
the bucket index is used as the quantized representation.
Our smart quantization method builds on top of uniform
quantization, but the number of bits of each quantized
element depends on whether it is an inlier or an outlier.

After normalizing the data, we create a bounding-box
of 1 standard deviation1 around the mean. We treat the
values within the bounding box as inliers and those outside
the bounding box as outliers. We then uniformly quantize
the inliers — which have a range of [µ − σ, µ + σ] — to
Linlier − 1 bits and the outliers — which have a range of
[µ− 2σ, µ− σ)∪ (µ+ σ, µ+2σ] — to Loutlier − 1 bits. Each
input element’s final representation will contain 1 metadata
bit which indicates whether that element is an inlier or an
outlier. For example, SmaQ (6, 8) will encode inliers to 6 bits
(5 data bits and 1 outlier metadata bit) and outliers to 8 bits
(7 data bits and 1 outlier metadata bit).

Our uniform quantization function takes the real-valued
input and discretizes it by linearly interpolating the z-
score value onto the range of the desired integer. After the
interpolation, we use stochastic rounding to truncate the
value into an integer.

4 EVALUATION

4.1 Methodology
In this section, we evaluate our quantization method by
encoding some very popular neural network architectures

1. The size of the bounding box is an adjustable hyperparameter.
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TABLE 1: Experimental Results

InceptionNet ResNet 34 BERT

Encoding Accuracy Storage Benefit Accuracy Storage Benefit Accuracy Storage Benefit

SmaQ (6,8) 92.22% 4.93 84.74% 4.92 0.794 4.95
S2FP8 25.13% 3.87 20.32% 3.87 N/A N/A
FP8 15.99% 4.00 18.80% 4.00 0.766 4.00
FP16 18.24% 2.00 22.38% 2.00 0.793 2.00
BF16 92.49% 2.00 89.00% 2.00 0.791 2.00
FP32 92.14% 1.00 89.20% 1.00 0.793 1.00

during training. This allows us to measure the accuracy loss
and storage benefit as a result of different methods. We com-
pare our results to FP32, FP16, BF16, FP8, and S2FP8 [2]. To
simulate S2FP8, we use the following truncation equation2:

XS2FP8 = [2−β{truncateFP8(2
β |X|α)}]1/α (3)

Any usable encoding method must be generally applica-
ble to most classes of popular neural network architectures.
In our experiments, we evaluate this quality by running
our tests on the following architectures: Inception Networks
(InceptionNet) [9], Residual Networks (ResNet) [4], and
Bidirectional Encoder Representations from Transformers
(BERT) networks [3]. InceptionNets and ResNets are two
of the most popular neural network architectures for com-
puter vision applications such as image classification and
semantic segmentation. BERT is one of the most widely used
networks for natural language processing tasks like machine
translation and semantic similarity. We train ResNet and
InceptionNet on the CIFAR10 image classification task and
BERT on the Semantic Textual Similarity (STS) task from the
GLUE dataset [10].

The networks are trained using the PyTorch framework.
For ResNet, we use the stochastic gradient descent opti-
mizer with a learning rate of 0.003, momentum of 0.9, and
weight decay of 0, and we train for 100 epochs. For BERT,
we use the AdamW optimizer [7] with a learning rate of
2e-5 and weight decay of 0.01, and we train for 6 epochs.

We simulate the inaccuracy of encoding and decoding
during training for every data structure by encoding and
immediately decoding the data structure (we refer to this
as applying inaccuracy). This inaccuracy is applied at the
following steps:

• After the forward pass of each computation graph
node, we apply inaccuracy to the feature maps.

• After the backward pass of each computation graph
node, we apply inaccuracy to the gradient maps.

• Before PyTorch’s parameter update stage (i.e., opti-
mizer step), we apply inaccuracy to the gradients.

• After PyTorch’s parameter update stage, we apply
inaccuracy to weights and optimizer state.

For each network, we evaluate the accuracy and stor-
age benefit of training the network with each encoding
mechanism. The accuracy metric depends on the network
evaluated: For InceptionNet and ResNet 34, the accuracy is
the top-1 validation accuracy. For BERT, the accuracy is the

2. This is taken from equation 5 of the S2FP8 paper

mean of the Pearson and Spearman coefficients. The storage
benefit refers to the average memory savings — relative to
FP32 — of all encoded tensors over the entire training run.
Its equation can be found in equation (4). The additional 64
bits in the numerator are added to account for the mean and
standard deviation storage cost.

Storage Benefit = E

(∑
[64 + (6 ·Ninlier + 8 ·Noutlier)]∑

[32 · (Ninlier +Noutlier)]

)
(4)

We measure the overhead of our software emulation
framework by measuring the training time of the network
with and without our instrumentation. Our profiling results
show that the framework increases training time by adding
a factor of 2.5x (e.g., if the baseline trains in 1 second, SmaQ
trains in 3.5 seconds). This limitation makes evaluating very
large datasets time-consuming. It’s important to note, how-
ever, that this overhead is a result of software emulation.
With proper hardware and software optimization effort, a
performance-focused implementation of SmaQ would have
a much more manageable overhead.

