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SP-CNN: A SCALABLE AND
PROGRAMMABLE CNN-BASED

ACCELERATOR
.................................................................................................................................................................................................................

IN THIS ARTICLE, THE AUTHORS USE A CELLULAR NEURAL NETWORK (CNN)—A NEURAL

COMPUTING PARADIGM THAT IS WELL SUITED FOR IMAGE PROCESSING APPLICATIONS—

AS A SPECIALIZED ACCELERATOR FOR MOBILE COMPUTING. THEY PROPOSE SP-CNN, AN

ARCHITECTURE AND A MULTIPLEXING ALGORITHM THAT PROVIDES SCALABILITY TO CNN

ARCHITECTURES. THEY DEMONSTRATE THE PROPOSED MULTIPLEXING ALGORITHMS OVER

SIX IMAGE PROCESSING BENCHMARKS AND PRESENT A PERFORMANCE ANALYSIS

OF SP-CNN.

......With the rapid growth of mobile
computing, the need to design energy-effi-
cient and special-purpose accelerators is high.
For example, in Intel’s Atom Lexington and
Bay Trail systems on chip,1 more than 25
percent of the chip area is used for video or
image-related processors. Excluding memory
or storage, the majority of the chip area is
dedicated to special accelerators for image
and graphics and security-related engines.
Furthermore, considering the growing need
for processing sensor data like camera input,
the demand for special-purpose accelerators
will continue to increase.

Recently, brain-inspired computing sys-
tems, especially neural-network-based sys-
tems, are receiving much attention as special
accelerators. Qualcomm’s Neural Processing
Unit (NPU) systems and IBM’s TrueNorth
are two examples that promise high energy
efficiency. Similar to these neural-network
processors, which are based on artificial neural

networks, are cellular neural network (CNN)
processors.2 CNNs have been studied widely
for image-processing applications and are
another option for neural-network-based
accelerators.

One challenge of current CNN research is
the scalability of CNN hardware and algo-
rithms. So far, all CNN algorithms have been
developed under the assumption that the
number of cells is equal to the image size.
Unfortunately, current CNN designs have
relatively small array sizes, such as 80 Â 60,3

and have not scaled to the multiple megapixel
images present today. Furthermore, handling
large images is not a trivial task. Using simple
naive multiplexing algorithms or simple sten-
cil operations will quickly saturate memory
bandwidth.

In this article, we propose a mechanism to
operate CNN algorithms on large images
while still using relatively small arrays. Our
contributions are twofold. First, we propose a
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programmable CNN architecture, called SP-
CNN, which is an accelerator to be con-
nected with a host processor. SP-CNN has
multiple CNN array processors and a sched-
uler. Second, we propose an algorithm to be
used on our proposed architecture that can
handle any input image size without causing
heavy memory contention. We also demon-
strate that the CNN paradigm can perform
real-time image processing on modern image
sizes.

CNN background
The CNN, which was introduced by Chua

and Yang,2 is a type of neural network that
comprises a homogenous array of cells, in
which each cell communicates with only a
fixed set of neighbor cells. The array can be n-
dimensional, but is typically 2-dimensional for
most implementations. The connections
between cells are local, which eliminates the
need for long-distance interconnects. Specifi-
cally, a cell is connected to cells within a fixed
radius of its position. These cells are part of
what is called the cell’s neighborhood. Figure 1
shows the local connections for an example
3Â 3 network with radius of 1.

Each cell in the array operates on the basis
of a state and output equation. The original
CNN design was based on analog circuits, so
the cell’s operation was specified by continu-
ous time state and output equations. Most
CNNs typically use the standard state and
output equations. For our work, we focused
on digital CNN implementations, so we
chose to use the digital equivalent of the
standard state and output equations (see
Equations 1 and 2, respectively). In these

equations, x represents the state, y represents
the output, and A and B represent the
weights for connections from the neighbor-
hood cells. The CNN gene controls a CNN
application and specifies the A and B scaling
factors, the state equation threshold, I, the
initial cell state, and boundary conditions. In
the traditional CNN operation, as shown by
the pseudocode in Algorithm 1 (see Figure
2), each cell iteratively computes its new state
and output i values in parallel until the cells
reach a steady state.

xijðt þ 1Þ ¼ RCðk;lÞ2Nrði;jÞAði; j; k; lÞykl ðtÞ
þ RCðk;lÞ2Nrði;jÞBði; j; k; lÞuklðtÞ þ I

(1)

yijðt þ 1Þ ¼ 1

2
jxijðtÞ þ 1j À jxijðtÞ À 1j
Â Ã

(2)

Many applications and algorithms have
been developed for CNNs. Because CNNs
naturally have a 2D array representation,
much of this work has involved image proc-
essing applications.2,4 For example, Roska’s
research group developed a cellular wave
computing library containing hundreds of
CNN applications.5 (For more information
on other approaches, see the “Related Work
in Cellular Neural Networks” sidebar.)

