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ABSTRACT
With the emergence of data science, graph computing is
becoming a crucial tool for processing big connected data.
Although efficient implementations of specific graph appli-
cations exist, the behavior of full-spectrum graph comput-
ing remains unknown. To understand graph computing,
we must consider multiple graph computation types, graph
frameworks, data representations, and various data sources
in a holistic way.

In this paper, we present GraphBIG, a benchmark suite
inspired by IBM System G project. To cover major graph
computation types and data sources, GraphBIG selects rep-
resentative datastructures, workloads and data sets from 21
real-world use cases of multiple application domains. We
characterized GraphBIG on real machines and observed ex-
tremely irregular memory patterns and significant diverse
behavior across different computations. GraphBIG helps
users understand the impact of modern graph computing on
the hardware architecture and enables future architecture
and system research.

1. INTRODUCTION
In the big data era, information is often linked to form

large-scale graphs. Processing connected big data has been
a major challenge. With the emergence of data and network
science, graph computing is becoming one of the most im-
portant techniques for processing, analyzing, and visualizing
connected data [24] [29].

Graph computing is comprised of multiple research areas,
from low level architecture design to high level data min-
ing and visualization algorithms. Enormous research efforts
across multiple communities have been invested in this dis-
cipline [19]. However, researchers focus more on analyzing
and mining graph data, while paying relatively less attention
to the performance of graph computing [43] [41]. Although
high performance implementations of specific graph applica-
tions and systems exist in prior literature, a comprehensive
study on the full spectrum of graph computing is still miss-
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ing [27] [44]. Unlike prior work focusing on graph traversals
and assuming simplified data structures, graph computing
today has a much broader scope. In today’s graph applica-
tions, not only has the structure of graphs analyzed grown
in size, but the data associated with vertices and edges has
become richer and more dynamic, enabling new hybrid con-
tent and graph analysis [8]. Besides, the computing plat-
forms are becoming heterogeneous. More than just parallel
graph computing on CPUs, there is a growing field of graph
computing on Graphic Processing Units (GPUs).

The challenges in graph computing come from multiple
key issues like frameworks, data representations, computa-
tion types, and data sources [8]. First, most of the indus-
trial solutions deployed by clients today are in the form of
an integrated framework [1] [40] [37]. In this context, el-
ementary graph operations, such as find-vertex and add-
edge are part of a rich interface supported by graph datas-
tructures and they account for a large portion of the to-
tal execution time, significantly impacting the performance.
Second, the interaction of data representations with mem-
ory subsystems greatly impacts performance. Third, al-
though graph traversals are considered to be representa-
tive graph applications, in practice, graph computing has
a much broader scope. Typical graph applications can be
grouped into three computation types: (1) computation on
graph structure, (2) computation on rich properties, and (3)
computation on dynamic graphs. Finally, as a data-centric
computing tool, graph computing is sensitive to the struc-
ture of input data. Several graph processing frameworks
have been proposed lately by both academia and industry
[1] [20] [2] [37] [30] [16]. Despite the variety of these frame-
works, benchmarking efforts have focused mainly on sim-
plified static memory representations and graph traversals,
leaving a large area of graph computing unexplored [25] [7].
Little is known, for example, about the behavior of full-
spectrum graph computing with dynamic data representa-
tions. Likewise, graph traversal is only one computation
type. What is the behavior of other algorithms that build
graphs or modify complex properties on vertices and edges?
How is the behavior of graph computing influenced by the
structure of the input data? To answer these questions, we
have to analyze graph workloads across a broader spectrum
of computation types and build our benchmarks with ex-
tended data representations.

To understand the full-spectrum of graph computing, we
propose a benchmark suite, GraphBIG1, and analyze it on
contemporary hardware. GraphBIG is inspired by IBM’s

1GraphBIG is open-sourced under BSD license. The source
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System G framework, which is a comprehensive set of in-
dustrial graph computing toolkits used by many commercial
clients [37]. Based on our experience with a large set of real
world user problems, we selected representative graph data
representations, interfaces, and graph workloads to design
our GraphBIG benchmark suite. GraphBIG utilizes a dy-
namic, vertex-centric data representation, which is widely
utilized in real-world graph systems, and selects workloads
and datasets inspired by use cases from a comprehensive
selection of application domains. By ensuring the repre-
sentativeness of data representations and graph workloads,
GraphBIG is able to address the shortcomings of previous
benchmarking efforts and achieve a generic benchmarking
solution. The characterization of performance on GraphBIG
workloads can help researchers understand not only the ar-
chitectural behaviors of specific graph workloads, but also
the trend and correlations of full-spectrum graph comput-
ing.

The main contributions of this paper are as follows:

• We present the first comprehensive architectural study
of full-spectrum graph computing within modern graph
frameworks.

• We propose GraphBIG, a suite of CPU/GPU bench-
marks. GraphBIG utilizes modern graph frameworks
and covers all major graph computation types and data
sources.

• We analyze the memory behavior of graph computing.
Our results indicate high L2/L3 cache miss rates on
CPUs as well as high branch/memory divergence on
GPUs. However, L1D cache and ICache both show a
low miss rate because of the locality of non-graph data
and the flat hierarchy of the underlying framework re-
spectively.

• We investigate various workloads and observe diverse
architectural behavior across various graph computa-
tion types.

• We explore several data sources and observe that graph
workloads consistently exhibit a high degree of data
sensitivity.

The rest of this paper is organized as follows. In Section 2,
we discuss and summarize the key factors of graph comput-
ing. Section 3 introduces previous related work. Section 4
illustrates the methodology and workloads of our proposed
GraphBIG. In Section 5, we characterize the workloads from
multiple perspectives on CPU/GPU hardware. Finally, in
Section 6, we conclude our work.

2. GRAPH COMPUTING: KEY FACTORS
Although graph traversals, such as Breadth-first Search

and Shortest-path, are usually considered as representative
graph applications, real-world graph computing also per-
forms various other comprehensive computations. In real-
world practices, graph computing contains a broad scope
of use cases, from cognitive analytics to data exploration.
The wide range of use cases introduces not only unique, but
also diverse features of graph computing. The uniqueness

codes, datasets, and documents are released in our github
repository (http://github.com/graphbig/graphBIG).

and diversity are reflected in multiple key factors, including
frameworks, data representations, computation types, and
data sources. To understand graph computing in a holistic
way, we first analyze these key factors of graph computing
in this section.

