
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

J. Parallel Distrib. Comput. 73 (2013) 1525–1538

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Design space exploration of on-chip ring interconnection for a
CPU–GPU heterogeneous architecture

Jaekyu Lee a,∗, Si Li b, Hyesoon Kim a, Sudhakar Yalamanchili b

a School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, United States
b School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States

h i g h l i g h t s

• We study the possible problems and design space exploration of the on-chip network in CPU–GPU heterogeneous architecture.
• We examine different placements for the component (CPU, GPU, L3 cache, and memory controllers).
• We discover that the resource partitioning, in particular router virtual channels, shows effectiveness to prevent interference.
• We discover that heterogeneous configurations can improve the performance of the system while not incurring too much overhead.
• Based on our findings, we suggest an optimal ring network configuration.

a r t i c l e i n f o

Article history:
Received 15 October 2012
Received in revised form
2 May 2013
Accepted 26 July 2013
Available online 14 August 2013

Keywords:
Heterogeneous architecture
On-chip interconnection network
Design space exploration

a b s t r a c t

Incorporating a GPU architecture into CMP, which is more efficient with certain types of applications, is
a popular architecture trend in recent processors. This heterogeneous mix of architectures will use an
on-chip interconnection to access shared resources such as last-level cache tiles andmemory controllers.
The configuration of this on-chip network will likely have a significant impact on resource distribution,
fairness, and overall performance.

The heterogeneity of this architecture inevitably exerts different pressures on the interconnection
due to the differing characteristics and requirements of applications running on CPU and GPU cores. CPU
applications are sensitive to latency, while GPGPU applications require massive bandwidth. This is due to
the difference in the thread-level parallelism of the two architectures. GPUs use more threads to hide the
effect of memory latency but require massive bandwidth to supply those threads. On the other hand, CPU
cores typically running only one or two threads concurrently are very sensitive to latency.

This study surveys the impact and behavior of the interconnection network when CPU and GPGPU
applications run simultaneously. Among our findings, we observed that significant interference exists
between CPU and GPU applications and resource partitioning, in particular virtual and physical channel
partitioning, shows effectiveness to solve the interference problem. Also, heterogeneous link configura-
tions showpromising results by optimizing traffic hotspots in the network. Finally, we evaluated different
placement policies and found that how to place different components in the network significantly affects
the performance. Based on these findings, we suggest an optimal ring interconnect network. Our study
will shed light on other architectural interconnection studies on CPU–GPU heterogeneous architectures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The demand for more computational power never ends. Tradi-
tionally, growth in computational power was carried out by ever
increasing clock frequency until the power wall was hit. To cir-
cumvent this barrier, future chip multiprocessors (CMPs) will try
to integrate heterogeneous mixtures of architectures on the same

∗ Corresponding author.
E-mail address: jq.lee17@gmail.com (J. Lee).

chip where one type of architecture is more power efficient at a
subset of tasks while the effort on increasing frequency continues
with new technologies. A general-purpose GPU (GPGPU) is one
such example that is more power efficient for tasks involvingmas-
sive data-level parallelism. Incorporating a GPU architecture into
CMPs is the next logical step. Recent examples include Intel’s Ivy
Bridge [24], AMD’s Fusion [3], and NVIDIA’s Denver [36] project.
In these architectures, various on-chip resources are shared by
CPU and GPU cores, including the last-level cache, memory con-
trollers, and DRAM. Access to these shared resources is controlled

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.07.014

Author's personal copy

1526 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

by the on-chip interconnection, which has a significant impact on
resource distribution, fairness, and overall performance.

To improve network and overall performance, many re-
searchers have proposed a variety of mechanisms involving
topologies, adaptive routing, scheduling, and arbitration policies.
Many different topologies [7,29,11,16,40] have been proposed to
improve performance. They tend to focus on either all CPU-based
architectures or on specialized SoCs operating running a narrow
spectrum of applications. Various adaptive routing algorithms are
introduced to improve performance [31,21,22,33]. A significant
amount of work is proposed in router arbitration policies [14,15].
Recently, proposals on heterogeneous interconnection configura-
tions have been introduced [32,18].

On-chip CPU–GPU heterogeneous architectures as well as their
interconnections, however, are not as well studied. While we an-
ticipate that they will have characteristics similar to more con-
ventional CMP networks, we also expect additional complexities
involving resource sharing mechanisms caused by the opposing
memory demands exerted by applications running on the two
architectures. CPU and GPU architectures possess fundamentally
diametric network demands. CPU cores rely on instruction-level
parallelism (ILP), large caches, and speculative mechanisms to
achieve high performance in serial execution. Since CPUs usually
operate on a very small number of threads, when one is stalled
on a memory access, it incurs a large penalty until that access is
satisfied. At the opposite end of the spectrum, GPUs target data-
parallel applications to achieve high throughput. They exchange
large caches and other power-consuming mechanisms for more
processing elements (PE) to execute on multiple data sets in par-
allel. Although a hardware-managed cache exists, GPUs mainly
leverage the zero overhead, single-cycle context switch capability
to remove latency introducedby long latency instructions and their
dependencies. When a thread is blocked, the instruction scheduler
context switches to the next available thread or group of threads.
Due to the often massive number of potential threads waiting for
execution, GPUs can execute many memory instructions concur-
rently and also in parallel, thereby achieving higher bandwidth re-
quirements than CPUs.

In this paper, we evaluate the NoC behavior of this CPU–GPU
heterogeneous architecture. However, we limit our study to the
ring network. Although the ring network is not scalable withmany
cores, it is still relevant because most commercial processors cur-
rently employ a ring networkwith a reasonable number of CPU and
GPU cores. Based on a network characterization of the Cell proces-
sor [2] and Intel’s Xeon Phi coprocessor [26], we believe that the
ring network will be used at least for the next few years until the
number of cores breaches a threshold of 10 or 12 cores.

In this study, we seek answers to the following questions:
(1) How does the ring interconnection behave in CPU–GPU hetero-
geneous workloads? and (2) What is the best ring router configu-
ration in heterogeneous workloads. We first study the impact of a
variety of network resources and mechanisms on the system per-
formance of CPU and GPGPU applications running separately, in-
cluding the number of virtual channels, link width, link latency,
and different placements. Then, we evaluate the resource shar-
ing in the interconnection when both applications are running
concurrently. In particular, we study virtual and physical channel
partitioning between CPU and GPU cores, heterogeneous link con-
figuration for each router, arbitrations, routing algorithms, and
placements.

Based on the findings from empirical studies, we suggest an en-
hanced ring interconnection network in CPU–GPU heterogeneous
architectures that improves performance by 22%, 19%, and 16%
for one-CPU/one-GPU, two-CPU/one-GPU, and four-CPU/one-GPU

workloads, respectively.We believe our studies will lead to further
architectural studies in this area of on-chip interconnection for a
CPU–GPU heterogeneous architecture.1

2. Background

2.1. CPU–GPU heterogeneous architecture

Intel’s Sandy Bridge [25], whichwas released in 2011, is the first
commercial CPU–GPU heterogeneous architecture product. In the
Sandy Bridge architecture, the CPU and GPU cores share the last-
level (L3) cache and memory controllers connected by a 256-bit
wide ring network. Note that GPU cores can execute graphics as
well as data-parallel GPGPU applications. AMD also released a dif-
ferent heterogeneous design, the Fusion architecture [3], that in-
tegrates more powerful GPU cores. Although CPU and GPU cores
share caches andmemory controllers, all communications are per-
formed through the north bridge, not the generic interconnection.

Although the current GPUs in on-chip heterogeneous architec-
tures are not as powerful as today’s high-performing GPUs, we
project that more single-instruction multiple-data (SIMD) cores
will be integrated in future generations. Therefore, we model our
baseline heterogeneous architecture such that it has both high-
performance CPU and GPU cores on-chip. Section 4.1 details the
configuration of our baseline architecture.

2.2. Characteristics of CPU and GPU cores

This section describes the characteristics of CPU and GPU cores.
Modern high-performance CPU cores are typically based on N-
wide superscalar out-of-order cores. To reduce the penalty of the
branch instructions, novel and often power-intensive branch pre-
diction mechanisms are used. Large private caches (L1 and L2) are
often employed to avoid long-latency access to off-chip memory.
These cores are ideal for the serial execution.

On the other hand, GPUs packmore processing elements in each
core. EachGPUcore is an in-order SIMDprocessor.Multiple threads
execute the same instruction with different data sets per core.
When branch directions within a batch of threads are diverged,
the execution of each branch path is serialized. Currently, no
branch prediction mechanism exists. The core context switches to
other batches of threads until the branch is resolved. Similarly, to
hidememory latencies, GPU cores utilizemassivemulti-threading.
When a thread is stalled due to the memory instruction, the
execution is switched to other available threads.

