
1

SD3: An Efficient Dynamic Data-Dependence
Profiling Mechanism

Minjang Kim, Nagesh B. Lakshminarayana, Hyesoon Kim, Chi-Keung Luk†
College of Computing, Georgia Institute of Technology, Atlanta, GA

†Intel Corporation

Abstract—As multicore processors are deployed in mainstream computing, the need for software tools to help parallelize programs is
increasing dramatically. Data-dependence profiling is an important program analysis technique to exploit parallelism in serial programs.
More specifically, manual, semi-automatic, or automatic parallelization can use the outcomes of data-dependence profiling to guide
where and how to parallelize in a program.
However, state-of-the-art data-dependence profiling techniques consume extremely huge resources as they suffer from two major
issues when profiling large and long-running applications: (1) runtime overhead and (2) memory overhead. Existing data-dependence
profilers are either unable to profile large-scale applications with a typical resource budget or only report very limited information.
In this paper, we propose an efficient approach to data-dependence profiling that can address both runtime and memory overhead in
a single framework. Our technique, called SD3, reduces the runtime overhead by parallelizing the dependence profiling step itself. To
reduce the memory overhead, we compress memory accesses that exhibit stride patterns and compute data dependences directly in
a compressed format. We demonstrate that SD3 reduces the runtime overhead when profiling SPEC 2006 by a factor of 4.1× and
9.7× on eight cores and 32 cores, respectively. For the memory overhead, we successfully profile 22 SPEC 2006 benchmarks with the
reference input, while the previous approaches fail even with the train input. In some cases, we observe more than a 20× improvement
in memory consumption and a 16× speedup in profiling time when 32 cores are used.
We also demonstrate the usefulness of SD3 by showing manual parallelization followed by data dependence profiling results.

Index Terms—Profiling, data dependence, parallel programming, program analysis, compression, parallelization.

✦

1 INTRODUCTION

As multicore processors are now ubiquitous in mainstream
computing, parallelization has become the most important
approach to improving application performance. However,
specialized software support for parallel programming is still
immature although a vast amount of work has been done
on supporting parallel programming. For example, automatic
parallelization has been researched for decades, but it was
successful in only limited domains. Parallelization is still a
burden for programmers.

Recently, several tools, including Intel Parallel Advisor [12]
and Vector Fabric Pareon (previously, vfAnalyst) [31], have
been introduced to help the parallelization of legacy se-
rial programs. These tools provide useful information on
parallelization by analyzing serial code. A key component
of such tools is dynamic data-dependence analysis, which
indicates whether two tasks access the same memory location
and at least one of them is a write. Two data-independent tasks
can be safely executed in parallel without synchronization.

Traditionally, data-dependence analysis has been done stat-
ically by compilers techniques, such as the GCD test [24] and
Banerjee’s inequality test [16], especially for array-based data
accesses. This static analysis is limited by pointer analysis
in languages with arbitrary pointers and dynamic allocations

• minjang@gatech.edu, nageshbl@cc.gatech.edu, hyesoon@cc.gatech.edu,
chi-keung.luk@intel.com

such as C/C++. However, precise pointer analysis is unde-
cidable for these languages [4]. We observed that state-of-
the-art production-automatic parallelizing compilers often fail
to parallelize simple, embarrassingly parallel loops written in
C/C++. The compilers also had limited success in irregular
data structures due to pointer analysis and control flows.

Rather than entirely relying on static analysis, dynamic
analysis using data-dependence profiling is an alternative or
a complementary approach to address the limitations of the
static-only approaches since all memory addresses are resolved
in runtime. Data-dependence profiling has already been used in
parallelization efforts like speculative multithreading [5, 8, 20,
27, 34] and finding potential parallelism [9, 17, 25, 30, 32, 36].
It is also being employed in the commercial tools we men-
tioned. However, the current algorithm for data-dependence
profiling incurs significant costs of time and memory over-
head. Surprisingly, although a number of research works have
focused on using data-dependence profiling, almost no work
exists on addressing the performance and overhead issues.

As a concrete example, Fig. 1 shows the dependence pro-
filing overhead of the two commercial tools, obtained on May
2010. Because no detailed profiling algorithms of the tools are
publicly available, we implement our own baseline algorithm
called the pairwise method. We believe the pairwise method is
very similar to the algorithms of these commercialized tools.

Fig. 1(a) and 1(b) show the memory and time overhead,
respectively, when profiling 17 SPEC 2006 C/C++ applications
with the train input on a 12 GB machine. Among the 17 bench-

2

95 25 86
337

93.6 12 60
392

7.8 9 184 4.3 44
421

12 46
250

0
500

1000
1500
2000
2500
3000
3500
4000

T
o

ta
l

M
em

o
ry

 O
v

er
h

ea
d

 (
M

B
)

Native

Tool1

(a) Memory overhead of Tool1 (✕: Dependence profiling takes 10+ GB memory.)