Framework: Unlike standalone prototypes of graph al-
gorithms, graph computing systems largely rely on specific
frameworks to achieve various functionalities. By hiding the
details of managing both graph data and requests, the graph
frameworks provide users primitives for elementary graph
operations. The examples of graph computing frameworks
include GraphLab [20], Pregel [22], Apache Giraph [2], and
IBM System G [37]. They all share significant similarity in
their graph models and user primitives. First, unlike sim-
plified algorithm prototypes, graph systems represent graph
data as a property graph, which associates user-defined prop-
erties with each vertex and edge. The properties can include
meta-data (e.g., user profiles), program states (e.g., vertex
status in BFS or graph coloring), and even complex prob-
ability tables (e.g., Bayesian inference). Second, instead of
directly operating on graph data, the user defined applica-
tions achieve their algorithms via framework-defined primi-
tives, which usually include find/delete/add vertices/edges,
traverse neighbours, and update properties.
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Figure 1: Execution Time of Framework

To estimate the framework’s impact on the graph system
performance, we performed profiling experiments on a series
of typical graph workloads with IBM System G framework.
As shown in Figure 1, a significant portion of time is con-
tributed by the framework for most workloads, especially for
graph traversal based ones. On average, the in-framework
time is as high as 76%. It clearly shows that the heavy re-
liance on the framework indeed results in a large portion of
in-framework execution time. It can bring significant im-
pacts on the architecture behaviors of the upper layer graph
workloads. Therefore, to understand graph computing, it
is not enough to study only simple standalone prototypes.
Workload analysis should be performed with representative
frameworks, in which multiple other factors, such as flexibil-
ity and complexity, are considered, leading to design choices
different from academic prototypes.

Data representation: Within the graph frameworks,
various data representations can be incorporated for orga-
nizing in-memory graph data. The differences between in-
memory data representations can significantly affect the ar-
chitectural behaviors, especially memory sub-system related
features, and eventually impact the overall performance.

One of the most popular data representation structure
is Compressed Sparse Row (CSR). As illustrated in Fig-
ure 2(a)(b), CSR organizes vertices, edges, and properties of
graph G in separate compact arrays. (Variants of CSR also
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Figure 2: Illustration of data representations. (a)
graph G, (b) its CSR representation, and (c) its
vertex-centric representation.

exist. For example, Coordinate List (COO) format replaces
the vertex array in CSR with an array of source vertices of
each edge.) The compact format of CSR saves memory size
and simplifies graph build/copy/transfer complexity. Be-
cause of its simplicity, CSR is widely used in the literature.
However, its drawback is also obvious. CSR is only suit-
able for static data with no structural updates. This is
the case for most graph algorithm prototypes. Neverthe-
less, real-world graph systems usually are highly dynamic
in both topologies and properties. Thus, more flexible data
representations are incorporated in graph systems. For ex-
ample, IBM System G, as well as multiple other frameworks,
is using a vertex-centric structure, in which a vertex is the
basic unit of a graph. As shown in Figure 2(c), the ver-
tex property and the outgoing edges stay within the same
vertex structure. Meanwhile, all vertices form up an ad-
jacency list with indices. Although the compact format of
CSR may bring better locality and lead to better cache per-
formance, graph computing systems usually utilize vertex-
centric structures because of the flexibility requirement of
real-world use cases [20] [37].

Computation types: Numerous graph applications ex-
ist in previous literature and real-world practices. Despite
the variance of implementation details, generally, graph com-
puting applications can be classified into a few computa-
tion types [42]. As shown in Table 1, we summarize the
applications into three categories according to their differ-
ent computation targets: graph structure, graph properties,
and dynamic graphs. They have different features in terms
of read/write/numeric intensity. (1) Computation on the
graph structure incorporates a large number of memory ac-
cesses and limited numeric operations. Their irregular mem-
ory access pattern leads to extremely poor spatial locality.
(2) On the contrary, computation on graphs with rich prop-
erties introduces lots of numeric computations on properties,
which leads to hybrid workload behaviors. (3) For computa-
tion on dynamic graphs, it also shows an irregular pattern as
the first computation type. However, the updates of graph
structure lead to high write intensity and dynamic memory
footprint.

Graph data sources: As a data-centric computing tool,
graph computing heavily relies on data inputs. As shown
in Table 2, we summarize graph data into four sources [42].
The social network represents the interactions between indi-
viduals/organizations. The key features of social networks
include high degree variances, small shortest path lengths,

and large connected components [26]. On the contrary,
an information network is a structure, in which the dom-
inant interaction is the dissemination of information along
edges. It usually shows large vertex degrees, and large two-
hop neighbourhoods. The nature network is a graph of
biological/cognitive objects. Examples include gene net-
work [31], deep belief network (DBN) [6] and biological net-
work [10].They typically incorporate structured topologies
and rich properties addressing different targets. Man-made
technology networks are formed by specific man-made tech-
nologies. A typical example is a road network, which usually
maintains small vertex degrees and a regular topology.

3. RELATED WORK
Previous benchmarking efforts of graph computing are

summarized in Table 3. Most of existing benchmarks tar-
get other evaluation purposes, which are much broader than
graph computing. For example, CloudSuite [11] and Big-
DataBench [39] target cloud computing and big data com-
puting respectively. Graph is only a small portion of their
applications. Similarly, PBBS [34] targets evaluations of
parallel programming methodologies. Parboil [36] and Ro-
dinia [9] are both for general GPU benchmarking purposes.
Lonestar [7] focuses on irregular GPU applications, which
include not only graph computing but also several other as-
pects. As one of the most famous graph benchmarks, Graph
500 [25] was proposed for system performance ranking pur-
poses. Although reference codes exist in Graph 500, because
of its special purpose, it provides limited number of work-
loads.