For most-developed CNN applications,
there is an implicit assumption that the size
of the input matches the size of the CNN
array. For image processing, this would mean
that the size of the CNN array would equal
the size of the image. However, most hard-
ware implementations have small sizes,

C(i,j )
(Outputs)

(Inputs)

B

I

A

xij yij
Σ

(From
 neighborhood cells)

(a) (b)

Figure 1. CNN cell connection. (a) Neighbor cells of the cell at C(i, j). (b) Operation of one CNN

cell. The figure shows the local connections for an example 3Â 3 network with radius of 1.
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ranging from 3 Â 3 to 80 Â 60, and are
therefore significantly smaller than the multi-
ple-megapixel images seen today.3

Programmable multiplexing algorithm
To enable the efficient operation of CNN

applications on large images, we propose a
multiplexing algorithm based on how stencil
computation is performed on GPUs. In
GPU stencil computation, the input image is
spatially partitioned, and each GPU comput-
ing unit performs the stencil operation on an

image partition. If we applied this approach
naively, we would run each image partition
on a CNN array using the traditional CNN
algorithm (Figure 2).

This naive multiplexing approach leads to
errors for many CNN applications, because
cells on the partition boundary do not oper-
ate correctly since they never see updated val-
ues for the neighboring cells in different
partitions. Figure 3 shows an example of the
incorrect outcomes of naive multiplexing for
the hole-filling CNN application.

The easy solution to this issue would be to
employ ideal multiplexing, in which we run
the partition on the CNN array for only 1
CNN time unit, which is equivalent to one
state or output computation. We do this for
every partition and then repeat the process.
This method will always produce the correct
output. Figure 4a illustrates the general proc-
ess for ideal multiplexing.

However, ideal multiplexing comes with a
cost of high memory contention. Specifically,
processing the partition on the CNN array
for 1 CNN time unit takes relatively little
time. On the other hand, transferring the

..............................................................................................................................................................................................

Related Work in Cellular Neural Networks
Several researchers have studied applying time multiplexing to

the CNN.1,2 However, these multiplexing mechanisms are similar to

ideal multiplexing, and do not scale because of the communication

overhead. On the contrary, SP-CNN provides a programmable inter-

face to support such scalability.

Another direction to support large images with smaller-dimension

CNN arrays is to use software algorithms. For example, the visual

attention engine chip processes large images by first preprocessing

images with high-level algorithms such as object recognitions. These

types of mechanism can be used in addition to the scalability features

provided by SP-CNN.

Researchers have also implemented CNN algorithms on GPUs.3,4

Using the large parallel computation resources provided by GPUs,

these implementations show a large speedup over CPUs as well as

support for arbitrary image sizes. However, these implementations

still tend to be many factors slower than a hardware CNN array.

Finally, although CNNs are not as computationally strong as other

neural networks, such as spiking neural networks or convolutional

neural networks, they have an advantage in terms of many prior hard-

ware implementations and many software algorithms.4 Furthermore,

one of our research avenues has been investigating how to modify

and generalize the SP-CNN design so that it can be used to model cer-

tain artificial neural networks, perceptrons, and even convolutional

neural networks.
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while change do

change = parallel-for-i,j of Eq. (1) 

parallel-for-i,j of Eq. (2) 

t = vt +=1 

end while

Figure 2. Pseudocode of Algorithm 1, the traditional CNN algorithm. The

algorithm shows that operation of the whole array is basically the parallel

operation of each cell.
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image partition, even one as small as 128 Â
128, takes a comparatively much larger time.
This leads to heavy memory contention from
the continuous transfer of image partitions to
and from the CNN computing units.

SP-CNN multiplexing algorithm
The key insight to the SP-CNN multi-

plexing algorithm is that many CNN appli-
cations are robust to small errors with input
values and/or computation. Specifically, we
realized that although it is important for the
boundary cells to see updated values from
neighboring cells in different partitions, for
many CNN applications, the correct output
could still be achieved even if the partition
boundary cells did not have the correct
neighbor values for a specified interval of
time.