0
50
100
150
200
250
300

Sl
ow

do
w

ns
 (T

im
es

)

Tool1

(b) Time overhead of Tool1

1

10

100

1000

10000

512x512 1024x1024 2048x2048M
em

or
y

O
ve

rh
ea

d
(M

B)

(l
og

 sc
al

e)

Matrix Size

ToolA ToolB SD3

(c) Memory overhead of matrix addition

Fig. 1: Overhead of the current commercial dependence profilers. “Tool1,” “ToolA,” and “ToolB” are used to anonymize commercial tools. We profiled
the top 20 hottest loops and their inner loops (if any) in the experimentations of (a) and (b).

marks, only four benchmarks were successfully analyzed; the
rest of the benchmarks failed because of insufficient physical
memory. The runtime overhead is between an 80× and 270×
slowdown for the four benchmarks that worked. While both
time and memory overhead are severe, the latter will stop
further analysis. The culprit is the data-dependence profiling
algorithms used in these tools. The pairwise method needs
to store all outstanding memory references in order to check
dependences, resulting in huge memory bloats.

Another example that clearly shows the memory overhead
problem is a simple matrix addition program that allocates
three N × N matrices for A = B+C. As shown in Fig. 1(c),
the current tools require an order of gigabytes of additional
memory as the matrix size increases. In contrast, our method,
SD3, needs only less than 10 MB memory.

In this paper, we address these memory and time overhead
problems by proposing an efficient data-dependence profiling
algorithm called SD3. Our algorithm has two components.
First, we propose a new data-dependence profiling technique
using a compressed data format to reduce the memory over-
head. Second, we propose the use of parallelization to accel-
erate the data-dependence profiling process. More precisely,
this work makes the following contributions to the topic of
data-dependence profiling:

1) Reducing memory overhead by stride detection and
compression along with a new data-dependence calcu-
lation algorithm: We demonstrate that SD3 significantly
reduces the memory consumption of data-dependence
profiling. SD3 is not a simple compression technique;
we should address several issues to achieve memory-
efficient profiling. The failed benchmarks in Fig. 1(a)
are successfully profiled by SD3 on a 12 GB machine.

2) Reducing runtime overhead with parallelization: We
show that our memory-efficient data-dependence profil-
ing itself can be effectively parallelized. We observe an
average speedup of 4.1× on profiling SPEC 2006 using
eight cores. For certain applications, the speedup can be
as high as 16× with 32 cores.

2 BACKGROUND

Before describing SD3, we illustrate usage models of our
dynamic data-dependence profiler, as shown in Fig. 2. A tool
using the data-dependence profiler takes a program in either
source code or binary and profiles it with a representative

Source Binary Program Input

Static Analysis
Instrumentation

Data-Dependence
Profiler

Parallelism Explorer
• Easily parallelizable?
• Pipeline parallelism?
• Barrier? . . .

Raw
Results

Programmers
• Hints for parallelization model
• Hints for code modification

Compilers
• Aggressive optimizations and
automatic parallelization

Fig. 2: Examples of data-dependence profiler applications.

input. A raw result from our dependence profiler is a list of
discovered data-dependence pairs. All or some of the following
information is provided by our profiler:

• Sources and sinks of data dependences (in source code
lines if possible; otherwise in program counters),

• Types of data dependences: Flow (Read-After-Write,
RAW), Anti (WAR), and Output (WAW) dependences,

• Frequencies and distances of data dependences,
• Whether a dependence is loop-carried or loop-

independent, and data dependences carried by a partic-
ular loop in nested loops,

• Data-dependence graphs in functions and loops.

A raw result can be further analyzed to give programmers
advice on parallelization models and the transformation of
the serial code. The raw results also can be used by ag-
gressive compiler optimizations and opportunistic automatic
parallelization [30]. Among the three steps, obviously the data-
dependence profiler is the bottleneck of the overhead problem,
and we focus on this in the paper.

3 THE BASELINE PAIRWISE METHOD

We describe our baseline algorithm, the pairwise method. SD3

is implemented on top of the pairwise method. At the end
of this section, we summarize the problems of the pairwise
method. We begin our description of the algorithm by focusing
on data dependences within loop nests because loops are major
parallelization targets. Note that the previous algorithms [5,
17] may be similar to the pairwise method, but they did not
present a solid baseline algorithm for SD3.

3.1 Checking Data Dependences in a Loop Nest

In the big picture, to calculate data dependences in a loop, we
find conflicts between the memory references of the current
loop iteration and the previous iterations. Our pairwise method

3

temporarily buffers all memory references during the current
iteration of a loop. We call these references pending references.
When an iteration ends, we compute data dependences by
checking pending references against the history references,
which are the memory references that appeared from the
beginning to the previous loop iteration. These two types of
references are stored in the pending table and the history
table, respectively. Each loop has its own pending and history
tables instead of having the tables globally. This is needed
to compute data dependences correctly and efficiently while
considering (1) nested loops and (2) loop-carried/independent
dependences. We explained the pairwise algorithm with a loop
example in [15].