Besides, graph computing has a broad scope, covering
multiple computation types. As shown in Table 3, most
of existing benchmarks are highly biased to graph traver-
sal related workloads (CompStruct). The other two graph
computation types, computation on dynamic graphs and on
rich properties, are less studied. However, as we illustrated
in the previous section, both of them are important graph
computation types and cannot be overlooked when analyz-
ing the full-scope graph computing.

Moreover, without incorporating realistic frameworks, most
prior graph benchmarks assume simplified static graph struc-
tures with no complex properties attached to vertices and
edges. However, this is not the case for most real-world
graph processing systems. The underlying framework plays
a crucial role in the graph system performance. Moreover,
in real-world systems, graphs are dynamic and both vertices
and edges are associated with rich properties.

Multiple system-level benchmarking efforts are also on-
going for evaluating and comparing existing graph systems.
Examples include LDBC benchmark, GraphBench, G. Yong’s
characterization work [13], and A. L. Varbanescu’s study [38].
We excluded them in the summary of Table 3 because of
their limited usability for architectural research. In these
benchmarking efforts, very few ready-to-use open-source bench-
marks are provided. Detailed analysis on the architectural
behaviors is also lacking.

Examples of existing graph computing frameworks include
Pregel [22], Giraph [2], Trinity [33], GraphLab [20], and Sys-
tem G [37]. Multiple academic research efforts also have
been proposed, such as GraphChi [17], X-stream [30], Cusha [16],
and Mapgraph [12]. They incorporate various techniques to
achieve different optimization targets on specific platforms.
For example, GraphChi utilizes the Parallel Sliding Window



Graph Computation Type Feature Example

Computation on graph structure (CompStruct) Irregular access pattern, heavy read accesses BFS traversal
Computation on graphs with rich properties (CompProp) Heavy numeric operations on properties Belief propagation
Computation on dynamic graphs (CompDyn) Dynamic graph, dynamic memory footprint Streaming graph

Table 1: Graph Computation Type Summary

No. Graph Data Source Example Feature

1 Social(/economic/political) network Twitter graph Large connected components, small shortest path lengths
2 Information(/knowledge) network Knowledge graph Large vertex degrees, large small hop neighbourhoods
3 Nature(/bio/cognitive) network Gene network Complex properties, structured topology
4 Man-made technology network Road network Regular topology, small vertex degrees

Table 2: Graph Data Source Summary

Benchmark Graph Workloads Framework Data
Representation

Computation
Type

Data Support

SPEC int mcf, astar NA Arrays CompStruct Data type 4
CloudSuite [11] TunkRank GraphLab [20] Vertex-centric CompStruct Data type 1
Graph 500 [25] Reference code NA CSR CompStruct Synthetic data

BigDataBench [39] 4 workloads Hadoop Tables CompStruct Data type 1
SSCA [4] 4 kernels NA CSR CompStruct Synthetic data

PBBS [34] 5 workloads NA CSR CompStruct Synthetic data
Parboil [36] GPU-BFS NA CSR CompStruct Synthetic data
Rodinia [9] 3 GPU kernels NA CSR CompStruct Synthetic data
Lonestar [7] 3 GPU kernels NA CSR CompStruct Synthetic data

GraphBIG 12 CPU workloads
8 GPU workloads

IBM System G [37] Vertex-centric
/CSR

CompStruct/CompProp
/CompDyn

All types &
synthetic data

Table 3: Comparison between GraphBIG and Prior Graph Benchmarks. Computation and Data Types are
Summarized in Table 1 and Table 2.

(PSW) technique to optimize disk IO performance. Cusha
extends the similar technique on GPU platforms to improve
data access locality.

System G and other related projects like Boost Graph
Library [1], Neo4j [40], Giraph [2], GraphLab [20], are com-
prehensive graph processing toolkits that are used to build
real world applications deployed by clients in both industry
and academia. We refer to these projects as industrial so-
lutions and we oppose them to simple graph infrastructures
that only aim to study the property of various datastructures
and algorithms [25]. The design of an industrial framework
is concerned with not only performance, but also usability,
complexity, and extensibility. In GraphBIG, instead of di-
rectly using a specific industrial framework, we abstract one
based on our experience with System G and a large number
of interactions with our clients. The workloads are all from
representative use cases and cover all major computation
types. Meanwhile, the framework and data representation
design are both following generic techniques widely used by
multiple graph systems.We anticipate that GraphBIG and
its comprehensive analysis we include in this paper can bet-
ter illustrate the trend of full-spectrum graph computing
and help the future graph architecture/system design.

4. OVERVIEW OF GRAPHBIG

4.1 Methodology
To understand the graph computing, we propose Graph-

BIG, a benchmark suite inspired by IBM System G, which

is a comprehensive set of graph computing tools, cloud, and
solutions for Big Data [37]. GraphBIG includes representa-
tive benchmarks from both CPU and GPU sides to achieve
a holistic view of general graph computing.

Framework: To represent real-world scenarios, Graph-
BIG utilizes the framework design and data representation
inspired by IBM System G, which is a comprehensive graph
computing toolsets used by several real-world scenarios. Like
many other industrial solutions, the major concerns of Sys-
temG design include not only performance, but also flexi-
bility, complexity, and usability. System G framework en-
ables us to utilize its rich use case and dataset support and
summarize workloads from one of the representative indus-
trial graph solutions. By ensuring the representativeness of
workloads and data representations, GraphBIG help users
understand the full-spectrum graph computing.

Like several other graph systems, GraphBIG follows the
vertex-centric data representation, in which a vertex is the
basic unit of a graph. The vertex property and the outgoing
edges stay within the same vertex structure. All vertices’
structures form an adjacency list and the outgoing edges in-
side the vertex structure also form an adjacency list of edges.
The graph computing workloads are implemented via frame-
work primitives, such as find/add/delete vertex/edge and
property update.By linking the same core code with vari-
ous CUDA kernels, the GPU benchmarks are also utilizing
the same framework. In addition, because of the nature of
GPU computing, the graph data in GPU memory is orga-
nized as CSR/COO structure. In the graph populating step,



the dynamic vertex-centric graph data in CPU main mem-
ory is converted and transferred to GPU side. Moreover, by
replacing System G’s commercial components with rewrit-
ten source codes, we are able to open source GraphBIG for
public usage under BSD license.