2.3. Network-on-chip (NoC) router microarchitecture

In this section, we provide a brief background of the structure
of an NoC router microarchitecture. A router has N input and
output ports [13]. For example, a 2D-mesh has five (local, north,
south, east, and west) ports. Each input port hasM input buffers or
virtual channels (VC). New packets from the local network interface
are inserted into the VCs, and packets from other routers are
inserted into their respective VCs. When a new packet (or flit)
is inserted, the routing computation unit decides the output port
to the next router. The virtual channel allocator (arbiter) assigns
a virtual channel on that output port. The switch arbitration unit
controls the crossbar tomove a flit to the assigned output port. Each
flit traverses a link from the output port of one router to the input
port of the next.

1 In this paper, we interchangeably use the term on-chip interconnection
network and the network on chip (NoC).

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1527

Fig. 1. Link utilization of GPU cores in the ring network of CPU–GPU heterogeneous
architecture.

The flow of packets is pipelined in the NoC router with follow-
ing stages: (1) Input buffering (IB): Flits received over a link or the
source node are inserted into the virtual channel. (2) Route com-
putation (RC): Using the information in the header flit, the out-
put port is determined. (3) Virtual channel allocation (VCA): Using
the output port information, a downstream virtual channel with
available credits acquires a packet. (4) Switch allocation (SA): To
traverse to the output port, a packet needs an exclusive grant to
access the cross bar from its input virtual channel to the out-
put port. (5) Switch traversal (ST): Once a switch is allocated to a
packet, it can traverse to the output port over the crossbar. (6) Link
traversal (LT): A flit is moved to the next router through the link.

In multiple pipeline stages of the router, packets from the same
or different input virtual channels compete against each other for
a grant to a virtual channel or a switch to the output port. Simple
policies are used to arbitrate between these packets: (1) round-
robin: thewinning virtual channel is chosen in a sequentialmanner
and (2) oldest-first: all packets in the router are searched and the
oldest request is scheduled. More sophisticated proposals in the
literature are described in Section 6.

3. Problems and design space exploration in NoCs of CPU–GPU
heterogeneous architecture

This section describes the potential problems in designing the
on-chip interconnection network in a CPU–GPU heterogeneous
architecture.

3.1. Routing algorithm

NoC routers typically employ a simple static routing algorithm
to minimize latency and complexity. For example, x–y or shortest-
distance algorithms are widely used. However, this may result in
link congestion in the heterogeneous architecture. For example, in
Fig. 1, the GPGPU packets are not likely to use the upper link since
the lower link offers the shortest distance from theGPU cores to the
last-level cache (LLC) andmemory controllers (MC). The lower link
is also used between the L3 and thememory controllers. Therefore,
only CPU packets use the upper link, which is possibly under-
utilized.While studies on other routing algorithms show improved
network performance, they are limited to traffic generated by
specialized or CPU-only applications [31,21,22].

3.2. Resource contention and partitioning

CPU and GPU packets compete to acquire resources in var-
ious places, especially virtual and physical channels. When the
resources are naively shared by both kinds of cores, higher-
demanding cores will acquire the most resources, which are
GPU cores. This is the same problem found in the LRU cache-
replacement policy in the shared cache. To solve this problem,
many researchers have proposed various static and dynamic cache
partitioning mechanisms [41,39]. Similarly, partitioning mecha-
nisms can be applied to on-chip virtual and physical channels. As
explained in Section 2.3, each port has multiple virtual channels.
We can partition these virtual channels to each application. Sim-
ilarly, if multiple physical channels exist, we can dedicate some

channels to CPU cores and the other channels to GPU cores. If
the interference exhibited by other applications is significant, re-
source partitioning would prevent interference and improve per-
formance. However, this can lead to resource under-utilization if
partitioning is not balanced with demand. Therefore, partitioning
should be carefully applied to on-chip network resources.

3.3. Arbitration policy

As described in Section 2.3,multiple arbiters exist in each router
to coordinate packets from different ports. In a CPU–GPU hetero-
geneous architecture, due to the different network demands, arbi-
tration between CPU and GPU packets is a non-trivial problem. At
first glance, statically giving higher priority to CPU applications ap-
pears to be a reasonable solution since CPU applications are more
latency sensitive. However, when CPU and GPGPU applications are
both bandwidth-intensive, CPUs may be robbed of their fair share
of the bandwidth. Therefore, the arbitration policy should also be
carefully applied.

3.4. Homogeneous or heterogeneous link configuration

A homogeneous router configuration has the practical benefit
of easier implementation. If all NoC routers are identical, each
router module can be duplicated with little or no individual
adjustment. Since the requirements of CPU and GPU cores are very
different, routers may require higher bandwidth interconnection
in terms of the link width or larger buffers to effectively handle
traffic from both applications. However, this may result in under-
utilization of resources in a certain core. For example, if awider link
width is used, GPGPU applications may directly benefit frommore
bandwidth capability, but CPU applications may not because they
do not require such a high bandwidth. Therefore, the utilization
of CPU links will be low. A heterogeneous link configuration
may work better in this situation but requires more complex
implementation and may not perform as well in some bandwidth-
intense situations. However, a heterogeneous configuration will
require more design and implementation efforts compared to the
homogeneous network. We leave this discussion to future work
since this is beyond the scope of our study.

3.5. Placement

As explained in Section 3.1, any placement of these components
– CPU, GPU, L3, MC – results in unbalanced utilization of on-chip
interconnection resources for some scenarios or under-utilization
for all situations. Fig. 2 shows four possible examples of placement
in the ring network. Among these examples, the placement of
memory controllers (Fig. 2(d)) in many-core CMPs is studied by
Abts et al. [1].

The first two examples are GPU- and CPU-friendly placements.
Since all cachemisses from a core need to reach L3 caches first, the
distance between a core and a target L3 node may have a major
impact on performance. Fig. 2(a) shows that the distance between
the GPU cores and the L3 caches is shorter than the distance from
the CPU cores. If there are more frequent accesses from the GPU
cores to the L3 caches, this placement results in better system
performance. For the same reason, Fig. 2(b) is more beneficial for
CPU applications.

In another configuration, each memory controller is placed at
the end of the die in Fig. 2(c). If we can map the disjoint address
range of the physical memory for the two types of cores (by the
operating system), we can balance the link usage and the latency
between each core to the L3 cache and traffic to the memory
controllers will be reduced. This setup could effectively divide the
chip into two halves, which would be the most beneficial when

Author's personal copy

1528 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

(a) GPU-friendly placement. (b) CPU-friendly placement. (c) Distributed MC placement.

(d) Interleaved placement.

Fig. 2. Placement examples in the ring network.

Table 1
Processor configuration.

CPU

1–4 cores, 3.5 GHz, 4-wide, out-or-order (OOO)
gshare branch predictor
8-way, 32 KB L1 D/I cache, 2-cycle
8-way 256 KB L2 cache, 8-cycle

GPU
4 cores, 1.5 GHz, in-order, 2-way 16-wide SIMD
8-way, 32 KB L1 D (2c), 4-way 4KB L1 I (1c)
16 KB s/w managed cache

L3 Cache 4 tiles (each tile: 32-way, 2 MB), 64 B line

Memory controller DDR3-1333, 2 MCs (each 8 banks, 2 channels)
41.6 GB/s BW, 2 KB row buffer, FR-FCFS scheduler

each half requires the same amount of bandwidth, but would
otherwise result in a major imbalance in resource distribution.

Fig. 2(d) shows an interleaved placement, where CPU and GPU
cores are interleaved. The possible benefit of this design is that it
can balance the traffic in each direction from each application. In
other designs, the traffic from each type of application tends to
head in the same direction due to the shortest-distance routing
algorithm. When too much traffic is headed in one direction, the
application will slow down.

Although some placements are not practical in an actual imple-
mentation, this is beyond the scope of our study.We leave this dis-
cussion to future work.

4. Evaluation methodology

4.1. Simulator

We use MacSim [20] for our simulations. We faithfully consid-
ered all CPU and GPU architectural components and performed de-
tailed parameter space explorations and validations by comparing
with executions on real processors. We did our best to correlate
performance metrics against the measured data on real hardware.
For all simulations, we repeat early terminated applications until
all applications have finished at least once. This is to model the
resource contention uniformly across the duration of simulation,
which is similar to the work in [39,43,27,30].

Table 1 shows the processor configuration. Wemodel our base-
line CPU similarly to Intel’s Sandy Bridge [25] with GPU cores sim-
ilar to NVIDIA Fermi [35]. Table 2 shows the configuration of the
NoC router. To avoid the deadlock configuration, we use bubble
routing [38]. We set the GPU-friendly placement in Fig. 2(a) as the
baseline configuration, which is a configuration similar to Intel’s
Sandy Bridge.

Table 2
NoC configuration.

Topology Bi-directional ring network
Pipeline 5-stage (IB, RC, VCA, SA/ST, LT)
VCs 4 per port (4-flit buffer)
ports 3 (Local, Left, Right) per router
Link width 128 bits (16 B)
Link latency 2 cycles
Routing Shortest distance
Flow control credit-based, bubble routing [38]

Table 3
CPU benchmark characteristics.