The pairwise algorithm handles a loop across function
calls and recursion via the loop stack (See Section 4.3). It
also easily finds dependences between functions. When a
function starts, we assume that a loop, which encompasses
the whole function body with zero trip count, has been started,
such as do {func_body();} while(0);. Then, loop-
independent dependences in this imaginary loop will be de-
pendences in the function.

3.2 Handling Loop-independent Dependences

When reporting data dependences inside a loop, we must
distinguish whether a dependence is loop-independent (i.e., de-
pendences within the same iteration) or loop-carried because
its implication is very different for judging the parallelizability
of a loop. While loop-independent dependences do not prevent
parallelizing a loop by DOALL, loop-carried flow dependences
generally prohibit parallelization except for DOACROSS or
pipelining.

To handle loop-independent dependence, we introduce a
killed address, which is very similar to the kill set in data-
flow analysis. We mark an address as killed once the memory
address is written in an iteration. Then, subsequent accesses
to the killed address within the same iteration are no longer
stored in tables and reported as loop-independent dependences.
We provide an example from SPEC 179.art in [15].

3.3 Problems of the Pairwise Method

The pairwise method needs to store all distinct memory
references within a loop invocation. As a result, the memory
requirement per loop is obviously increased as the memory
footprint is increased. The memory requirement could be even
worse because of nested loops. In the detailed description
of the pairwise method [15], one of the important steps is
propagation. For example, the history references of inner
loops propagate to their upper loops, which is implemented
as merging history and pending tables. Hence, only when the
top-most loop finishes can all the history references within the
loop nest be flushed. Many programs have fairly deep loop
nests (for example, the geometric mean of the maximum loop
depth in SPEC 2006 FP is 12), and most of the execution time
is spent in loops. In turn, whole distinct memory references
often need to be stored along with PC addresses throughout
the program execution. In Section 4, we solve this problem
using compression.

Profiling time overhead is also critical since an extreme
number of memory loads and stores may be traced. We attack
this overhead by parallelizing the data-dependence profiling
itself. We present our solution in Section 5.

4 A MEMORY-EFFICIENT ALGORITHM OF SD3

The basic idea of solving the memory overhead problem is
to store memory references as a compressed format. Since
many memory references show stride patterns, our profiler can
also compress memory references with a stride format (e.g.,
A[a*n + b]). However, a simple compression technique is
not enough to build an efficient data-dependence profiler. We
need to address the following challenges for SD3:

• How to detect stride patterns dynamically (4.1),
• How to perform data-dependence checking with the com-

pressed format without decompression (4.2),
• How to check dependences efficiently with both stride

and non-stride patterns (4.4), and
• How to handle loop nests and loop-independent depen-

dence with the compressed format (4.5, 4.6).

4.1 Dynamic Detection of Strides

We define an address stream as a stride as long as the
stream can be expressed as base + stride distance · n. SD3

dynamically discovers strides and directly checks data depen-
dences with strides and non-stride references. In order to detect
strides, when observing a memory access, the profiler trains
a stride detector for each PC (or any location identifier of a
memory instruction) and decides whether or not the access is
part of a stride. Because the sources and sinks of dependences
should be reported, we have a stride detector per PC. An
address that cannot be represented as part of a stride is called
a point in this paper.

Weak
Stride

Strong
Stride Start First

Observed
Stride

Learned

2

1

2 2

1 1

Fig. 3: Stride detection FSM. The current state is updated on every
memory access with the following additional conditions: ❶ The address
can be represented with the learned stride (stride); ❷ The address
cannot be represented with the current stride (point).

Fig. 3 illustrates that the state transitions in our stride is
learned. When a newly observed memory address can be
expressed by the learned stride, FSM advances the state until it
reaches the StrongStride state. The StrongStride state can toler-
ate a small number of stride-breaking behaviors. For memory
accesses like A[i][j], when the program traverses in the
same row, we will see a stride. When a row changes, however,
there could be an irregular jump in the memory address,
breaking the learned stride. Having Weak/StrongStride states
tolerates a few non-stride accesses so that no point references
are recorded in the table.

If a newly observed memory access cannot be represented
with the learned stride, it goes back to the FirstObserved
state with the hope of seeing another stride behavior. Our
stride detector does not always require strictly increasing or

4

decreasing patterns. For example, a stream [10, 14, 18, 14, 18,
22, 18, 22, 26] is considered a stride 10 + 4 · n (0 ≤ n ≤ 4).
Note that such non-strict strides may cause slight errors when
calculating the occurrence count of data dependences (See
Section 4.7). We do not further combine multiple strides from
a PC into a single stride even if these strides are generated by
two- (or more) dimensional accesses.

4.2 Stride-Based Dependence Checking Algorithm

Checking dependences is trivial in the pairwise method: we
exploit a hash table keyed by memory addresses, which
enables fast searching whether or not a given memory address
is dependent. Unfortunately, the stride-based algorithm cannot
use such simple dependence checking because a stride repre-
sents an interval. We also need to efficiently find dependence
among both strides and points. This section first introduces
algorithms to find conflicts within two strides (or a stride
and a point). Section 4.4 then discusses how SD3 implements
efficient stride-based dependence checking.

