
Impact of Instruction Set Architecture on Machine Learning
Workloads

Jeung Moon Lee, Hyesoon Kim, Hyojong Kim, Pranith Kumar

1 BACKGROUND AND MOTIVATION

As neural network (NN) models are becoming more sophisticated, the
hardware processing the workload is required to process more computa-
tionally complex and memory intensive data. However, general-purpose
instruction-set architectures (ISAs) (e.g., ARM, MIPS, or x86) are not
very energy efficient because of their flexibility in supporting various
workloads. New NN-specific architectures (e.g., Cambricon) have been
proposed to build energy-efficient hardware [2].

However, many Internet-of-things (IoT) devices or embedded sys-
tems are still based on either ARM or x86 processors. In such platforms,
machine learning (ML) workloads are just one of their applications
and having a separate ML accelerator increases the cost of devices
significantly. Hence, ARM or x86 devices are still widely used.

In such IoT or embedded systems, which ISA is a better choice? The
paper is trying to answer this question. There have been research on
comparisons between x86 and ARM [1], but there has been no study
for ML workloads specifically. Hence, in this paper, we would like
to evaluate the ISA effect on ML workloads only. To separate the
architecture and compiler effect as much as possible, we compare two
workloads in a simulation environment. For ML workload, we choose
the Darknet benchmark suite because it is based on C++ so that we can
evaluate CPU only aspect and it also has many latest NNs. And then,
we identify frequently executed functions in four NN models (AlexNet,
Cifar, ResNet-18, and VGG-16).

2 APPROACH AND RESULTS

For both ISAs, ARM and x86, we profile time spent on each function
in Darknet while running inferences on multiple NNs. The same source
code is compiled for both ARM and x86 using gcc. We use gprof for
profiling. When running inferences, we use four pre-trained, image
classification models: AlexNet, Cifar, ResNet-18, and VGG-16. The
results are shown in Figures 1a, 1b, 1c, and 1d. The results are
collected from native executions on Xeon processors for x86, and from
QEMU executions running on x86 for ARM64.

Based on the profiled data, we select nine functions that take
most time in running the inference as follows: activate(), for-
ward maxpool layer(), gemm nn(), im2col cpu(), im2col get pixel(),
make connected layer(), make convolutional layer(), rand normal(),
and transpose matrix(). The detailed results are summarized in Table 1.

Table 1: Percentage of time spent in neural network inference.

We see that most time is spent on running gemm nn(), a function
for general matrix-to-matrix multiplication. Both ISAs spend relatively
same portion of time for each function except for rand normal(), a
function that generates a random variable with normal distribution. We

(a) AlexNet

(b) CIFAR

(c) ResNet-18

(d) VGG-16

Fig. 1: Darknet profile results on x86 vs. ARM



observe that more time is spent in running rand normal() in x86 than in
ARM.

For the nine functions, we create traces that contain instructions for
executing the particular function. We use Pin to generate x86 traces
and qsim to generate ARM traces. As seen in Figure 2, x86 has more
number of static instructions than ARM. This is because x86 requires
more instructions for register spills due to fewer number of registers.

Table 2: Number of instructions for ARM and x86 in each function

Fig. 2: Number of instructions for ARM and x86 in each function

We also analyze the types of instructions in each ISA. We catego-
rize instructions into seven types: arithmetic, logic, branch, floating
point, move, vector, and miscellaneous. The detailed instructions are
described in Table 3 and their distributions are shown in Figure 3. In
general, both ISAs show similar instruction group distributions which
make sense since they are eventually running the same applications.
Floating points are significant in activate, gemm nn and rand normal.
Surprisingly, in terms of static instructions, move instruction categories
are the majority of all instructions. Vector instructions are shown only
in a few benchmarks, which should be improved by compilers since
many applications have data parallelism.

Table 3: Categorization of instructions into seven types

We then simulate the generated traces using an architecture simulator,
Macsim. In this paper, we focus on cache hit rate differences for x86
and ARM. As shown in Figure 4, both ISAs show high L1 hit rates but

Fig. 3: Groups of Instructions

the hit rates are slightly different between x86 and ARM. On the other
hand, L2 hit rate for all benchmarks in both ISAs are 0 meaning the
working set size is much larger than L2. Although working set size is
heavily dependent on the applications, not ISA, due to the register file
usage patterns and ISA effects, they generate slightly different memory
working set size which leads to different L1 hit rates. We will further
investigate the differences in our future work.

(a) AlexNet

(b) VGG-16

Fig. 4: L1 Hit Rate for x86 vs. ARM

3 CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed the ISA effects on machine learning work-
loads. Due to ISA differences especially the number of registers, the
instruction mixtures vary slightly but arithmetic, floating points, and
vector instructions show similar trends in both ISAs. We found that
the compiler produces different execution profile and L1 hit rate for
functions calls which should be investigated further. We will also in-
clude other performance results such as instructions per cycle(IPC) and
branch prediction accuracy on the simulator in the final version of the
poster. In our future work, we will also evaluate GPU versions of the
same functions to evaluate all three different ISAs.



REFERENCES

[1] E. Blem, K. Sankaralingam, and J. Menon. A detailed analysis of contem-
porary arm and x86 architectures. Technical report, UW-Madison, 2013.

[2] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen. Cambri-
con: an instruction set architecture for neural networks. In Proceedings of
the 43rd International Symposium on Computer Architecture, pp. 393–405,
2016.