Benchmark Suite MPKI/Core IPKC/Core

bzip2 Int 0.4 10.2
gcc Int 1.2 10.9
mcf Int 43.6 29.9
libquantum Int 26.8 20.8
omnetpp Int 10.2 21.5
astar Int 7.6 17.8
bwaves FP 22.3 61.6
milc FP 31.1 49.4
zeusmp FP 5.8 23.7
cactusADM FP 6.2 31.6
leslie3d FP 24.7 71.6
soplex FP 13.9 34.4
GemsFDTD FP 18.9 51.2
lbm FP 18.0 71.1
wrf FP 15.2 55.2
sphinx3 FP 0.6 31.2

4.2. Benchmarks

We use SPEC 2006 CPU benchmarks and CUDA GPGPU bench-
marks from publicly available suites, including Nvidia CUDA SDK,
Rodinia [10], Parboil [23], and ERCBench [9]. For the CPU work-
loads, Pinpoint [37] was used to select a representative simulation
region with the reference input set. Most GPGPU applications run
until completion.

Among all available benchmarks, we only evaluate network-
intensive CPU and GPU benchmarks based on IPKC ((Packet) Injec-
tion Per Kilo Cycles) metric. IPKC is very similar to MPKI (Miss Per
Kilo Instruction) metric. These two metrics are strongly correlated
because cache misses will introduce more traffic into the network.
We classify benchmarks as network-intensivewhen IPKC is greater
than 10 for CPU and 37.5 for GPU. Tables 3 and 4 show the charac-
teristic of the evaluated network-intensive CPU and GPGPU bench-
marks, respectively. We demonstrate that GPGPU benchmarks in
general generate higher network traffic than CPUbenchmarks. This
is mainly due to the high number of concurrent threads running in
a GPU core, which serves to hide memory latency by overlapping
memory accesses. Subsequently, GPU cores generate a higher in-
tensity of network traffic.

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1529

(a) Average speedup over vc4. (b) X–Y chart of speedup and IPKC with linear trend lines.

Fig. 3. Evaluation of different # of virtual channels.

Table 4
GPGPU benchmark characteristics (MPKI and IPKC are the averages of each core).

Benchmark Suite MPKI/Core IPKC/Core

BlackS SDK 25.6 153.2
ConvS SDK 0.0 39.6
Dct8x8 SDK 0.1 42.7
Histog SDK 5.4 39.8
ImageD SDK 0.1 62.7
MonteC SDK 0.0 47.1
Reduct SDK 123.5 164.5
SobolQ SDK 22.7 152.1
Scalar SDK 0.4 80.7
backPr Rodinia 3.4 39.7
cfd Rodinia 323.9 112.9
neares Rodinia 0.1 81.7
bfs Rodinia 10.6 95.4
needle Rodinia 10.2 65.0
SHA1 ERCBench 4.5 47.1
fft parboil 0.2 56.4
stencil parboil 16.7 134.3

Table 5
Heterogeneous workload description.

Workload # CPU # GPU # combinations

W-1CPU 1 1 13
W-2CPU 2 1 10
W-4CPU 4 1 10

We also generate workloads for the heterogeneous configura-
tion experiments. We randomly choose combinations of network-
intensive CPU and GPGPU applications. Table 5 describes the
workload we evaluated.

4.3. Evaluation metric

We use the geometric mean (Eq. (1)) of the speedup of each
application as the main evaluation metric, where n is the number
of applications that are running concurrently in a workload. The
speedup (Eq. (2)) of each application is defined as the IPC (Instruc-
tion per cycle) improvements over the baseline.2

speedup = geomean(speedup(0 to n−1)) (1)

speedupi =
IPCi

IPCbaseline
i

. (2)

We occasionally use the weighted speedup metric defined in Eq.
(3), where n is the number of applications that are running concur-
rently in aworkload.We specified theweighted speedupwhenever
it is used. Otherwise, the speedup metric in Eq. (1) is used.

weighted_speedup =

n−1
i=0

IPC shared
i

IPCalone
i

. (3)

2 The baseline uses the same configuration as in Table 1.

5. Results

In order to thoroughly cover possible problems and design
space explorations in the on-chip network of CPU–GPU heteroge-
neous architectures described in Section 3, we present our findings
for different combinations of workloads as following: Section 5.1
shows results of single-application workloads, where each appli-
cation (CPU or GPGPU) runs in isolation. One-CPU/one-GPU work-
load (W-1CPU in Table 5) evaluations are presented in Section 5.2.
Section 5.3 analyzes the result ofW-2CPU andW-4CPUworkloads.
We conduct the scalability study of the ring network in Section 5.4
and we summarize findings and suggest an optimal ring network
configuration in Section 5.5.

In each evaluation, we measure the impact of the number of
virtual channels, linkwidth, virtual/physical channel partition, link
latency, arbitration policy, and network placement configuration.
Note that we do not evaluate different routing algorithms since the
ring network has only two possibilities of the route decision (left
or right).

5.1. Single application analysis

We first evaluate each application in isolation (CPU or GPGPU
application only) to analyze its characteristicswithout interference
by other applications. Although previous studies exist [6,5] on the
effect of the on-chip network for GPGPU applications, we again
present the data to correlatewith our other experiments. Each CPU
application is tested by running it on one CPU core while all other
cores remain idle. Similarly, GPGPU applications run all GPU cores
while CPU cores remain idle.

5.1.1. Different number of virtual channels
Fig. 3(a) shows the result when we vary the number of virtual

channels from two to eight. All results are normalized to the base-
line configuration (4 VCs). As reported in [12], more number of vir-
tual channels generally improves network bandwidth utilization
and reduces network latency, which leads to better performance
when considerable amount of the network loads exists. However,
more virtual channels give onlymarginal benefitswhen an applica-
tion does not show network intensity. This is not unexpected since
even only one or a few virtual channels is not fully utilized. We
can confirm this from the experiment. CPU applications suffered
less performance loss than GPU applications with a small num-
ber of VCs. With two VCs, we observe a 2% performance degrada-
tion on average and the maximum performance loss is 6.6% for the
lbm benchmark, which is the most network-intensive benchmark
in Table 3. On the other hand, six GPGPU benchmarks show more
than a 40% degradation.

When these applications are sharing the on-chip interconnec-
tion, we expect the inter-application interference to be a serious
problem. We expect GPGPU applications to have a considerably
greater impact on other applications when running concurrently
on the network. However, from this experiment, guaranteeing a
small number of VCs (one or two) to CPU applications is sufficient
to maintain CPU application performance. Section 5.2.2 evaluates

Author's personal copy

1530 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

Fig. 4. Evaluation of different link widths (L-C: CPU network latency, L-G: GPU
network latency).

Fig. 5. Evaluation of different physical channels.

the effect of virtual channel partitioning in a multi-application en-
vironment.

To seek the correlation between the slowdown of having
smaller VCs and IPKC, we show an x–y chart in Fig. 3(b). Although
both applications show linear regression lines, CPU applications
do not show much variance. Applications with higher IPKC show
greater degradation in general.

5.1.2. Different link width
Fig. 4 shows the impact of link widths for each type of ap-

plication compared to the baseline of the 16B link width. Com-
pared to the impact of varying the number of virtual channels,
link width has a greater effect on the performance of both appli-
cations. GPGPU benchmarks generally show more sensitivity to
link widths than CPU benchmarks, especially in Reduct, Scalar, cfd,
and bfs benchmarks. This is potentially due to the large number
of memory requests made in a batch by a huge number of con-
currently running threads. GPGPU applications can take advantage
of the wider links and prevent network congestion. On the other
hand, CPU benchmarks do not show significant improvement with
wider links (32B: 1.1%, 64B: 1.6% on average) compared to the
baseline. However, lower network bandwidth in GPGPU applica-
tions induces a significant latency increase, thereby hurting per-
formance excessively. The L-G line in Fig. 4 shows that the average
network latency of GPGPU applications is increased by 3.3 times,
while CPU applications (L-C line) show a relatively small increase
(1.87 times) with the 2B link. As a result, GPGPU applications show
a 72% slowdown over the 16B link, but CPU applications only show
a 19% slowdown.

From this observation, we conclude that having a wider link is
very helpful to GPGPU applications, but not to CPU applications.
This confirms that GPGPU benchmarks are more bandwidth-
limited, while CPU benchmarks are not. As a result, this obser-
vation leads us to study heterogeneous link configurations in
Section 5.2.6.

5.1.3. Different channel configuration
In this section, we evaluate the impact of different widths and

number of physical channels. The purpose of this evaluation is
based on the intuition that a wider link can be beneficial to re-
duce the latency in the cases of larger packet requests, but multi-
ple channels can be better utilized for more general traffic when
smaller packets become a contributing portion of traffic. Fig. 5
shows the results.

Fig. 6. Evaluation of different link latencies.

Fig. 7. Round-robin arbitration (baseline: oldest-first).