The key point in the new algorithm is to find conflicts of
two strides. We attack the problem through two steps: (1)
finding overlapped strides and points and (2) performing a new
data-dependence test, DYNAMIC-GCD, to calculate the exact
conflicts. For the first step, the overlapping test, we employ
an interval tree, which is based on the Red-Black Tree [6].
The test finds all overlapping strides and points in a tree for
a given input.1 Fig. 4 shows an example of an interval tree.
Each node represents either a stride or point. Through a query,
a stride of [86, 96] overlaps with [92, 192] and [96, 196].

[100, 200]

[92, 192]

[96, 196] [80, 80]

[180, 210]

Query: [86, 96]

Overlapped

Fig. 4: Interval tree (based on a Red-Black Tree) for fast overlapping
point/stride searching. Numbers are memory addresses. Black and
white nodes represent Red-Black properties.

The next step is an actual data-dependence test between two
overlapping strides. We extend the well-known GCD (Greatest
Common Divisor) test to the DYNAMIC-GCD TEST in two
directions: (1) we dynamically construct affined descriptors
from address streams to use the GCD test, and (2) we count
the exact number of dependence occurrences (many static-
time dependence test algorithms give a may answer along with
dependent and independent).

1: for (int n = 0; n <= 6; ++n) {
2: A[2*n + 10] = ...; // Stride 1 (Write)
3: ... = A[3*n + 11]; // Stride 2 (Read)
4: }

Fig. 5: A simple example for DYNAMIC-GCD.

To illustrate the algorithm, consider the contrived program
in Fig. 5. We assume that array A is a type of char[] and

1. In the worst case, where all the nodes of an interval tree intersect an
input, linear time is required. On average, an interval tree is still faster than
a simple linear search. Section 4.4 introduces a further optimization.

begins at address 10. Then, two strides will be created: (1)
[20, 32] with the distance of 2 from line 2 and (2) [21, 39]
with the distance of 3 from line 3. DYNAMIC-GCD returns
the exact number of conflicting addresses in the two strides.
The problem is reduced to solving a Diophantine equation: 2

2x+ 20 = 3y + 21 (0 ≤ x, y ≤ 6). (1)

DYNAMIC-GCD, described in Algorithm 1, solves this
equation. We detail the computation steps using Fig. 6:

 delta

Stride1: 20 21 22 23 24 25 26 27 28 29 30
Stride2: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

 low offset high

length

low1 = 20, dist1= 2

low2 = 21, dist2= 3

Fig. 6: Two strides in Fig. 5. Lightly shaded boxes indicate accessed
locations, and black boxes are conflicting locations. The terms (length,
delta, low, high, and offset) are explained in the following paragraphs.

1) Sort and obtain the overlapped bounds and lengths: Let
low1 ≤ low2 ; otherwise swap the strides. In Fig. 6, the
bounds are low = 21, high = 30, and length = 10.

2) Check the existence of the dependence by the GCD test:
We only have the runtime stride information. To use the
GCD test, we transform the strides as if we have the
common array base such as A[dist1 · x + delta] and
A[dist2 ·y], where delta is the distance between low and
the immediately following accessed address in Stride1.
Then, we can use the GCD test. In Fig. 6, delta is 1; the
GCD of 2 and 3 is 1, which divides delta . Therefore,
the strides may be dependent.

3) Count the exact dependences within the bound: To do
so, we first compute the smallest conflicting point in the
bound (24 in Fig. 6) by using EXTENDED-EUCLID [6],
which returns x and y in ax+ by = gcd(a, b), where a
is −dist1 , and b is dist2 . offset is then defined as the
distance between low and this smallest conflicting point,
which is 3 in Fig. 6. Observe that the difference between
two adjacent conflicting points is the least common
multiple of dist1 and dist2 (6 in Fig. 6). Then, we can
count the exact number of dependences: two addresses
(24 and 30) are conflicting. The strides are dependent.

4.2.1 Clarification of Equation (1) and Figure 5

We discussed DYNAMIC-GCD with the code of Fig. 5.
However, this code does not actually create the two strides as
shown in Fig. 6 and Eq. (1). Because the loop is single-level,
the code will only check dependences between two pending
points (the write at line 2 and the read at line 3) against the
history strides as the loop iterates. On i-th iteration (assuming
zero-based index), the two points, 2i + 20 (the write at line
2) and 3i + 21 (the read at line 3), are being checked with

2. A Diophantine equation is an indeterminate polynomial equation in
which only integer solutions are allowed. In our problem, we solve a linear
Diophantine equation such as ax+ by = 1.

5

Algorithm 1 DYNAMIC-GCD

Inputs: Two stride: (low1 , high1 , dist1), (low2 , high2 , dist2)
Output: Return the number of dependences of the two strides.