Algorithm 2 (see Figure 5) illustrates the
pseudocode for the SP-CNN multiplexing
algorithm. In essence, we take the ideal mul-
tiplexing approach, but instead of running
one state or output computation, we run
multiple cycles of the computations. We
term this period the interval. At the end of
each interval, SP-CNN saves the computed
state output in a new array. Because we are
saving this state value to a new array, the
neighboring partitions will not yet see the
newly computed values. Once every partition
has been processed for one interval, the
period which we call an iteration, we then
repeat the process, except we now use the
array with the newly calculated state values.
This means that boundary cells will now see
the updated values for their neighboring cells
in neighboring partitions. These iterations
are repeated until we converge to a steady
state. Again, Figure 4 illustrates this process.
Ideal multiplexing then becomes a special
case of SP-CNN multiplexing, wherein the
interval time equals 1 state or output
computation.

After some preliminary analysis, we saw
that certain partitions would converge to a
steady state before their interval was over.
This does not necessarily mean the entire
image had converged, but it does indicate
that no further useful computation would
occur for the rest of the interval. To avoid
this, we introduced the concept of Early-
Finish. With Early-Finish, a partition stops

0 1 2 3 0 1 2 3 0 1 2 3

0 1

32

Interval
Time (t)

1st iteration 2nd iteration

...

...

(a)

(c)

(b)

Figure 4. Example of CNNmultiplexing. (a) Original image. (b) Partitioned

images. (c) Illustration of multiplexing operation. SP-CNN operates one

subimage at a time during one interval and it iteratively operates the entire

image.

0 1 2 3

4 5 6 7

111098

12 13 14 15

(a) (b) (c)

Figure 3. Example of hole-filling with naive multiplexing. (a) Input. (b)

Correct output. (c) Naive multiplexing.

iter += 1, vt += interval

end while

while change do

change = false

for p in partitions do

  loadStateAndInputToCNN(p)

for n = 0; n < interval; n++, t++ do

change l= parallel-for-i,j on p with Eq. (1)

   parallel-for-i,j on p of Eq. (2)  

end for 

  saveToNextStateFromCNN(p)

end for

 swapStateAndNextStatePointers(p)

Figure 5. Pseudocode of Algorithm 2, the SP-CNNmultiplexing algorithm.

The operations are applied to all of the CNN cells.
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processing on the CNN array when it has
either hit the interval or converged to a
steady state.

SP-CNN architecture
The SP-CNN architecture (see Figure 6)

was influenced by Nvidia’s G80 architecture
(www.nvidia.com/page/geforce 8800.html).
SP-CNN serves as an accelerator to a host
processor. The SP-CNN accelerator has a
global memory, a scheduler, and possibly sev-
eral CNN-Ps. A CNN-P is a CNN comput-
ing unit that has local memory, the CNN
gene, and a CNN computing array that com-
prises a set of processing elements (PEs).

We mentioned that the SP-CNN accelera-
tor can have one or more CNN-Ps. The bene-
fit of having multiple CNN-Ps is that multiple
partitions can be executed concurrently. Fur-
thermore, multiple CNN-Ps can better hide
the memory latency. However, too many
CNN-Ps can increase memory bandwidth
contention, which leads to less-than-linear
scaling in performance. Furthermore, a design
tradeoff must be made between having many
small CNN arrays versus a few large arrays.

Evaluation methods
We evaluated the following benchmarks,

which are commonly used in CNN-based

Accelerator

SP-CNN

Global memory

Input image CNN state/next state/output

Scheduler

Simple
processor

I-$

Prefetcher

CNN-P CNN-P CNN-P
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C
trl unit
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trl unit
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memory

CNN array

Part.
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Part.
input

Part.
state
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input
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N
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[A
]

[B
]

I

[A
]

[B
]

I

Host
processor

Figure 6. Example SP-CNN architecture. The SP-CNN architecture works as an accelerator to

the host processor. The SP-CNN architecture design was influenced by GPGPU accelerators.
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image processing applications: Corner Detec-
tion, Edge Detection, Connected Compo-
nent, Hole Filling, Rotation Detector, and
Shadow Creator. We used 10 test input
images, with each image stored at a resolu-
tion of 1,024Â 1,024 or 2,048Â 2,048. We
chose these dimensions because the number
of pixels for each dimension roughly corre-
sponds to the number of pixels in 720p and
2,048Â 1,536, respectively.