For CPU applications, wider links improve performance by only
a small percentage. However, having smaller, multiple links de-
grades performance. On the other hand, GPGPU applications show
improvementwith twophysical channels (16Bx2 and 32Bx2). How-
ever, having even more channels increases the packet latency
significantly (2× longer latency for data packets) while not fully
utilizing all channels. As a result, the benefit of wider links
decreases. This finding indicates that the width and number of
physical channels should be well balanced to support various ap-
plications that have different latency/bandwidth requirements.

5.1.4. Different link latency
In order to see the effect of different latencies of the link, we

perform experiments with different link latencies. Fig. 6 shows the
result with two-cycle as the baseline latency. We double the link
latency from one to 64 cycles.

Although both types of applications are sensitive to link la-
tency, we observe that the degree of sensitivity is much higher
in CPU benchmarks. Even with small changes (from two to eight
cycles), most CPU benchmarks suffer from the increase in la-
tency. We observe 7%, 19%, and 36% degradations on average for
four-cycle, eight-cycle, and 16-cycle configurations, respectively.
However, the performance of many GPGPU benchmarks did not
degrade significantly until the 16-cycle latency configuration. On
average the performance degradations are 5% and 18% for GPGPU
benchmarks with eight-cycle and 16-cycle configurations, respec-
tively. As we explained in Section 2.1, CPU benchmarks are known
to be latency-sensitive and GPGPU benchmarks are bandwidth-
limited. This simulation result confirms this tendency.

5.1.5. Different arbitration policy
In this section, we evaluate two simple arbitration policies:

round-robin arbitration and oldest-first policy while fixing other
configurations the same.3 Fig. 7 shows the results.

Not surprisingly, neither type of application shows significant
changes. Since there are three input ports with few virtual chan-
nels in the ring network, not enough bottleneck is introduced by
network complexity for an arbitration to resolve. CPU applications
never show more than a 0.5% variance. Only a few GPGPU bench-
marks,BlackS,Reduct, and needle, showmore than a 1.5% variance.

3 We evaluate other static arbitration policies with heterogeneous workloads in
Sections 5.2.3 and 5.3.4.

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1531

Fig. 8. Different placement results (MC: distributed memory controller, INT:
interleaved).

5.1.6. The effect of network placement configuration
Fig. 8 shows the effect of different placement policies. We eval-

uate four different placements, as shown in Fig. 2. For each type of
application, placing the cores closer to the L3 caches improves per-
formance by reducing the round trip latency between the cores and
the memory system (the L3 caches and the memory controllers).
The CPU-friendly placement improves the performance of CPU
applications by more than 8% on average. On the other hand, the
CPU-friendly placement degrades the performance of GPGPU ap-
plications by 4.1% compared to the GPU-friendly placement.

The MC placement improves the performance of CPU applica-
tions by 5.6%. The performance gain is partially from reducing the
through-traffic of the memory controllers. In other configurations,
the shortest distance from Core 0 to the L3 caches is through the
memory controllers. Therefore, even though the destination of a
packet is not a memory controller but an L3 cache node, all pack-
ets from and to the core must travel through these memory con-
trollers. As a result, this path is always busy and tends to congest
traffic. However, by placing the memory controllers on both sides
of the cache nodes, through traffic is reduced.

On the other hand, there are cases in GPGPU applicationswhere
the MC placement either hurts or improves performance (from
−7% to 6%). For negative cases, this placement introduces an extra
node in the critical path between GPU cores and L3 cache nodes
(M0 in Fig. 2(c)), resulting in extra latency and higher congestion
(near M0) as traffic injected by the memory controller is also in
the critical path. Hence, in some applications these negative effects
offset the benefits of reducing congestion to/from the memory
controllers explained earlier. Overall, for GPGPU applications, the
benefit of the MC placement is washed out.

For the INT placement, note that CPU-friendly and INT place-
ments are identical for CPU applications since we run only one ap-
plication on Core 0 (C0), and this placement configuration does not
impact the latency from this core tomemory nodes. For GPGPU ap-
plications, we observe improvements of 3.9% on average due to an
increase in path diversity, as the cores will take both sides of the
ring instead of favoring only one side due to the shortest-distance
routing algorithm described in Section 3.1.

5.2. Multiple-application experiments (W-1CPU workload)

In this section, we look at multi-application experiments to an-
alyze the impact of inter-application interference. Each test ran-
domly chooses one network-intensive CPU and GPGPU application
to run them concurrently (theW-1CPUworkloads in Table 5). Fig. 9
shows an x–y chart of all W-1CPU workloads in terms of the IPKC
characteristic. We split this into four regions (CPU Injection/GPU
Injection, HH—High CPU and High GPU, HL, LH, and LL) based on
the CPU and GPU injection rates.

The following factors are measured for their impact: router
buffer partitioning, arbitration policy, network placement, physical
channel partitioning, and heterogeneous link configuration.

Fig. 9. W-1CPU workload characterization (IPKC: injection per kilo cycles).

5.2.1. Interference with GPGPU applications
We first explain how applications interfere with each other.

Fig. 10(a) shows an x–y chart of the slowdown of each application
compared towhen they are running alone and Fig. 10(b) shows the
weighted speedup4 of each workload (sorted in ascending order).

We can observe that significant interference is caused by
GPGPU applications. In Fig. 10(a), most GPGPU applications do not
showmore than a 5% slowdown, while only three CPU applications
show less than a 20% slowdown. In Fig. 10(b), GPGPU applications
in poorly performing combinations (from the leftmost, W3, W12,
W10, W5, and W6) all belong to the HH or LH region, while the
best performing ones (from the rightmost, W1 and W13) belong
to the HL region in Fig. 9. We expect that although GPGPU appli-
cations will experience more interference with CPU applications
as the number of concurrently running CPU applications increases,
GPGPU applications are more likely to interfere with CPU applica-
tions.

5.2.2. Router buffer partitioning
As Tables 3 and 4 show, GPGPU benchmarks exhibit more fre-

quent network injections. If we do not partition the router buffer
space, the GPGPU packets will occupy more space and unneces-
sarily degrade the performance of CPU applications. This is a sim-
ilar problem to the traditional LRU replacement policy in CMPs.
Since the naive LRU policy does not partition cache space, higher-
demanding applications will occupy more cache space. To solve
this problem, many researchers have proposed static and dy-
namic cache partitioning mechanisms [41,39]. Similarly, NoC vir-
tual channels can be statically or dynamically partitioned; in other
words, a few virtual channels can be dedicated to CPU packets and
other channels to GPU packets. In this section, we evaluate the ef-
fect of virtual channel partitioning.

We compare the baseline unpartitioned virtual channels with
various static partitioning configurations, as shown in Fig. 11.
We observe that increasing the number of virtual channels is
not helpful. GPGPU packets occupy most of the available buffer
space. Increasing to six and eight virtual channels results in minor
improvements in GPGPU applications, while the performance of
CPU applications stays the same. Compared to the unmanaged
baseline, allocating at least some fixed number of virtual channels
to CPU applications significantly improves performance by more
than 35%, while GPGPU applications show 8% and 1% degradations
with three and four dedicated virtual channels, respectively.

For a deeper analysis, we show an x–y chart of CPU and
GPU speedups in the 2:2 (VC4) virtual channel partitioning con-
figuration for all W-1CPU workloads in Fig. 12. We pick this
configuration because both CPU and GPGPU applications with this
configuration show representative behavior from virtual channel
partitioning. We observe that three groups exist in Fig. 12: group
1 (top left region, W1, W4, W9, W13: moderate CPU and GPU

4 Eq. (3). Higher is better. The ideal weighted speedup is 2 if no inter-application
interference is exhibited.

Author's personal copy

1532 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

(a) Slowdown X–Y chart (△: HH, �: HL, �: LH, ◦:LL). (b) Weighted speedup (Workload and Group Id in Fig. 9).

Fig. 10. Interference with GPGPU applications.

Fig. 11. Router buffer partitioning results (ex. 6 is 6 unpartitioned VCs; 2:4 is 2 CPU
VCs, 4 GPU VCs).

Fig. 12. VC partitioning x–y chart (baseline: shared VC, △: HH, �: HL, �: LH, ◦:LL
in Fig. 9).

speedup), group 2 (bottom right region, W3, W12: excessive CPU
and GPU), and group 3 (others: moderate CPU and excessive GPU).
In group 1, GPGPU applications have low injection rate (HL or LL
group in Fig. 9), so the interference by GPGPU applications is lim-
ited as well. Therefore, CPU and GPGPU applications effectively
share VCs. As a result, both CPU and GPGPU applications do not
show significant variances with VC partitioning. CPU applications
in group 2 have higher injection rate (greater than 50 IPKC), so the
performance of CPU applications is significantly improved with VC
partitioning. Almost all CPU applications in group 3 have low injec-
tion rate (LH or LL group), so VC partitioning hurts the performance
of GPGPUapplications. In other configurations,we can observe that
both CPU and GPGPU applications show similar trends, but we do
not see as much degradation as in the 2:2 (VC4) configuration for
GPGPU applications.