Require: low1 ≤ low2 ; otherwise swap the strides.
1: Calculate low , high , and length as shown in Fig. 6.
2: delta ← (dist1 − ((low − low1) mod dist1)) mod dist1
3: gcd ← The greatest common divisor of dist1 and dist2
4: if (delta mod gcd) �= 0 then
5: return 0
6: end if
7: x, y ← EXTENDED-EUCLID(−dist1, dist2)
8: lcm ← The least common multiple of dist1 and dist2
9: offset ← ((dist2 · y · delta/gcd) + lcm) mod lcm

10: result ← (length − (offset + 1) + lcm)/lcm
11: return max(0, result)

the two history strides, 2k + 20 and 3k + 21, (0 ≤ k < i).3

Therefore, there is no moment when Eq. (1) is performed.
We intentionally used an incorrect code example to explain
DYNAMIC-GCD easier.

1: for (int i = 0; i <= 7; ++i) {
2: A[2*i + 10] = ...; // Stride 1 (Write)
3: for (int j = 0; j <= 6; ++j) {
4: ... = A[3*j + 11]; // Stride 2 (Read)
5: }
6: }

Fig. 7: A correct program that will shows Fig. 6 and Equation (1).

Fig. 7 contains the correct code that will exactly show the
case of Fig. 6 and Eq. (1). When i is 7 and the inner loop just
finishes, the history stride table of for-j is now propagated
to the pending stride table of for-i. After the propagation
and when the current iteration (i = 7) finishes, we will finally
see the dependence checking depicted in Fig. 6.

4.3 Overview of the Memory-Efficient SD3 Algorithm

The first part of SD3, a memory-efficient algorithm, is pre-
sented in Algorithm 2. The algorithm augments the pairwise
algorithm and will be parallelized to decrease time overhead.
We still use the pairwise algorithm for memory references that
do not have stride patterns. Algorithm 2 uses the following
data structures, which are depicted in Fig. 8:

• POINT: This represents a non-stride memory access from
a PC. This structure has (1) PC address (or location ID); (2)
the number of total accesses from this PC; (3) the pointer
to the next POINT (if any), which is needed because a
memory address can be touched by different PCs; and (4)
miscellaneous information including the read/write mode and
the last accessed iteration number to calculate dependence
distance. Section 6.2.3 introduces optimizations to reduce the
overhead of handling the list structure.

• STRIDE: This represents a compressed stream of memory
addresses from a PC. This structure has (1) the lowest and

3. In our implementation, the very first few points until learning a stride
still exist in the point table. Hence, strictly speaking, there are a few history
points. However, we can safely assume that no such transient point exists to
explain the DYNAMIC-GCD.

Algorithm 2 THE MEMORY-EFFICIENT ALGORITHM

Note: New steps added on top of the pairwise method are underlined.
1: When a loop, L, starts, LoopInstance of L is pushed on

LoopStack.
2: On a memory reference, R, of L’s i-th iteration, check the killed

bit of R. If killed, report a loop-independent dependence, and
halt the following steps.
Otherwise, store R in either PendingPointTable or
PendingStrideTable based on the result of the stride
detection (Section 4.1). If R is a write, set its killed bit.

3: At the end of the iteration, do the stride-based dependence
checking (Sections 4.2 and 4.4). Report any found dependences.

4: After Step 3, merge the pending and history point tables. Also,
merge the stride tables (Section 4.5). Finally, the pending tables,
including killed bits, are flushed.

5: When L terminates, flush the history tables, and pop the
LoopStack. To handle loop nests, we propagate the history
tables of L to the parent of L, if they exist. Propagation is done
by merging the history tables of L with the pending tables of
the parent of L.
Meanwhile, to handle loop-independent dependences, if a mem-
ory address in the history tables of L is killed by the parent of
L (Section 4.6), this killed history is not propagated.

highest addresses; (2) the stride distance; (3) the number of
total accesses in this stride; and (4) the pointer to the next
STRIDE because a PC can create multiple strides that cannot
be combined. Notice that miscellaneous fields such as RW
mode and the last accessed iteration number are stored along
with the PC because these fields are common per PC.

• LoopInstance: This represents a dynamic execution state
of a loop, including statistics and data structures for data-
dependence calculation (the pending and history tables).

• Pending{Point|Stride}Table: These tables cap-
ture memory references in the current iteration of a loop.
PendingPointTable is a hash table, where the key is
memory address for fast conflict checking, and the value is
POINT. PendingStrideTable associates STRIDE with
the originating PC address. Both pending tables have killed bits
to handle loop-independent dependences. These tables employ
DAS-ID (dynamic allocation-site ID) optimization to minimize
the search space in dependence checking. The necessary
structure change is discussed in the following section.

• History{Point|Stride}Table: This holds memory
accesses in all executed iterations of a loop so far. The
structure equals the pending tables except for killed bits.