4.2 Results

Table 1 shows the accuracy and storage benefit for the In-
ceptionNet, ResNet, and BERT experiments. The takeaways
from our experimental results are explained in this section.

4.2.1 Accuracy Loss and Storage Benefit
SmaQ attains a top-1 accuracy of 92.22% on InceptionNet,
84.74% on ResNet, and a Pearson and Spearman coeffi-
cient mean of 0.794 on BERT. S2FP8, on the other hand,
attained 25.13% on InceptionNet, 20.32% on ResNet, and
was not even able to complete training on BERT due to
numerical instability issues leading to NaN and infinity
float values being produced. FP8, similarly, produced lower
accuracy values across the board: 15.99% on InceptionNet,
18.80% on ResNet, and 0.766 on BERT. This data shows
that SmaQ heavily outperforms other encoding mechanisms
that produce competitive Storage Benefit (S2FP8 and FP8).
FP16 shows similar results to FP8, producing 18.24% on
InceptionNet, 22.38% on ResNet, and 0.793 on BERT, all of
which are lower than SmaQ’s.

SmaQ’s accuracy values are even competitive with FP32
and BF16, which set the current industry standard for neural
network floating point value encoding. FP32 and BF16,
respectively, produce accuracy values of 92.14% and 92.49%
on InceptionNet, 89.20% and 89.00% on ResNet, and 0.793
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and 0.791 on BERT. SmaQ’s accuracy results outperform
FP32 and BF16 in BERT and are within 5 percentage points
in ResNet34. Most importantly, SmaQ exhibits these com-
petitive accuracy values while using the least amount of
memory, with a Storage Benefit of 4.93x, 4.92x, 4.93x for
Inception, ResNet, and BERT, respectively.

4.2.2 Gradient Map and Optimizer State Encoding
Our results show S2FP8 is not able to perform well in
any of the evaluated tasks. Further investigation shows
that S2FP8 struggles with gradient map and optimizer state
encoding. The original authors of the S2FP8 paper did not
explicitly intend for S2FP8 to be used for gradient map or
optimizer state encoding. For gradient maps, this is because
they are usually immediately consumed after allocation,
making them a suboptimal target for memory compression.
We, however, believe that it is important for an encoding
mechanism to be robust to all kinds of data distributions
observed during DNN training, and that robustness of an
encoding mechanism on different types of data distributions
observed during DNN training can increase the reliability
of the encoding mechanism as a whole. Our experimental
results in table 1 show that S2FP8 lacks robustness and is
suboptimal for encoding gradient maps and optimizer state.
For ResNet, S2FP8 produced 20.32% accuracy and for BERT,
the training loop stopped due to detected NaN and infinite
values for the loss and weights.

TABLE 2: No Gradient Map and Optimizer State Encoding

ResNet 34 BERT

Encoding Accuracy Storage Benefit Accuracy Storage Benefit

SmaQ 86.96% 4.88x 0.795 4.95x
S2FP8 86.46% 3.87x N/A N/A
FP8 85.22% 4x 0.766 4x
FP16 89.03% 2x 0.796 2x
BF16 88.22% 2x 0.792 2x
FP32 89.20% 1x 0.793 1x

We re-ran the BERT and ResNet experiments with gradi-
ent map and optimizer state encoding disabled. This allows
us to compare our algorithm’s performance to S2FP8 under
the same conditions (i.e., with the same data structures
being encoded) that the S2FP8 authors evaluated. Table 2
shows these results. While S2FP8 performs much better with
a ResNet accuracy of 86.49%, SmaQ is still outperforms
S2FP8 with a ResNet accuracy of 86.86%. SmaQ does this
while using less memory than S2FP8, with SmaQ exhibiting
a storage benefit of 4.88x, compared to S2FP8’s 3.87x. S2FP8
still shows numerical instability problems for BERT.

5 CONCLUSION

We present Smart Quantization (SmaQ), an encoding scheme
that exploits the observed normal distributions to quantize
neural network data structures. SmaQ is an appealing op-
tion for neural network training as it can be applied to
weights, feature maps, gradients and optimizer state. SmaQ
(6, 8), on average, used 1.5 less bits than FP8 or S2FP8, all
the while exhibiting higher accuracy values than S2FP8, FP8,
and even FP16. SmaQ’s accuracy is competitive with FP32
and BF16 SmaQ achieves these results while maintaining
a simple implementation at its core. Given the mean and

standard deviation, SmaQ only requires N multiplications
and N additions for encoding and decoding of an entire
tensor of size N , and one additional division than that for
encoding. Our future work includes exploring implementa-
tion optimizations, such as the ones below:

• We can partition the encoded tensor into chunks and
decode the chunks in parallel. Outlier bits can be
stored in a structure of arrays format as a single
bitmask, reducing the need to scan data values.
Padding bytes can be used to deal with alignment
issues.

• Using reservoir sampling algorithms, we can take a
sample from the input tensor and calculate the mean
and standard deviation of that sample.

• The standard deviation can be estimated using a
method similar to range batch-normalization [1]
through the usage of the product of a scale adjust-
ment variable and the range of the input sample.

• Calculated statistics can be re-used per iteration, re-
moving the need for further calculation of mean and
standard deviation beyond the initial computation.
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