In addition, we examine the virtual channel occupancy of CPU
and GPU types for each group with 4 VCs. With the 2:2 configura-
tion, in group 1, the occupancy of CPU and GPU VCs are much less
than 100%. Since group 1 mostly consists of low-intensive (L type)
CPU and GPGPU applications, the number of in-flight packets is not
many. In groups 2 and 3, the occupancy of GPU VC is always close
to 100% while the occupancy of CPU VCs are near 100% only with
workloads that consist of H-type CPU applications.

Across different VC partitioning configurations (1:3, 2:2, and
3:1), although the utilization of GPU VCs is generally very high,
the utilization of CPU VCs is decreasing with more number of
VCs. This result well correlates with the experiment performed in
Section 5.1.1 (different number of VCs).

Fig. 13. Different arbitration policy results (CPU and GPU indicate the speedup of
each application).

From these observations, we see that when CPU and GPGPU ap-
plications run concurrently in the shared on-chip network, guar-
anteeing the minimum buffer space to CPU applications would
improve the overall system performance. However, providing ad-
ditional buffer space does not result in additional performance in-
creases.

5.2.3. Arbitration policy
In heterogeneous architectures, CPU and GPU packets compete

for buffer space and switch arbitration. To see the effect of arbi-
tration policies, we try two static policies: CPU-first and GPU-first
policies. To prevent starvation, we implement a form of batching
similar to that in [34,15].We compare these two static policies and
the round-robin policy with the oldest-first arbitration. Please note
that the complexity of arbiters in case of shared and partitioned
virtual channels might be different. In all evaluated arbitration
policies, we need to select a packet in a random virtual channel
position. When more virtual channels exist per arbiter (shared VC
case), the hardware selection logic should be more complex. This
may require more time for an operation and lead to performance
degradations. On the other hand, in order to identify different types
of packets and virtual channel types (partitioned VC case), we need
to keep track of additional information.

Fig. 13 shows the results using the shared and partitioned
virtual channel configurations. First, as seen in Section 5.1.5, there
is no significant difference between oldest-first and round-robin
policies, regardless of virtual channel configuration. However, for
the two static policies, the VC configuration affects the result
significantly. Since VC partitioning guarantees the minimal service
for each type, the effect of different policies decreases. As a result,
the three policies behave similarly (less than 1% delta) with VC
partitioning.

However, with the shared VCs, the CPU-first policy slightly
improves the performance of CPU applications without degrading
that of GPGPU applications. On the other hand, theGPU-first policy
degrades the performance of CPU applications by more than 15%
on average while improving GPGPU performance by only 0.5%.
Looking at the geometricmean,CPU-first improves performance by
1.5%, butGPU-first degrades it by 7.3% on average. This experiment
again confirms that CPU packets are latency-sensitive, so we need
to prioritize CPU packets.

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1533

Fig. 14. Different placement results for heterogeneousworkloads (MC: distributed
memory controller, INT: interleaved).

Fig. 15. Physical channel partitioning results (16B-base: unpartitioned 1 channel,
16B-1:1: 2×8B channels and one channel is dedicated for CPU and the other is for
GPGPU application).

5.2.4. Network placement configuration
We evaluate different placement policies on heterogeneous

workloads, as shown in Fig. 14. We again perform experiments
with different VC configurations. With the shared VC, even CPU-
friendly placement degrades CPU applications. This is because the
lengthened distance from the GPU cores to both L3 caches and
memory controllers increases system-level traffic congestion. As
a result, each CPU packet is penalized by this congestion. The MC
placement slightly improves the performance of both applications
(3.5% on average), while the INT placement degrades both (−4.4%
on average).

However, with the partitioned VC, we observe the expected
behavior. The CPU-friendly placement shows better performance
for the CPU applications (4.6%), but it degrades performance of
the GPGPU applications evenmore (−14.6%). This degrades overall
performance. TheMC placement improves CPU application slightly
by partially reducing the distance to the memory controllers, but
it worsens GPGPU applications. The INT placement degrades the
performance of both applications.

From this experiment, we observe that GPGPU applications
have more impact on the network. The overall performance gain
can be acquired by not penalizing GPGPU applications.

5.2.5. Physical channel partitioning
In this section, we evaluate physical channel partitioning. Simi-

lar to router buffer partitioning, if multiple physical channels exist
in the router, we can partition channels to each type of application.

Fig. 15 shows the results. Similar to VC partitioning, the CPU ap-
plications benefit from a dedicated channel. However, a significant
performance loss in GPGPU applications results. This indicates that
GPGPU applications require a wider physical channel than CPU ap-
plications. When the channel is partitioned, we observe that the
utilization of the GPU channel is slightly increasedwhile that of the
CPU shows very low utilization (around 5%). Therefore, to obtain
better channel utilization for GPGPU applications, a wider channel
instead of multiple channels is more effective.

5.2.6. Heterogeneous link configuration
In this section, we evaluate heterogeneous link configura-

tions. We first categorize routers into three groups: CPU-router (4
routers), GPU-router (4 routers), and memory-router (6 routers:
4 L3 cache and 2 memory controller routers). Our baseline uses

Fig. 16. Physical channel utilization (relative to CPU routers).

Fig. 17. Heterogeneous link configuration results (ALL: all routers, MEM: vary
memory router link only, and M+C: memory and CPU routers. 1, 2, or 4 in the x-
axis indicates the number of physical channels).

one 128-bit (16B) link between each node. We vary the number
of physical channels in each group. First, we show the physical
channel utilization of each router normalized to the CPU routers
in Fig. 16. L3 and MC routers obviously have much more traffic,
thereby utilizing channels more compared to processor routers.
Even if the number of concurrently running CPU applications in-
creases, we expect that a similar trend will be observed.

Fig. 17 shows the results of various link configurations. We
first evaluate the homogeneous link configuration (ALL). Having
more physical channels is always beneficial, but there is a dimin-
ishing return in performance after two channels. We observe per-
formance improvements of 25% and 27% on average with two and
four physical channels, respectively. Then, we evaluate heteroge-
neous configurations by varying each type of router (MEM, CPU,
GPU,M+C, andM+G). While increasing the number of channels for
CPU or GPU routers does not help improve performance, increasing
memory-router channels has a direct effect on performance (22.1%
and 22.4% with two and four physical channels, respectively). As
in Fig. 16, memory routers are mostly busy during the entire ex-
ecution, but CPU and GPU routers are not. Because there are five
different data flows in the ring network – (1) CPU to L3, (2) GPU to
L3, (3) L3 to Memory controller (MC), (4) MC to L3, and (5) L3 to
CPU (or GPU) – most traffic goes through the memory routers. By
allocating wider links to only the memory routers rather than all
routers, we can fully utilize these links without powering under-
utilized links for the CPU and GPU routers. In addition, giving GPU
routers additional channels, on top of wider memory router links,
shows an additional boost in performance. Since GPUs are major
sources of network traffic, without more channels between them,
GPU-routers will become the new bottleneck.

5.3. Multiple CPU application experiments (W-2CPU and W-4CPU
workloads)

In this section, we evaluate multiple CPU applications and one
GPGPU application running simultaneously. We repeat the same
set of experiments as in Section 5.2.

5.3.1. Router buffer partitioning
Fig. 18 shows the results of VC partitioning in the W-4CPU

workloads (4 CPUs+ 1 GPGPU). Note that theW-2CPU (2 CPUs+ 1
GPGPU) workloads are omitted, as they show roughly identical re-
sults asW-4CPU results.W-2CPUandW-4CPUworkloaddata show
very similar trends as W-1CPU (1 CPU + 1 GPGPU) experiments.
Dedicated (at least a few) virtual channels to CPU applications are

Author's personal copy

1534 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

Fig. 18. Router buffer partitioning results (4 CPUs + 1 GPGPU workloads).

Fig. 19. Physical channel partitioning results (16B-base: unpartitioned 1 channel,
16B-1:1: 2×8B channels and one channel is dedicated for CPU and the other is for
GPGPU application).

Fig. 20. Heterogeneous link configuration results (ALL: all routers, MEM: vary
memory router link only, and M+C: memory and CPU routers. 1, 2, or 4 in the x-
axis indicates the number of physical channels).

shown to be helpful, but the performance of GPGPU applications
degrades with less than three VCs. This again indicates significant
traffic injected by GPGPU applications and interference by GPGPU
applications. VC partitioning will reduce this interference.

From the various VC-related experiments, our conclusions of
the ideal VC configuration are that (1) VCs should be partitioned,
especially for CPU applications; (2) However two to three VCs are
sufficient; and (3) a GPGPU application requires at least three VCs,
but having more does not help. Therefore, the ideal VC configura-
tion will be five virtual channels: two are dedicated for CPU and
the other three are for GPGPU applications.

5.3.2. Physical channel partitioning
Fig. 19 shows the results for both W-2CPU and W-4CPU work-

loads. As the number of concurrently running CPU applications
increases, the benefit of having a separate physical channel for
CPU applications decreases since the channel itself is shared by
more applications. However, GPGPU applications still suffer from
narrower links, as they depend on bandwidth. As a result, we
always observe a system performance degradation with a parti-
tioned physical channel configuration.