• LoopStack: This keeps the history of a loop execution
like the callstack for function calls. A LoopInstance is
pushed or popped as the corresponding loop is executed and
terminated. It is needed to calculate data dependences in loop
nests that may have function calls and recursion.

Although the big picture of the algorithm is described,
the stride-based algorithm also needs to address several chal-
lenges. The following four subsections elaborate these issues.

4.4 Optimizing Stride-Based Dependence Checking

Fig. 8 summarizes the table structures and stride-based
dependence-checking algorithm. When the current iteration

6

...

...

...

...
Address

...

...
POINT

...

...

...

...
PC
...

...
STRIDE

Pending Stride Table

Pending Point Table

...

...
Address

...

... <PC, RW, count, last_iter#, ... >RW tW

POINT
l t it # >>l

POINT

...

...
PC
...

...
STRIDE STRIDE

<RW, low/high addr, dist, ... >

History Stride Table

History Point Table

DAS-ID

ePe

1

2 3

4

Fig. 8: Structures of the point and stride tables and four cases of
the dependence checking: This figure shows the moment when the
current iteration finishes. A stride table has an associated interval tree.
The tables support DAS-ID (dynamic allocation-site ID) to minimize the
checking space. Our implementation uses an additional hash table,
where the key is DAS-ID and the value is either point or stride sub-table
that only contains memory references from the same DAS-ID.

finishes, the two pending tables are checked against the two
history tables. Because it has both point and stride tables, the
dependence checking now requires four sub-steps for every
pair of the tables, shown as the four large arrows in the figure.

Arrow ❶ is the case of the pairwise method. Arrows ❷ and
❸ show the case of checking a stride table and a point table.
We take every address in the point table and check the conflict
against the stride table using the associated interval tree. Arrow
❹ is the most complex step. Every stride in the pending stride
table needs to be enumerated and checked against the history
stride table. This enumerating and checking could take a long
time, especially for a deep nested loop. Therefore, in order to
reduce this enumeration and potentially huge search space, we
introduce dynamic allocation-site optimization.

This optimization is based on the fact that a memory access
on a variable or a structure must have its associated allocation
site. Memory accesses from different allocation sites will
never conflict in a correct program. Once allocation sites are
known, we need to check only dependences among memory
accesses within the same allocation site, reducing search space
significantly. In particular, we focus on heap accesses because
they are the main target of the analysis. To obtain allocation
site IDs on heap accesses effectively, we dynamically track
allocated heap regions and issue an ID on each heap region.
The DAS-ID optimization is implemented as follows:

1) Instrument heap functions (e.g., malloc and delete).
2) On heap allocation, retrieve the allocated memory range,

and issue a DAS-ID by an simply increasing counter.
Store this pair of the allocated range and the DAS-ID
into a global table. The table is an interval tree that
allows a fast query of the associated DAS-ID for a given
memory access.

3) On heap deallocation, delete the corresponding node.
4) On load and store, fetch the address, and query the table

to obtain the corresponding DAS-ID of the access. Store
the memory reference to either a point or stride table
reserved for this DAS-ID only.

We finally update the point and stride table structure by
adding an additional hash table layer, where the key type
is DAS-ID and the value is either a point or a stride table.
The valued point and stride tables now only contain memory
references from the same DAS-ID.

4.5 Merging Stride Tables for Loop Nests

In the pairwise method, we propagate the histories of inner
loops to their upper loops to compute dependences in loop
nests. Introducing strides makes this propagation difficult.
Steps 4 and 5 in Algorithm 2 require a merge operation of
a history table and a pending table. Without strides (i.e., only
points), merging tables is straightforward: we simply compute
the union set of the two point hash tables.4

On the other hand, merging two stride tables is not trivial.
A naive solution is to just concatenate two stride lists. If this
is done, the number of strides could be bloated, resulting in
increased memory consumption. Alternatively, we try to do
stride-level merging rather than a simple stride-list concatena-
tion. An example is illustrated in Fig. 9.

+
= PC [10, 130] +10 36

PC [10, 100] +10 24 PC [30, 130] +10 12

Fig. 9: Two stride lists from the same PC are about to be merged. The
stride ([10, 100], +10, 24) means a stride of (10, 20, ..., 100) and 24 total
accesses in the stride. These two strides have the same stride distance.
Thus, they can be merged, and the number of accesses is summed.

Naive stride-level merging requires quadratic time complex-
ity. Here, we again exploit the interval tree for fast overlapping
testing. Nonetheless, we observed that tree-based searching
still could take a long time if there is no possibility of stride-
level merging. To minimize such waste, the profiler caches the
result of the merging test in history counters per PC. If a PC
shows very little chance of having stride merges, SD3 skips
the merging test and simply concatenates the lists.

4.6 Handling Killed Addresses in Strides

We discussed that maintaining killed addresses is very impor-
tant to distinguish loop-carried and independent dependences.
The pairwise method prevented killed addresses from being
propagated to further steps (to the next iteration). This step
becomes complicated with strides because strides could be
killed by the parent loop’s strides or points.