Workload Selection: GraphBIG follows the workflow
shown in Figure 3. By analyzing real-world use cases from
IBM System G customers, we summarize computation types
and graph data types. Meanwhile, we select workloads and
datasets according to their popularity (use frequency). To
ensure the coverage, we then reselect the workloads and
datasets to cover all computation and data types. After
that, we finalize the workloads and datasets to form our
GraphBIG benchmark suite. In this way, the representa-
tiveness and coverage are addressed at the same time.
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Figure 3: GraphBIG Workload Selection Flow
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Figure 4: Real-world use case analysis

To understand real-world graph computing, we analyzed
21 key use cases of graph computing from multiple applica-
tion domains. The use cases are all from real-world practices
of IBM System G customers [37] [42]. As shown in Figure 4,
the use cases come from six different categories, from cog-
nitive computing to data exploration. Their percentage in
each category is shown in Figure 4(B), varying from 24% to
10%. Each use case involves multiple graph computing algo-
rithms. As explained previously, we then select representa-
tive workloads from the use cases according to the number
of used times. Figure 4(A) shows the number of use cases
of each chosen workload with the breakdown by categories.
The most popular workload, BFS, is used by 10 different
use cases, while the least popular one, TC, is also used by
4 use cases. From Figure 4(A), we can see that the cho-
sen workloads are all widely used in multiple real-world use
cases. After the summarize step, a reselection is performed
in merge step to cover all computation types.

4.2 Benchmark Description
As explained in Figure 3 and Figure 4, we analyze real-

world use cases and then select workloads by considering the

key factors together. The workloads in our proposed Graph-
BIG are summarized in Table 4. For explanation purpose,
we group the workloads into four categories according to
their high level usages. The details are further explained
below.

Graph traversal: Graph traversal is the most funda-
mental operation of graph computing. Two workloads –
Breadth-first Search (BFS) and Depth-first Search (DFS)
are selected. Both are widely-used graph traversal opera-
tions.

Graph construction/update: Graph update workloads
are performing computations on dynamic graphs. Three
workloads are included as following. (1) Graph construc-
tion (GCons) constructs a directed graph with a given num-
ber of vertices and edges. (2) Graph update (GUp) deletes
a given list of vertices and related edges from a existing
graph. (3) Topology morphing (TMorph) generates an undi-
rected moral graph from a directed-acyclic graph (DAG). It
involves graph construction, graph traversal, and graph up-
date operations.

Graph analytics: There are three groups of graph an-
alytics, including topological analysis, graph search/match,
and graph path/flow. Since basic graph traversal workloads
already cover graph search behaviors, here we focus on topo-
logical analysis and graph path/flow. As shown in Table 4,
five chosen workloads cover the two major graph analytic
types and two computation types. The shortest path is a
tool for graph path/flow analytics, while the others are all
topological analysis. In their implementations, the short-
est path is following Dijkstra’s algorithm. The k-core de-
composition is using Matula & Beck’s algorithm [23]. The
connected component is implemented with BFS traversals
on the CPU side and with Soman’s algorithm [35] on the
GPU side. The triangle count is based on Schank’s algo-
rithm [32] and the graph coloring is following Luby-Jones’
proposal [14]. Besides, the Gibbs inference is performing
Gibbs sampling for approximate inference in bayesian net-
works.

Social analysis: Due to its importance, social analysis
is listed as a separate category in our work, although gen-
erally social analysis can be considered as a special case of
generic graph analytics. We select graph centrality to rep-
resent social analysis workloads. Since closeness centrality
shares significant similarity with shortest path, we include
the betweenness centrality with Brandes’ algorithm [21] and
degree centrality [15].

4.3 Graph data support
To address both representativeness and coverage of graph

data sets, we consider two types of graph data, real-world
data and synthetic data. Both are equally important, as ex-
plained in Section 2. The real-world data sets can illustrate
real graph data features, while the synthetic data can help
in analyzing workloads because of its flexible data size and
relatively short execution time. Meanwhile, since the focus
of our work is the architectural impact of graph comput-
ing, the dataset selection should not bring obstacles for ar-
chitectural characterizations on various hardware platforms.
Large datasets are infeasible for small-memory platforms be-
cause of their huge memory footprint sizes. Therefore, we
only include one large graph data in our dataset selection.As
shown in Table 5, we collect four real-world data sets and a
synthetic data set to cover the requirements of both sides.



Category Workload
Computation
Type

CPU GPU Use Case Example

Graph traversal BFS CompStruct
√ √

Recommendation for Commerce
DFS CompStruct

√
Visualization for Exploration

Graph update Graph construction (GCons) CompDyn
√

Graph Analysis for Image Processing
Graph update (GUp) CompDyn

√
Fraud Detection for Bank

Topology morphing (TMorph) CompDyn
√

Anomaly Detection at Multiple Scales

Graph analytics Shortest path (SPath) CompStruct
√ √

Smart Navigation
K-core decomposition (kCore) CompStruct

√ √
Large Cloud Monitoring

Connected component (CComp) CompStruct
√ √

Social Media Monitoring
Graph coloring (GColor) CompStruct

√
Graph matching for genomic medicine

Triangle count (TC) CompProp
√ √

Data Curation for Enterprise
Gibbs inference (GI) CompProp

√
Detecting Cyber Attacks

Social analysis Degree centrality (DCentr) CompStruct
√ √

Social Media Monitoring
Betweenness centrality (BCentr) CompStruct

√ √
Social Network Analysis in Enterprise

Table 4: GraphBIG Workload Summary

The details of the chosen data sets are explained below. All
data sets are publicly available in our github wiki.