5.3.3. Heterogeneous link configuration
Fig. 20 shows the results for the W-4CPU workloads. Again, the

W-2CPU workloads are omitted due to their similarity to the W-
4CPU workloads. Compared to the W-1CPU workloads, there is no
significant difference. Multiple physical channels for the memory
and the GPU routers proved to be beneficial. However, increasing
the number of physical channels for only CPU or GPU routers is
not beneficial because half of the traffic is cache-miss requests. The

Fig. 21. Different arbitration policy results.

size of request traffic is small (1 flit) and the request traffic would
not occupy multiple physical channels. Therefore, having multiple
physical channels does not improve performance. However, for
GPU routers, the additional channels for the memory routers adds
additional improvements.

5.3.4. Arbitration policy
Fig. 21 shows the results from different arbitration policies on

both shared (CPU and GPU packets share all VCs) and partitioned
VCs (2 VCs are dedicated for each type) for theW-4CPUworkloads.
Round-robin is comparable to the Oldest-First policy. Although the
CPU-First policy consistently shows better performance, the bene-
fit decreases with the partitioned VC. On average, CPU-First shows
3.2% and 1.5% improvements with the shared and partitioned VC,
respectively. On the other hand, GPU-First degrades CPU applica-
tions in the shared VC configuration.

Throughoutmultiple-workload evaluations (W-1CPU,W-2CPU,
and W-4CPU), the effect of different arbitration policies is not so
important, especially if virtual channels are partitioned to each
type of application. This is not entirely unexpected since there is a
smaller number of input and output ports in the ring network. We
expect that the role of intelligent arbitration becomes significant
with 2D topologies.

5.3.5. Placement
Fig. 22 shows different placement evaluations for W-2CPU and

W-4CPU workloads with different virtual channel configurations
(shared and partitioned). With the shared VC, the MC placement
shows the best results. This is mainly because traffic from/to the
memory controllers is distributed to both sides of the chip, thereby
reducing the congestion in those routers. With the partitioned VC,
the effect of different placement policies is a bit reduced. GPU-
friendly and MC placements perform the best.

5.4. Scalability

The last evaluation of our study is the scalability of the ring
network. The ring network is known to handle a small number
of nodes. In this section, we stress the ring network to show how
many cores can be used. We run GPGPU applications and scale the
number of cores from four to 20.

Fig. 23 shows four different types of applications: linear-scale,
log-scale, saturated-scale (performance saturated after N cores),
and unscalable. Linear and log-scale applications are less network
intensive and show performance improvement because increas-
ing the number of cores does not saturate the interconnection net-
work.

The other two types show that the performance flat lines at
some point due to the congestion in the network. Especially, the
performance of unscalable benchmarks degrades for even a small
number of cores (Fig. 23(d)). These are themost network-intensive
benchmarks in Table 4 (BlackS, Reduct, SobolQ, cfd, bfs).

Fig. 24 shows the correlation between the scalability of a ring
network and the IPKC. Aswe can expect, in general, higher IPKC ap-
plications (especially above 100 IPKC) do not showgood scalability.

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1535

In sum, the ring network is not scalable when it comes to sig-
nificantly memory/network-intensive applications. However, we
observe that the ring network is still a good candidate to handle
moderate memory/network-intensive applications with a moder-
ate number of cores until the on-chip interconnection bandwidth
can handle them.

5.5. Summary of findings

In this section, we summarize the findings on the ring network
for CPU–GPU heterogeneous architecture from our evaluations in
previous sections.

1. As is widely known, CPU benchmarks are latency-sensitive and
GPGPU benchmarks are bandwidth-limited. From the empirical
data, we confirm that this applies to the on-chip interconnec-
tion under various circumstances.

2. When CPU and GPGPU applications share the same NoC, a
significant interference by GPGPU applications exists. To pre-
vent this interference, we evaluate two resource partitioning
schemes: virtual and physical channels. Having enough ded-
icated virtual channels for each type improves performance.
On the other hand, multiple narrower physical channels rather
than a single wider channel significantly degrades the perfor-
mance of GPGPU applications. However, they do not improve
CPU application performance due to lower link utilization.

3. A heterogeneous link configuration shows a promising result.
Since the traffic is the highest in the last-level cache and the
memory controllers (to/from CPU and GPU cores), those routers
become traffic hotspots. By adding more physical channels, we
can achieve similar performance compared to having multiple
channels for all routers.

4. Prioritizing CPU request packets yields the best performance
among other policies, but the benefit is very small. Generally,
router arbitration has minimal effect on performance in a ring
network.

5. GPU cores should be located close to the L3 caches and the
memory controllers to avoid congestion, which eventually af-
fects other applications as well. Moreover, separating memory
controllers to both sides of the chipwould reduce the traffic and
improve performance in some cases.

6. The ring network is not scalable and even saturates with only
a small number of cores (4–6) for some benchmarks. However,
we observe that the ring network is still a goodmedium to han-
dle a moderate number of cores until on-chip interconnection
bandwidth can handle them.

From our findings, we suggest an optimal router option that is
a combination of the best performance with minimal hardware
resources for each individual experiment in Table 6. Please note
that the suggested configuration may not be applicable to other
network configurations and is specific for the ring on-chip net-
work with our configurations. Also, some of suggested options
may require more hardware resources (one more virtual chan-
nel per port in a router and more physical channels for memory
and GPU routers) than the baseline. The detailed tradeoff between
more hardware resources and performance/power improvements
remains in future work.

Fig. 25 shows the evaluation results. We incrementally add one
type of optimization on top of other optimizations. As can be seen
in the figure, we can observe that greater improvements mostly
come from virtual channel partitioning and heterogeneous link
configurations, while other optimizations are less critical. This re-
sult is expected and well correlates with previous observations.
Overall, our suggested router configuration improves performance
by 22%, 19%, and 26% for W-1CPU, W-2CPU, and W-4CPU work-
loads, respectively.

(a) W-2CPU workloads (2 CPUs + 1 GPGPU). (b) W-4CPU workloads (4 CPUs + 1 GPGPU).

Fig. 22. Placement (MC: distributed memory controller, INT: interleaved).

(a) Linear-scale. (b) Log-scale. (c) Saturated-scale.

(d) Unscalable.

Fig. 23. Scalability test (x-axis: # cores, y-axis: speedup over 4-core).

Author's personal copy

1536 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

Table 6
Putting it all together—baseline and a suggested ring configurations.

Base Suggested option

Virtual Channel shared partitioned
4 VCs 5 VCs (2: CPU, 3: GPU)

Physical Channel 1 × 16 B 1 × 16 B for CPU
2 × 16 B for LLC, MC, and GPU

Arbitration Oldest-first CPU-first

Placement GPU-Friendly MC or GPU-Friendly

Fig. 24. Scalability (y-axis: scalability type, 1: linear, 2: log, 3: saturated, 4:
unscalable).

Fig. 25. Suggested on-chip interconnection configuration results (V: VC partition-
ing, L: Heterogeneous link configuration, A: Arbitration, P: Placement).

6. Related work

6.1. On-chip ring network

Although the ring network has been extensively studied in the
past, we limit our discussion to the on-chip ring network in this
section. Bononi and Concer [7] studied and compared various on-
chip network topologies, including the ring, in the SoC (System on
Chip) domain. Bourduas and Zilic [8] proposed a hybrid ring/mesh
on-chip network. A conventional 2D-mesh network has a large
communication radius. To reduce the communication cost, the net-
work is partitioned into several sub meshes and the ring con-
nects these partitions. Ainsworth and Pinkston [2] performed a
case study of the Cell Broadband Engine’s Element Interconnect
Bus (EIB),which consists of four ringnetworks for data and a shared
command bus that connects 12 elements.

6.2. CPU–GPU heterogeneous architecture research

Since the CPU–GPU heterogeneous architecturewas introduced
recently, not many studies are available in the literature. In par-
ticular, the resource-sharing problem is not well discussed. Lee
and Kim [30] recently studied the cache-sharing behaviors in a
CPU–GPU heterogeneous architecture and proposed TLP-aware
cache management schemes, which sample GPU cores with differ-
ent cache policies to see the performance effects by caches.

Yang et al. [44] proposed a pre-executionmechanism of GPGPU
applications on CPU cores. By automatically extracting memory
operations of the GPGPU kernel and dispatching these operations
on the CPUwhen the kernel is launched, data blocks of GPGPU ker-
nels are brought in the shared cache by CPU cores. As a result, most
off-chip accesses from GPGPU applications are hit in the cache.

Jeong et al. [28] considered quality-of-service (QoS) in a multi-
processor system-on-chip when off-chip bandwidth is shared
between CPU and real-time constrained graphics applications.
Depending on the progress made by graphics applications, the
priority of CPU and GPU requests is dynamically adjusted.
Ausavarungnirun et al. [4] proposed the staged memory scheduler
(SMS). Due to massive memory accesses by GPU cores, the visi-
bility of the memory requests by the memory scheduler is very
limited. SMS tackles this problem with a multiple-stage memory
scheduler.