We developed a functional simulator of
our SP-CNN architecture. The default SP-
CNN parameters are one CNN-P unit with
a CNN array size of 128Â 128 and an inter-
val time of 128 CNN time units. The func-
tional simulator returns the convergence time
of an application in CNN time units,
wherein a single unit corresponds to one state
or output computation. Furthermore, trans-
fers of partitions to and from memory are
assumed to occur instantaneously.

To observe the effects of memory transfers,
we also developed a timing simulator that
used DRAMSim2 as a memory simulator,6

with CNN-P timing parameters based on the
visual attention engine (VAE) architecture.3

We used a 2-Gbyte global DDR3 memory
specified by the DRAMSim2 configuration
fileDDR3 micron 16M 8B x8 sg15.ini.

Directly comparing the total time
between the ideal CNN (in which the CNN
array size equals the image size) and SP-
CNN is not very informative because the SP-
CNN’s time will be at least scaled by the
image to CNN array size ratio. Instead, we
introduce the concept of virtual time, which
represents how many CNN time units a par-
tition has actually processed on the CNN
computing unit. Figure 7 illustrates the con-
cept of physical time; t represents total time
and v(t) represents virtual time.

For the SP-CNN case, even though 64
total time units have passed since the first
iteration, each partition has computed for at
most 16 time units. Again, after the second
iteration, while the total time units is 128,
only 32 units of virtual time have passed. For
Algorithms 1 and 2, t and vt represent the
total time passed and virtual time passed.

Results
Figure 8 compares the average virtual con-

vergence time between the ideal CNN and
our proposed SP-CNN mechanism. SP-
CNN is competitive with the ideal CNN for
all benchmarks for both the 1,024 Â 1,024
and 2,048Â 2,048 images.

Ideal-CNN

SP-CNN

0

0 16 32 48 64 80 96 112 128 Time (t)

Interval

1st iteration 2nd iteration

...

...

16 32 Time (t)

v (t) = 32
v (t) = 16

...

...

Figure 7. Virtual time example. The virtual time is the same “t” as in the original CNN

equations, and the physical time is the virtual time multiplied by the number of the

multiplexing factor.
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One important contribution of this article
is that it shows that certain CNN applica-
tions are robust enough to use interval values
larger than 1 during multiplexing execution.
Choosing an effective interval time is impor-
tant in limiting an application’s convergence
time. Too small of an interval time could
lower the virtual convergence time, but it
also increases the overhead of data transfers.
On the other hand, too large of an interval
time can increase the virtual and total conver-
gence times.

Figure 9 shows the average virtual conver-
gence time results as interval time increases.
We exclude Corner Detection and Edge
Detection from our results because these two
applications were local-type CNN applica-
tions and converge much sooner than the
interval time limit. As expected, when
increasing the interval time, the virtual con-
vergence time tends to increase. This is best
seen with Connected Component.

Figure 10 shows the timing results with
SP-CNN. With 1,024 Â 1,024 images, SP-
CNN can perform below the 60 frames-per-
second boundary for most applications. In
the case of 2,048 Â 2,048 images, SP-CNN
meets the 30 frames-per-second boundary
for most applications when the number of
CNN-Ps is equal to 4 or 8.

Figure 11 illustrates the effects of scaling
the number of CNN-Ps. None of the appli-
cations show linear scaling when we increase
the number of CNN-Ps. SP-CNN does not
scale because memory contention becomes a
dominating factor. This can be seen in Figure
12, which illustrates the percentage of time a
partition execution spends communicating
to memory. As seen in the benchmarks that
show sublinear scaling, memory communica-
tion accounts for more than 50 percent of
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partition execution and rapidly grows as the
number of units increases.

S P-CNN depends on the CNN applica-
tion being robust enough to handle the

multiplexing mechanism. The choice of SP-
CNN parameters, such as interval and order-
ing, can have different effects on the virtual
and convergence times. Currently, the appli-

cation programmer must determine these
parameters’ values, but in future work, these
parameters may be able to be identified
through simulations and profiling. Further-
more, although all of our benchmarks con-
verged to the correct output under the
various parameters, some applications never
converge, or converge to an incorrect solu-
tion when the interval time is greater than 1.
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Again, this is an evaluation that the applica-
tion designer must make. For future work,
we would like to develop a mechanism to
identify applications suitable for SP-CNN,
beyond image processing applications.

MICRO
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Figure 12. Average percentage of time partition execution spends in

memory transfers. As we increase the number of CNN-P units, more time is

spent for memory transfers.
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