Data Set Type Vertex# Edge#

Twitter Graph Type 1 120M 1.9B
IBM Knowledge Repo Type 2 154K 1.72M
IBM Watson Gene Graph Type 3 2M 12.2M
CA Road Network Type 4 1.9M 2.8M
LDBC Graph Synthetic Any Any

Table 5: Graph Data Set Summary

(1) Real-world data: Four real-world graph data sets are
provided, including twitter graph, IBM knowledge Repo,
IBM Watson Gene Graph, and CA road network. The ver-
tex/edge numbers of each data set are shown in Table 5. The
twitter graph is a preprocessed data set of twitter trans-
actions. In this graph, twitter users are the vertices and
twit/retwit communications form the edges. In IBM Knowl-
edge Repo, two types of vertices, users and documents, form
up a bipartite graph. An edge represents a particular docu-
ment is accessed by a user. It is from a document recommen-
dation system used by IBM internally. As an example of bio
networks, the IBM Watson Gene graph is a data set used for
bioinformatic research. It is representing the relationships
between gene, chemical, and drug. The CA road network
is a network of roads in California [18]. Intersections and
endpoints are represented by nodes and the roads connect-
ing these intersections or road endpoints are represented by
undirected edges.

(2) Synthetic data: The LDBC graph is a synthetic data
set generated by LDBC data generator and represents social
network features [28]. The generated LDBC data set can
have arbitrary data set sizes while keeping the same features
as a facebook-like social network. The LDBC graph enables
the possibility to perform detailed characterizations of graph
workloads and compare the impact of data set size.

5. CHARACTERIZATIONS

5.1 Characterization Methodology
Hardware configurations: We perform our experiments

on an Intel Xeon machine with Nvidia Tesla K40 GPU. The

hardware and OS details are shown in Table 6. To avoid the
uncertainty introduced by OS thread scheduling, we sched-
ule and pin threads to different hardware cores.

Processor Type Xeon E5-2670
Frequency 2.6 GHz
Core # 2 sockets x 8 cores x 2 threads
Cache 32 KB L1, 256 KB L2, 20 MB L3
MemoryBW 51.2 GB/s (DDR3)

GPU Type Nvidia Tesla K40
CUDA Core 2880
Memory 12 GB
MemoryBW 288 GB/s (GDDR5)
Frequency Core-745 MHz Memory-3 GHz

Host System Memory 192 GB
Disk 2 TB HDD
OS Red Hat Enterprise Linux 6

Table 6: Test Machine configurations

Experiment Data Set Vertex # Edge #

Twitter Graph (sampled) 11M 85M
IBM Knowledge Repo 154K 1.72M
IBM Watson Gene Graph 2M 12.2M
CA Road Network 1.9M 2.8M
LDBC Graph 1M 28.82M

Table 7: Graph Data in the Experiments

Datasets: In the characterization experiments, we first
use synthetic graph data to enable in-depth analysis for mul-
tiple architectural features of both CPU and GPU sides. As
shown in Table 7, the LDBC graph with 1 million vertices is
selected. Four real-world data sets are then included for data
sensitivity studies. The Twitter graph is sampled in our ex-
periments because of the extremely large size of the original
graph. In our experiments, although the test platform incor-
porates a large memory capacity on CPU side, the GPU side
has only 12GB memory, which limits the dataset size. Thus,
huge size datasets are infeasible in the experiments. More-
over, we intentionally select datasets from diverse sources to



cover different graph types. With the combination of differ-
ent graph sizes and types, the evaluation can illustrate the
data impact comprehensively. In addition, because of the
special computation requirement of Gibbs Inference work-
load, the bayesian network MUNIN [3] is used. It includes
1041 vertices, 1397 edges, and 80592 parameters.

Profiling method: In our experiments, the hardware
performance counters are used for measuring detailed hard-
ware statistics. In total, around 30 hardware counters of the
CPU side and 25 hardware metrics of the GPU side are col-
lected. For the profiling of CPU benchmarks, we designed
our own profiling tool embedded within the benchmarks. It
is utilizing the perf event interface of Linux kernel for access-
ing hardware counters and the libpfm library for encoding
hardware counters from event names. For GPU benchmarks,
the nvprof tool from Nvidia CUDA SDK is used.

Metrics for CPUs: In the experiments, we are follow-
ing a hierarchical profiling strategy. Multiple metrics are
utilized to analyze the architectural behaviors.

For the CPU benchmarks, Execution cycle breakdown is
first analyzed to figure out the bottleneck of workloads. The
breakdown categories include frontend stall, backend stall,
retiring, and bad speculation. In modern processors, fron-
tend includes instruction fetching, decoding, and allocation.
After allocated, backend is responsible for instruction re-
naming, scheduling, execution, and commit. It also involves
memory sub-systems. Cache MPKI is then analyzed to un-
derstand memory sub-system behaviors. We estimated the
MPKI values of L1D, L2, and LLC. In addition, we also mea-
sured multiple other metrics, including IPC, branch miss
rate, ICache miss rate, and DTLB penalty. These metrics
cover major architectural factors of modern processors.

Metrics for GPUs: For the GPU side experiments, we
first analyzed the divergence of given benchmarks. Two met-
rics are measured, one is branch divergence rate (BDR) and
another is memory divergence rate (MDR). We use the fol-
lowing equations to express the degree of branch and mem-
ory divergence.

branch divergence rate (BDR) =
inactive threads per warp

warp size

memory divergence rate (MDR) =
replayed instructions

issued instructions

BDR is the average ratio of inactive threads per warp, which
is typical caused by divergent branches. MDR is the fraction
of issued instructions that are replayed. In modern GPUs, a
load or store instruction would be replayed if there is a bank
conflict or the warp accesses more than one 128-byte block
in memory. The replay may happen multiple times until
all the requested data have been read or written. Thus, we
estimate the memory divergence by measuring the number
of replayed instructions. Both BDR and MDR range from 0
to 1 with higher value representing higher divergence.

5.2 CPU Characterization Results

5.2.1 Workload Characterization
In this section, we characterize GraphBIG CPU workloads

with a top-down characterization strategy. The results are
explained as following.