In addition, some work on utilizing idle cores to boost perfor-
mance has been done.Woo and Lee proposed Compass [42], which
utilizes idleGPUcores for various prefetching algorithms inhetero-
geneous architectures.

6.3. Heterogeneous NoC configuration

Much research has been done on heterogeneous NoCs in-
volving many-core CPUs. Heterogeneous network configurations
(HeteroNoC), by Mishra et al. [32], proposed asymmetric resource
allocations (buffers and link bandwidth) to exploit non-uniform
demand on amesh topology. HeteroNoC showed that routers along
the diagonals provided performance improvement over homoge-
neous resource distribution. Grot et al. [18] proposed Kilo-NOC,
with shared resources isolated into QoS-enabled regions to min-
imize the network complexity. Kilo-NOC also reduces area and
energy, in non-QoS regions by using a MECS—(Multidrop Express
Channels) [19] based network with elastic buffer and novel virtual
channel allocation that reduces VC buffer requirements by eight
times over MECS with minimal latency impact.

6.4. NoC prioritization

Application-aware prioritization [14] computes the network
demand of applications at intervals by looking at a number of met-
rics such as private cachemisses per instruction, average outstand-
ing L1 misses in MSHRs, and average stall cycles per packet. This
produces a ranking of an application, and all packets of one appli-
cation are prioritized over another, resulting in a coarse granularity
of control. To prevent application starvation, a batching framework
is implemented that prioritizes all packets of one time quantum
over another, regardless of source application. Aérgia [15] predicts
the available latency (slack) of any packet by the number of out-
standing L1 misses and prioritizes low-slack (critical) packets over
packets with higher slack when they are within the same batching
interval.

6.5. NoC routing

Ma et al. [31] proposed destination-based adaptive routing
(DBAR), a network with a novel congestion information network
with a low wiring overhead. Like RCA [17], DBAR uses the virtual
channel buffer status of nodes on the same dimension to route
around congested paths. In addition, DBAR ignores nodes outside
the potential path to eliminate interference and provides dynamic
isolation from outside regions of the network.

Bufferless routing [33] showed substantial energy savings from
removing input buffers by deflecting incoming packets from con-
gested output ports. This routing algorithmmanaged performance
similar to other buffered routing algorithms but only at low traffic.

Author's personal copy

J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538 1537

7. Conclusion and future work

In this paper, we explore a broad design space in the on-chip
ring interconnection network for a CPU–GPU heterogeneous archi-
tecture. We observe that this type of heterogeneous architecture
has been adopted by major players in the industry and will be-
come the mainstream processor type in subsequent generations.
We observe that the interference exhibited by other applications,
mostly by GPGPU applications, is significant and can be detrimen-
tal to system performance if not properly managed. We examine
resource partitioning schemes for virtual and physical channels.
Virtual channel partitioning improves performance, but physical
channel partitioning degrades it because of link under-utilization.
Heterogeneous link configurations, different arbitration policies,
and placement configurations have been considered in this paper
as well. The heterogeneous link configuration shows effectiveness,
but other configurations have less benefit. From numerous exper-
imental results, we suggest an optimal router configuration that
combines the best of individual experiments for this architecture,
which improves performance by 22%, 19%, and 16% for W-1CPU,
W-2CPU, and W-4CPU workloads, respectively.

In future work, we will evaluate other topologies, including
two-dimensional mesh and torus. Also, we will study various re-
source partitioning mechanisms for the on-chip network.

Acknowledgments

We gratefully acknowledge the support of the National Science
Foundation (NSF) CAREER CCF 1054830, CNS 0855110, and Sandia
National Laboratories. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of NSF or Sandia Lab.

References

[1] D. Abts, N.D.E. Jerger, J. Kim, D. Gibson, M.H. Lipasti, Achieving predictable
performance through better memory controller placement in many-core
cmps, in: S.W. Keckler, L.A. Barroso (Eds.), Proc. of the 31st Annual Int’l. Symp.
on Computer Architecture, ISCA, ACM, 2009, pp. 451–461.

[2] T.W. Ainsworth, T.M. Pinkston, On characterizing performance of the cell
broadband engine element interconnect bus, in: Proc. of the 1st ACM/IEEE Int’l
Symp. on Network-on-Chip, NOCS, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 18–29.

[3] AMD, Fusion. http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx, 2011.
[4] R. Ausavarungnirun, G. Loh, K. Chang, L. Subramanian, O. Mutlu, Staged mem-

ory scheduling: achieving high performance and scalability in heterogeneous
systems, in: Proc. of the 34th Annual Int’l. Symp. on Computer Architecture,
ISCA, IEEE Press, Piscataway, NJ, USA, 2012, pp. 416–427.

[5] A. Bakhoda, J. Kim, T.M. Aamodt, Throughput-effective on-chip networks for
manycore accelerators, in: Proc. of the 43rd Int’l. Symp. on Microarchitecture,
MICRO, IEEE, 2010, pp. 421–432.

[6] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, T.M. Aamodt, Analyzing cuda
workloads using a detailed GPU simulator, in: Proc. of the 2009 IEEE Int’l.
Symp. on Performance Analysis of Systems and Software, ISPASS, IEEE, 2009,
pp. 163–174.

[7] L. Bononi, N. Concer, M.D. Grammatikakis, M. Coppola, R. Locatelli, Noc
topologies exploration based on mapping and simulation models, in: Proc. of
the 10th Euromicro Conf. on Digital System Design Architectures, Methods,
and Tools, DSD, IEEE, 2007, pp. 543–546.

[8] S. Bourduas, Z. Zilic, A hybrid ring/mesh interconnect for network-on-chip
using hierarchical rings for global routing, in: Proc. of the 1st ACM/IEEE Int’l
Symp. on Network-on-Chip, NOCS, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 195–204.

[9] D. Chang, C. Jenkins, P. Garcia, S. Gilani, P. Aguilera, A. Nagarajan, M. Anderson,
M. Kenny, S. Bauer, M. Schulte, K. Compton, ERCBench: an open-source
benchmark suite for embedded and reconfigurable computing, in: Proc. of
20th Intl. Conf. on Field Programmable Logic and Applications, FPL, 2010,
pp. 408–413.

[10] S. Che,M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, K. Skadron, Rodinia:
a benchmark suite for heterogeneous computing, in: Proc. of the 2009 IEEE Int’l
Symp. on Workload Characterization, IISWC, IEEE, 2009, pp. 44–54.

[11] N. Concer, S. Iamundo, L. Bononi, aEqualized: a novel routing algorithm for the
spidergonnetwork on chip, in: Proc. of Design, Automation, and Test in Europe,
DATE, European Design and Automation Association, Leuven, Belgium, 2009,
pp. 749–754.

[12] W.J. Dally, Virtual-channel flow control, in: Proc. of the 12th Annual Int’l.
Symp. on Computer Architecture, ISCA, ACM, New York, NY, USA, 1990,
pp. 60–68.

[13] W. Dally, B. Towles, Principles and Practices of Interconnection Network,
Morgan Kaufmann, 2004.

[14] R. Das, O. Mutlu, T. Moscibroda, C.R. Das, Application-aware prioritization
mechanisms for on-chip networks, in: Proc. of the 42nd Int’l. Symp. on
Microarchitecture, MICRO, ACM, New York, NY, USA, 2009, pp. 280–291.

[15] R. Das, O. Mutlu, T. Moscibroda, C.R. Das, Aérgia: exploiting packet latency
slack in on-chip networks, in: Proc. of the 32nd Annual Int’l. Symp. on
Computer Architecture, ISCA, ACM, New York, NY, USA, 2010, pp. 106–116.

[16] V. Dumitriu, G. Khan, Throughput-oriented noc topology generation and
analysis for high performance socs, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 17 (10) (2009) 1433–1446.

[17] P. Gratz, B. Grot, S.W. Keckler, Regional congestion awareness for load balance
in networks-on-chip, in: Proc. of the 14th Int’l. Symp. on High Performance
Computer Architecture, HPCA, IEEE Computer Society, Washington, DC, USA,
2008, pp. 203–214.

[18] B. Grot, J. Hestness, S.W. Keckler, O.Mutlu, Kilo-noc: a heterogeneous network-
on-chip architecture for scalability and service guarantees, in: Proc. of the 33rd
Annual Int’l. Symp. on Computer Architecture, ISCA, ACM, New York, NY, USA,
2011, pp. 401–412.

[19] B. Grot, J. Hestness, S.W. Keckler, O. Mutlu, Express cube topologies for on-
chip interconnects, in: Proc. of the 15th Int’l. Symp. on High Performance
Computer Architecture, HPCA, IEEE Computer Society, Washington, DC, USA,
2009, pp. 163–174.