1: for (int i = 0; i < N; ++i) { // Loop_1
2: A[rand() % N] = 10; // Random kill
3: for (int j = i; j >= 0; --j) // Loop_3
4: A[j] = i; // A write-stride
5: for (int k = 0; k < N; ++k) // Loop_5
6: sum += A[k]; // A read-stride
7: }

Fig. 10: A stride at line 6 can be killed by either a point at line 2 or a
stride at line 4.

Fig. 10 illustrates this case. A stride is generated from the
instruction at line 6 when Loop_5 is being profiled. After fin-
ishing Loop_5, its HistoryStrideTable is merged into
Loop_1’s PendingStrideTable. At this point, Loop_1
knows the killed addresses from lines 2 and 4. Thus, the
stride at line 6 can be killed by either (1) a random point

4. The point table merging must perform the union of two PC-lists, each
of which is from the pending tables and from history tables, respectively. To
make PC-list merging faster, we employ PC-set optimization (Section 6.2.3).

7

write at line 2 or (2) a write stride at line 4. We detect such
killed cases when the history strides are propagated to the
outer loop. Detecting killed addresses is essentially identical
to finding conflicts between strides and points. We use the
same dependence-checking algorithm.

Interestingly, after processing killed addresses, a stride
could be one of three cases: (1) a shrunk stride (the range
of stride addresses is reduced), (2) two separate strides, or (3)
complete elimination. For instance, a stride [4, 8, 12, 16] can
be shortened by killed address 16. If a killed address is 8, the
stride is divided.

4.7 Lossy Compression in Strides

Our stride-based algorithm essentially uses compression,
which can be either lossy or lossless. If we only consider
a strictly increasing or decreasing stride, SD3 guarantees the
perfect correctness of data-dependence profiling, which means
SD3 results are identical to the pairwise method results.

Section 4.1 discussed that a stride like [10, 14, 18, 14, 18,
22, 18, 22, 26] is also considered a stride in our implemen-
tation. In this case, our stride format cannot perfectly record
the original characteristic of the stream. We only remember
two facts: (1) a stride of 10 + 4 · n, (0 ≤ n ≤ 4) and (2)
the total number of memory accesses in this stride is 9. The
stride format cannot precisely remember the occurrence count
of each memory address. Such lossy compression may cause
slight errors when DYNAMIC-GCD calculates.

Suppose that this stride has a conflict at address 26. Address
26 is accessed only one time, but this information has been
lost. For the compensation, we add a correction on the result
of DYNAMIC-GCD by taking the average occurrence count
of each reference: �9/5� = 2, the total accesses in the stride
divided by the number of distinct addresses in the stride.

Nonetheless, such error does not noticeably affect the
usefulness of our approach because we still guarantee the
correctness of the existence of data dependences.

5 AN TIME EFFICIENT ALGORITHM OF SD3

5.1 Overview of the Algorithm

The time overhead of data-dependence profiling is very high.
A typical method to reduce the time overhead would be to
use sampling techniques. Unfortunately, simple sampling tech-
niques are not desirable because they mostly trade off accurate
results (for a given input) for low overhead. For example, a
dependence pair could be missed due to sampling, but this pair
can prevent parallelization in the worst case. We instead attack
the time overhead by parallelizing data-dependence profiling
itself. In particular, we discuss the following problems:

• Which parallelization model is most efficient?
• How do the stride algorithms work with parallelization?

5.2 Parallelization Model of SD3: A Hybrid Approach

We first survey parallelization models of the profiler that
implements Algorithm 2. Before the discussion, we need to
explain the structure of our profiler briefly. Our profiler before
parallelization is composed of the following three steps:

1) Fetching events from an instrumented program: Events
include (1) memory events: memory reference informa-
tion such as effective address and PC, and (2) loop
events: beginning/iteration/termination of a loop, which
is essential to implement Algorithm 2. Our profiler is an
online tool. Events are processed on-the-fly.

2) Loop execution profiling and stride detection: We collect
statistics of loop execution (e.g., trip count) and train the
stride detector on every memory instruction.

3) Data-dependence profiling: Algorithm 2 is executed.

To find an optimal parallelization model for SD3, three
parallelization strategies are considered: (1) task-parallel, (2)
pipeline, and (3) data-parallel. Our approach is using a hybrid
model of pipeline and data-level parallelism.

With the task-parallel strategy, several approaches could be
possible. For instance, the profiler may spawn concurrent tasks
for each loop. During a profile run, before a loop is executed,
the profiler forks a task that profiles the loop. This is similar to
the shadow profiler [23]. This approach is not easily applicable
to the data-dependence profiling algorithm because it requires
severe synchronization between tasks due to nested loops. We
do not take this approach.

Pipelining enables each step to be executed on a different
core in parallel. We have three steps, but the third step, the
data-dependence profiling, is the most time-consuming step.
Although the third step determines the overall speedup, we
still can hide computation latencies of the first (event fetch)
and the second (stride detection) steps from pipelining.