Execution time breakdown: The execution time break-
down is shown in Figure 5 and grouped by computation
types. The Frontend and Backend represent the frontend

CompStruct CompDynCompProp

0%

20%

40%

60%

80%

100%

B
re

ak
d

o
w

n
 o

f 
Ex

e
cu

ti
o

n
 

C
yc

le
s

Backend

Retiring

BadSpeculation

Frontend

Figure 5: Execution Time Breakdown of GraphBIG
CPU Workloads

bound and backend bound stall cycles respectively. The
BadSpeculation is the cycles spent on wrong speculations,
while the Retiring is the cycles of successfully retired instruc-
tions. It is a common intuition that irregular data accesses
are the major source of inefficiencies of graph computing.
The breakdown of execution time also supports such intu-
ition. It is shown that the backend indeed takes dominant
time for most workloads. In extreme cases, such as kCore
and GUp, the backend stall percentage can be even higher
than 90%. However, different from the simple intuition, the
outliers also exist. For example, the workloads of compu-
tation on rich properties (CompProp) category shows only
around 50% cycles on backend stalls. The variances be-
tween computation types further demonstrates the necessity
of covering different computation types.
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Figure 6: DTLB Penalty, ICache MPKI, and Branch
Miss Rate of GraphBIG CPU Workloads

Core analysis: Although execution stall can be triggered
by multiple components in the core architecture, instruc-
tion fetch and branch prediction are usually the key ineffi-
ciency sources. Generally, a large number of ICache misses
or branch miss predictions can significantly affect architec-
tural performance, because modern processors usually don’t
incorporate efficient techniques to hide ICache/branch re-
lated penalties. In previous literatures, it was reported that
many big data workloads, including graph applications, suf-
fer from high ICache miss rate [11]. However, in our ex-
periments, we observe different outcomes.As shown in Fig-
ure 6, the ICache MPKI of each workload all show below
0.7 values, though small variances still exist. The differ-



ent ICache performance values are resulted from the design
differences of the underlying frameworks. Open-source big
data frameworks typically incorporate many other existing
libraries and tools. Meanwhile, the included libraries may
further utilize other libraries. Thus, it eventually results in
deep software stacks, which lead to complex code structures
and high ICache MPKI. However, in GraphBIG, very few
external libraries are included and a flat software hierarchy
is incorporated. Because of its low code structure complex-
ity, GraphBIG shows a much lower ICache MPKI.

The branch prediction also shows low miss prediction rate
in most workloads except for TC, which reaches as high as
10.7%. The workloads from other computation types show
a miss prediction rate below 5%. The difference comes from
the special intersection operations in TC workload. It is also
in accordance with the above breakdown result, in which TC
consumes a significant amount of cycles in BadSpeculation.

The DTLB miss penalty is shown in Figure 6. The cycles
wasted on DTLB misses is more than 15% of totaly execu-
tion cycles for most workloads. On average, it still takes
12.4%. The high penalty is caused by two sources. One is
the large memory footprint of graph computing applications,
which cover a large number of memory pages. Another is
the irregular access pattern, which incorporates extremely
low page locality. Diversity among workloads also exists.
The DTLB miss penalty reaches as high as 21.1% for Con-
nected Component and as low as 3.9% for TC and 1% for
Gibbs. This is because for computation on properties, the
memory accesses are centralized within the vertices. Thus,
low DTLB-miss penalty time is observed.
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Figure 7: Cache MPKI of GraphBIG CPU Work-
loads

Cache performance: As shown in previous sections,
cache plays a crucial role in graph computing performance.
In Figure 7, the MPKI of different levels of caches are shown.
On average, a high L3 MPKI is shown, reaching as high as
48.77. Degree Centrality and Connected Component show
even higher MPKI, which are 145.9 and 101.3 respectively.
For computations on the graph structure (CompStruct), a
generally high MPKI is observed. On the contrary, Comp-
Prop shows an extremely small MPKI value compared with
other workloads. This is in accordance with its computa-
tion features, in which memory accesses happen mostly in-
side properties with a regular pattern. The workloads of
computation on dynamic graphs (CompDyn) introduce di-
verse results, ranging from 6.3 to 27.5 in L3 MPKI. This is
because of the diverse operations of each workload. GCons
adds new vertices/edges and sets their properties one by
one, while GUp mostly deletes them in a random manner.

In GCons, significantly better locality is observed because
each new vertex/edge will be immediately reused after in-
sertion. The TMorph involves graph traversal, insertion,
and deletion operations. Meanwhile, unlike other workloads,
TMorph includes no small size local queues/stacks, leading
to a high MPKI in L1D cache. However, its graph traversal
pattern results in relatively good locality in L2 and L3.
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Figure 8: Average Behaviors of GraphBIG CPU
Workloads by Computation Types

Computation type behaviors: The average behaviors
of each computation type are shown in Figure 8. Although
variances exist within each computation type, the average
results demonstrate their diverse features. The CompStruct
shows significantly higher MPKI and DTLB miss penalty
values because of its irregular access pattern when travers-
ing through graph structure. Low and medium MPKI and
DTLB values are shown in CompProp and CompDyn re-
spectively. Similarly, the CompProp suffers from a high
branch miss rate while other two types do not. In the IPC
results, CompStruct achieves the lowest IPC value due to
the penalty from cache misses. On the contrary, CompProp
shows the highest IPC value. The IPC value of CompDyn
stays between them. Such feature is in accordance with their
access patterns and computation types.

Data sensitivity: To study the impact of input data sets,
we performed experiments on four real-world data sets from
different types of sources and the LDBC synthetic data (We
excluded the workloads that cannot take all input datasets).

Despite the extremely low L2/L3 hit rates, Figure 9 shows
relatively higher L1D hit rates for almost all workloads and
data sets. This is because graph computing applications
all incorporate multiple small size structures, such as task
queues and temporal local variables. The frequently ac-
cessed meta data introduces a large amount of L1D cache
hits except for DCentr, in which there is a only limited
amount of meta data accesses. From the results in Figure 9,
we can also see that twitter data shows highest DTLB miss
penalty in most workloads. Such behavior eventually turns
into lowest IPC values in most workloads except SPath, in
which higher L1D cache hit rate of the twitter graph helps
performance significantly. Triangle Count (TC) achieves
highest IPC with the knowledge data set, because of its
high L2/L3 hit rate and low TLB penalty. The high L3
hit rate of the watson data also results in a high IPC value.
However, the twitter graph’s high L3 hit rate is offsetted by
its extremely high DTLB miss cycles, leading to the lowest
IPC value. The diversity is caused by the different topolog-
ical and property features of the real-world data sets. It is
clearly shown that significant impacts are introduced by the
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Figure 9: Cache Hit Rate, DTLB Penalty, and IPC
of GraphBIG CPU Workloads with Different Data
Sets

graph data on overall performance and other architectural
features.