[20] HPArch, MacSim simulator. http://code.google.com/p/macsim/, 2012.
[21] J. Hu, R. Marculescu, Exploiting the routing flexibility for energy/performance

aware mapping of regular noc architectures, in: Proc. of Design, Automation,
and Test in Europe, DATE, IEEE Computer Society, Washington, DC, USA, 2003,
pp. 688–693.

[22] J. Hu, R. Marculescu, DyAD: smart routing for networks-on-chip, in: S. Malik,
L. Fix, A.B. Kahng (Eds.), Proc. of the 41st Annual Design Automation
Conference, DAC, ACM, New York, NY, USA, 2004, pp. 260–263.

[23] IMPACT, Parboil benchmark suite. http://impact.crhc.illinois.edu/parboil.php.
[24] Intel, Ivy Bridge.

http://www.intel.com/content/www/us/en/silicon-innovations/intel-22nm-
technology.html.

[25] Intel, Sandy Bridge. http://software.intel.com/en-us/articles/sandy-bridge/,
2011.

[26] Intel, Xeon Phi Coprocessor. http://www.intel.com/content/www/us/en/high-
performance-computing/high-performance-xeon-phi-coprocessor-
brief.html.

[27] A. Jaleel, K.B. Theobald, S.C. Steely Jr., J. Emer, High performance cache
replacement using re-reference interval prediction (RRIP), in: Proc. of the 32nd
Annual Int’l. Symp. on Computer Architecture, ISCA, ACM, New York, NY, USA,
2010, pp. 60–71.

[28] M.K. Jeong, M. Erez, C. Sudanthi, N. Paver, A qos-aware memory controller for
dynamically balancing GPU and CPU bandwidth use in an mpsoc, in: Proc. of
the 48th Annual Design Automation Conference, DAC, ACM, New York, NY,
USA, 2012, pp. 850–855.

[29] J. Kim, W.J. Dally, D. Abts, Flattened butterfly: a cost-efficient topology for
high-radix networks, in: Proc. of the 29th Annual Int’l. Symp. on Computer
Architecture, ISCA, ACM, New York, NY, USA, 2007, pp. 126–137.

[30] J. Lee, H. Kim, TAP: a TLP-aware cache management policy for a CPU–GPU
heterogeneous architecture, in: Proc. of the 18th Int’l. Symp. on High
Performance Computer Architecture, HPCA, IEEE, Washington, DC, USA, 2012,
pp. 91–102.

[31] S. Ma, N.D.E. Jerger, Z. Wang, Dbar: an efficient routing algorithm to support
multiple concurrent applications in networks-on-chip, in: Proc. of the 33rd
Annual Int’l. Symp. on Computer Architecture, ISCA, ACM, New York, NY, USA,
2011, pp. 413–424.

[32] A.K. Mishra, N. Vijaykrishnan, C.R. Das, A case for heterogeneous on-chip
interconnects for cmps, in: Proc. of the 33rd Annual Int’l. Symp. on Computer
Architecture, ISCA, ACM, New York, NY, USA, 2011, pp. 389–400.

[33] T. Moscibroda, O. Mutlu, A case for bufferless routing in on-chip networks,
in: Proc. of the 31st Annual Int’l. Symp. on Computer Architecture, ISCA, ACM,
New York, NY, USA, 2009, pp. 196–207.

[34] O. Mutlu, T. Moscibroda, Parallelism-aware batch scheduling: enhancing both
performance and fairness of shared dram systems, in: Proc. of the 30th
Annual Int’l. Symp. on Computer Architecture, ISCA, IEEE Computer Society,
Washington, DC, USA, 2008, pp. 63–74.

[35] NVIDIA, Fermi: Nvidia’s next generation cuda compute architecture,
http://www.nvidia.com/fermi.

[36] NVIDIA, Project denver.
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-
new-era-of-computing/.

[37] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, A. Karunanidhi, Pinpointing
representative portions of large intel R⃝itanium R⃝programs with dynamic
instrumentation, in: Proc. of the 37th Int’l. Symp. on Microarchitecture,
MICRO, IEEE Computer Society, Washington, DC, USA, 2004, pp. 81–92.

[38] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo, J.M. Prellezo, The adaptive
bubble router, J. Parallel Distrib. Comput. 61 (9) (2001) 1180–1208.

[39] M.K. Qureshi, Y.N. Patt, Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches, in: Proc. of
the 39th Int’l. Symp. on Microarchitecture, MICRO, IEEE Computer Society,
Washington, DC, USA, 2006, pp. 423–432.

Author's personal copy

1538 J. Lee et al. / J. Parallel Distrib. Comput. 73 (2013) 1525–1538

[40] D. Sanchez, G. Michelogiannakis, C. Kozyrakis, An analysis of on-chip
interconnection networks for large-scale chip multiproc essors, ACM Trans.
Archit. Code Optim. (TACO) 7 (1) (2010) 4.

[41] G. Suh, S. Devadas, L. Rudolph, A new memory monitoring scheme for
memory-aware scheduling and partitioning, in: Proc. of the 8th Int’l. Symp.
on High Performance Computer Architecture, HPCA, IEEE Computer Society,
Washington, DC, USA, 2002, pp. 117–128.

[42] D.H. Woo, H.-H.S. Lee, Compass: a programmable data prefetcher using idle
GPU shaders, in: Proc. of the 15th Int’l. Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, ACM, New York,
NY, USA, 2010, pp. 297–310.

[43] Y. Xie, G.H. Loh, PIPP: promotion/insertion pseudo-partitioning of multi-
core shared caches, in: Proc. of the 31st Annual Int’l. Symp. on Computer
Architecture, ISCA, ACM, New York, NY, USA, 2009, pp. 174–183.

[44] Y. Yang, P. Xiang, M. Mantor, H. Zhou, CPU-assisted GPGPU on fused CPU–GPU
architectures, in: Proc. of the 18th Int’l. Symp. on High Performance Computer
Architecture, HPCA, IEEE Computer Society, Washington, DC, USA, 2012,
pp. 103–114.

Jaekyu Lee is a Ph.D. candidate in the School of Computer
Science, Georgia Institute of Technology. He received his
B.S degree in computer science from Sogang University,
Korea in 2007 andM.S degree from the School of Computer
Science from Georgia Institute of Technology in 2009.
His research interests include high performance computer
architecture and high performance computing.

Si Li is a Ph.D. student at Georgia Tech working in
the area of computer architecture. His research interests
involve dynamic software resilience via instrumentation
and the unique demand of memory and cache systems
in the massively parallel environment of GPU compute
architecture.

Hyesoon Kim is an Associate professor in the School
of Computer Science at Georgia Institute of Technology.
Her research interests include high-performance energy-
efficient heterogeneous architectures, programmer–com-
piler–microarchitecture interaction and developing tools
to help parallel programming. She received a BA in me-
chanical engineering from Korea Advanced Institute of
Science and Technology (KAIST), anM.S. inmechanical en-
gineering from Seoul National University, and an M.S. and
a Ph.D. in computer engineering at The University of Texas
at Austin.

Sudhakar Yalamanchili earned his Ph.D. degree in Elec-
trical and Computer Engineering from the University of
Texas at Austin. Upon graduation, Dr. Yalamanchili joined
Honeywell’s Systems and Research Center in Minneapo-
lis where he worked as a Senior, and then Principal Re-
search Scientist while he served as an Adjunct Faculty and
taught in the Department of Electrical Engineering at the
University ofMinnesota. He joined the ECE faculty at Geor-
gia Tech in 1989 where he is now a Joseph M. Pettit Pro-
fessor of Computer Engineering. Since 2003 he has been
a Co-Director of the NSF Industry University Cooperative

Research Center on Experimental Computer Systems at Georgia Tech. Dr. Yalaman-
chili has served several periods as the Chair of the Computer Engineering Technical
Interest Group within the School of ECE (most recently 2008–2010) and contin-
ues to contribute professionally on editorial boards and program committees. He
has served as a Distinguished Visitor of the IEEE, and associate editor for the IEEE
Transactions on Parallel and Distributed Processing and IEEE Transactions on Com-
puters. He currently serves in the Research Advisory Group to the HyperTransport
Consortium and on the Editorial Board of IEEE Computer Society’s Computer Archi-
tecture Letters and since 2003 has been a Co-Director of the NSF Industry Univer-
sity Research Center on Experimental Computer Systems (CERCS). He is the author
of VHDL Starters Guide, 2nd edition, Prentice Hall 2004, VHDL: From Simulation to
Synthesis, Prentice Hall, 2000, and co-authorwith J. Duato and L. Ni, of Interconnec-
tion Networks: An Engineering Approach, Morgan Kaufman, 2003. His most recent
service includes General Co-Chair of the 2010 IEEE/ACM International Symposium
on Microarchitecture (MICRO) and Program Committees for the 2011 International
Symposium on Networks on Chip, 2011 IEEE/ACM International Symposium onMi-
croarchitecture (MICRO and 2011 IEEEMicro Top Picks fromComputer Architecture
Conferences).