5.2.2 Observations
In the characterization experiments, by measuring several

architectural factors, we observed multiple graph computing
features. The key observations are summarized as following.

• Backend is the major bottleneck for most graph com-
puting workloads, especially for CompStruct category.
However, such behavior is much less significant in Comp-
Prop category.

• The ICache miss rate of GraphBIG is as low as con-
ventional applications, unlike many other big data ap-
plications, which are known to have high ICache miss
rate. This is because of the flat code hierarchy of the
underlying framework.

• Graph computing is usually considered to be cache-
unfriendly. L2 and L3 caches indeed show extremely
low hit rates in GraphBIG. However, L1D cache shows
significantly higher hit rates. This is because of the lo-
cality of non-graph data, such as temporal local vari-
ables and task queues.

• Although typically DTLB is not an issue for conven-
tional applications, it is a significant source of ineffi-
ciencies for graph computing. In GraphBIG, a high
DTLB miss penalty is observed because of the large
memory footprint and low page locality.

• Graph workloads from different computation types show
significant diversity in multiple architectural features.
The study on graph computing should consider not
only graph traversals, but also the other computation
types.

• Input graph data has significant impact on memory
sub-systems and the overall performance. The impact
is from both the data volume and the graph topology.

The major inefficiency of graph workloads comes from
memory subsystem. Their extremely low cache hit rate in-
troduces challenges as well as opportunities for future graph
architecture/system research. Moreover, the low ICache
miss rate of GraphBIG demonstrates the importance of proper
software stack design.

5.3 GPU Characterization Results
We characterize the GPU workloads of GraphBIG in this

section. The experiments are performed via nvprof on real
machines. The results are summarized below.
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Figure 10: Branch and Memory Divergence of
GraphBIG GPU workloads

Irregularity analysis: To estimate the irregularity of
graph computing on GPU, we measured the degree of both
branch and memory divergence. As explained in Section 5.1,
the metrics we used in the experiments are branch divergence
rate (BDR) and memory divergence rate (MDR). With a
higher BDR value, more threads in the same warp take dif-
ferent execution paths, leading to a lower warp utilization.
Similarly, a higher MDR value indicates that more memory
requests contain bank conflicts or are accessing more than
128-byte blocks. In this case, instruction replays are trig-
gered to fulfill all memory requests.

Figure 10 shows a scatter plot of the workloads where
the x-axis represents MDR and the y-axis represents BDR.
Each dot in the figure corresponds to a GraphBIG workload.
From Figure 10, we can observe that most workloads cannot
be simply classified as branch-bound or memory-bound. A
generally high divergence degree from both sides are shown.
In addition, the workloads show a quite scatter distribution
across the whole space. For example, kCore stays at the
lower-left corner, showing relatively lower divergence in both
branch and memory. On the contrary, DCentr is showing
extremely high divergence in both sides. Meanwhile, branch
divergence is the key issue of GColor and BCentr, while for
CComp and TC, the issue is only from memory side.

The high branch divergence for graph computing comes
from the thread-centric design, in which each thread pro-
cesses one vertex. However, the working set size of each
vertex is corresponding its degree, which can vary greatly.
The unbalanced per-thread workload introduces divergent
branches, especially for the loop condition checks, leading to
branch divergence behaviors.In Figure 10, a relatively higher
BDR is observed in GColor and BCentr because of the heav-
ier per-edge computation. On the contrary, CComp and TC
show small BDR values because they are both following an
edge-centric model, in which each thread processes one edge.

In typical graph workloads, because of the sparse dis-



tributed edges, accesses to both the neighbor list and vertex
property are spreading across the whole graph. Hence, the
traversal of each edge involves cache misses and divergent
memory accesses. Depending on the reliance of graph prop-
erties and warp utilization, the degree of memory divergence
may vary. As shown in Figure 10, the MDR value can be as
low as 0.25 in kCore and as high as 0.87 in DCentr.
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Figure 11: Memory Throughput and IPC of Graph-
BIG GPU Workloads

Memory throughput and IPC: The GPU device mem-
ory throughput results are shown in Figure 11. Although the
Tesla K40 GPU supports up to 288 GB/s memory band-
width, in our experiments, the highest read throughput is
only 89.9 GB/s in CComp. The inefficient bandwidth uti-
lization is cause by divergence in both branch and memory.
The memory throughput results shown in Figure 11 are de-
termined by multiple factors, including data access inten-
sity, memory divergence, and branch divergence. For ex-
ample, CComp incorporates intensive data accesses and low
branch divergence. It shows the highest throughput value.
DCentr has extremely intensive data accesses. Hence, even
though DCentr has high branch and memory divergence, its
throughput is still as high as 75.2 GB/s. A special hap-
pens at TC, which shows only 2.0 GB/s read throughput.
This is because TC is mostly performing intersection op-
erations between neighbor vertices with quite low data in-
tensity. Since data accesses typically are the bottleneck,
the memory throughput outcomes also reflect application
performance in most workloads except for DCentr and TC.
In DCentr, despite the high memory throughput, intensive
atomic instrcutions significantly reduce performance. Mean-
while, unlike other workloads, TC involves lots of parallel
arithmetic compare operations. Hence, TC shows the high-
est IPC value.
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Figure 12: Speedup of GPU over 16-core CPU

Speedup over CPU: Although GPU is usually consid-
ered to be suitable for regular applications, irregular graph
computing applications still receive performance benefits by
utilizing GPUs. In Figure 12, the speedup of GPU over 16-
core CPU is shown. In the experiments, we utilized the
GraphBIG workloads that are shared between GPU and
CPU sides. In our comparison, the major concern is in-
core computation time, not end-to-end time. The data load-
ing/transfer/initialize time are not included. Besides, as ex-
plained in Section 4, the dynamic vertex-centric data layout
is utilized at CPU side, while GPU side uses CSR graph
format.

From the results in Figure 12, we can see that GPU pro-
vides significant speedup in most workloads and datasets.
The speedup can reach as high as 121 in CComp and around
20x in many other cases. In general, the significant speedup
achieved by GPU is because of two major factors, thread-
level parallelism (TLP) and data locality. It is difficult to
benefit from instruction-level parallelism in graph applica-
tions. However, the rich TLP resources in GPUs can still
provide significant performance potentials. Meanwhile, the
CSR format in GPUs brings better data locality than the dy-
namic data layout in CPUs. Specifically, the DCentr shows
high speedup number with CA-RoadNet because of the low
branch divergence and static working set size. Likewise,
CComp also shows similar behaviors. On the contrary, BFS
and SPath show significant lower speedup values because of
the low efficiency introduced by varying working set size.
The speedup of TC is even lower. This is because of its
special computation type. In TC, each thread incorporates
heavy per-vertex computation, which is inefficient for GPU
cores.
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Figure 13: Branch and Memory Divergence of
GraphBIG GPU Workloads with Different Datasets

Dataset sensitivity: To estimate the sensitivity of input
datasets, we performed divergence analysis on the four real-
world datasets and LDBC-1M synthetic graph. In Figure 13,
the results of different workloads are shown with different
symbols in the same space, meanwhile different datasets are
marked with corresponding initial letters.

From Figure 13, we can see that in many workloads, the
divergence changes significantly for different datasets. As
data-centric computing, graph workloads’ behaviors are data
dependent. However, the results of several datasets also
tend to cluster in the same region. For CComp and TC,
the branch divergence rate does not change much between
different input graphs. This is expected behavior for them.
They both incorporate an edge-centric implementation, in
which workload is partitioned by edges, ensuring balanced



workset size between threads. Because of its low branch di-
vergence feature, kCore also shows quite low variability in
branch divergence. Both BFS and SPath show similarly low
BDR values for CA-RoadNet, Watson-gene, and Knowledge-
repo. This is in accordance with the graph features. Both
Watson and Knowledge graphs contains small-size local sub-
graphs, while CA-RoadNet includes much smaller vertex de-
gree. Nevertheless, in Twitter and LDBC graphs, their so-
cial network features brings high BDR values. Meanwhile,
unlike Twitter has a few vertices with extremely higher de-
gree, the unbalanced degree distribution in LDBC involves
more vertices. It leads to even higher warp divergence. Sim-
ilar diversity happens in GColor and DCentr, which show
much lower BDR values for CA-RoadNet graph because of
its quite low vertex degrees.

Unlike branch divergence, MDR generally shows much
higher variability for most workloads. It demonstrates the
data sensitivity of memory divergence. Meanwhile, excep-
tions also exist. For example, BFS and SPath both show
similar MDR values for CA-RoadNet, Watson-gene, and
Knowledge-repo. As explained above, their special graph
structures lead to a small number of traversed edges in each
iteration. Thus, the impact of input graph is reduced. More-
over, the higher irregularity in edge distribution of LDBC
leads to significantly higher MDR values in most workloads.

5.3.1 Observations
Unlike the conventional applications, the irregularity of

graph computing brings unique behaviors on GPUs. We
summarize the key observations as follows.

• Although graph computing is usually considered as less
suitable for GPUs, with proper designs, GPU graph
applications can achieve significant speedup over the
corresponding CPU implementations.

• Branch divergence is known to be the top issue for
graph computing on GPUs. We observe that besides
branch divergence, graph computing suffers from even
higher memory divergence, leading to inefficient mem-
ory bandwidth utilizations.

• Graph workloads cannot fully utilize the GPU’s exe-
cution capability. An extremely low IPC value is ob-
served for most GraphBIG workloads.

• The behaviors of graph computing are data depen-
dent. Input graph has comprehensive impacts on both
branch and memory divergence. Specifically, memory
divergence shows higher data sensitivity.

• Interestingly, the GPU graph workloads have signif-
icantly higher data sensitivity than the CPU ones.
CPU/GPU sides show different data-application cor-
relations, because of the architecture differences.

• Although traversal based workloads show similar be-
haviors, significant diverse behaviors across all work-
loads are observed. It is difficult to summarize general
features that can be applied on all graph workloads.
Hence, a representative study should cover not only
graph traversals, but also the other workloads.

Although suffering from high branch and memory diver-
gence, graph computing on GPUs still show significant per-
formance benefits in most cases. Meanwhile, like CPU work-
loads, GPU graph computing also incorporate workload di-
versity and data dependent behaviors. In addition, com-
paring with CPU workloads, GPU graph workloads have
much higher data sensitivity and more complex correlations
between input data and application. To improve the perfor-
mance of GPU graph computing, new architecture/system
techniques considering both workload diversity and data
sensitivity are needed.

6. CONCLUSION
In this paper, we discussed and summarized the key fac-

tors of graph computing, including frameworks, data repre-
sentations, graph computation types, and graph data sources.
We analyzed real-world use cases of IBM System G cus-
tomers to summarize the computation types, and graph data
sources. We also demonstrated the impact of framework and
data representation.

To understand the full-spectrum graph computing, we
presented GraphBIG, a suite of CPU/GPU benchmarks. Our
proposed benchmark suite addressed all key factors simul-
taneously by utilizing System G framework design and fol-
lowing a comprehensive workload selection procedure. With
the summary of computation types and graph data sources,
we selected representative workloads from key use cases to
cover all computation types. In addition, we provided real-
world data sets from different source types and synthetic
social network data for characterization purposes.

By performing experiments on real machines, we char-
acterized GraphBIG workloads comprehensively. From the
experiments, we observed following behaviors. (1) Conven-
tional architectures do not perform well for graph comput-
ing. Significant inefficiencies are observed in CPU mem-
ory sub-systems and GPU warp/memory bandwidth utiliza-
tions. (2) Significant diverse behaviors are shown in different
workloads and different computation types. Such diversity
exists on both CPU and GPU sides, and involves multiple ar-
chitectural features. (3) Graph computing on both of CPUs
and GPUs are highly data sensitive. Input data has signifi-
cant and complex impacts on multiple architecture features.

As the first comprehensive architectural study on full-
spectrum graph computing, GraphBIG can be served for
architecture and system research of graph computing. In
the future, we will also extend GraphBIG to other plat-
forms, such as near-data processing (NDP) units [5], IBM
BlueGene/Q, and IBM System Z.
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