Regarding the data-parallel method, first notice that SD3

itself is embarrassingly parallel. Checking data dependences
for a particular address requires only information on this
address; no information from the other addresses is needed. We
take a SPMD (Single Program Multiple Data) style to exploit
this data-level parallelism. A set of task perform Algorithm
2 concurrently, but each task only processes a subset of the
entire input. This data-parallel method is the most scalable
one and does not require any synchronizations except for the
trivial final result reduction step. We also use this model.

Event
Fetching

Event
Distribution

Loop
Profiling

Dependence
Profiling

Task
Task
Task

Pipeline Stage 1 Pipeline Stage 2

Step 1 Step 1* Step 2 Step 3

Fig. 11: SD3 exploits both pipelining (2-stage) and data-level parallelism.
Step 1* is augmented for the data-level parallelization.

From this survey, our solution is a hybrid model: we
basically exploit pipelining, but the dependence profiling step,
which is the longest, is further parallelized by a SPMD style.
Fig. 11 summarizes the parallelization model of SD3. To obtain
even higher speedup, we may exploit multiple machines (See
details in Section 6.2). However, there are several issues for
an efficient parallelization, which will be now discussed.

5.3 Event Distribution for Parallel Processing

The event distribution step is introduced in stage 1. For the
SPMD parallelization at stage 2, we need to prepare inputs

8

htb]

Task0 Task1 Task2 … TaskM-1 Task0 Task1 …

0 1 2k 2 2k … (M-1) 2k M 2k (M+1) 2k …
Address

Space:

task_id = (Memory_Address >> k) % M

Scheduler
Task0 0
Task1

...
TaskM-1

Core0 0
Core1

...
CoreN-1

Fig. 12: Data-parallel model of SD3 with the address-range size of 2k, M
tasks, and N cores: Address space is divided in an interleaved manner.
The above formula is used to determine the corresponding task id for a
memory address. In our experimentation, the address-range size is 128
bytes (k = 7), and the number of tasks is the same as the number of
cores (M = N).

for each task. In particular, we divide the address space in an
interleaved fashion for better speedup, as shown in Fig. 12.

The entire address space is divided every 2k bytes, and each
subset is mapped to M tasks in an interleaved manner. Each
task analyzes only the memory references from its own range.
A thread scheduler then executes M tasks on N cores.

L L L
Task0

L L L
Task1

L L L
Task2

L L L

Loop eventsL Memory events for Task0 Task1 Task2

Fig. 13: An example of the event distribution step with three tasks: Loop
events are duplicated for all tasks, while memory events are divided
depending on the address-range size and the formula of Fig. 12.

The event distribution, as depicted in Fig. 13, is not a
simple division of the entire input events: Memory events are
distributed by the interleaving. By contrast, loop events must
be duplicated for the correctness of the parallelized SD 3 (i.e.,
the result should be identical to the serial SD3) because the
steps of Algorithm 2 are triggered on a loop event.

5.4 Strides in Parallelized SD3

Our stride-detection algorithm and DYNAMIC-GCD need a
revision in the parallelized SD3. Stride patterns are detected
by observing a stream of memory addresses. In the parallelized
SD3, however, each task can only observe memory addresses
in its own address range. This problem is illustrated in Fig. 14.

Address Space

Stride A:

Not observed by Task0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Add e S a e
Task0 Task1 ... Task2 Task0 ...

Fig. 14: A single stride can be broken by interleaved address ranges.
Stride A will be seen as two separate strides in Task0 with the original
stride-detection algorithm.

Here, the address space is divided for three tasks, with a
range size of 4 bytes. Consider a stride A with a range of [10,
24] and a stride distance of 2. Task0 can only see addresses
in the ranges of [10, 14) and [22, 26). Therefore, Task 0 will
conclude that there are two different strides at [10, 12] and
[22, 24] instead of only one stride. These fragmented strides
dramatically bloat the number of strides.

To solve this problem, the stride detector of a task assumes
that any memory access pattern is possible in out-of-my-region
so that fragmented strides can be combined into a single stride.
In this example, the stride detector of Task0 assumes that the
following memory addresses are accessed: 14, 16, 18, and
20. Then, the detector will create a single stride. Even if
the assumption is wrong, the correctness is not affected. To
preserve the correctness, when performing DYNAMIC-GCD,
SD3 excludes the number of conflicts in out-of-my-region.

5.5 Details of the Data-Parallel Model

5.5.1 Choosing a good address-range size

A key point in designing the data-parallel model is to obtain
higher speedup via good load balancing. However, the division
of the address space inherently creates a load imbalance
problem, as memory accesses often show non-uniform locality.
Obviously, having too small or too large an address range
would worsen this problem. Hence, we use an interleaved
division as discussed and then need to find a reasonably
balanced address-range size. According to our experiment (not
shown in the paper), as long as the range size is not too small
or too large, address-range sizes from 64 to 256 bytes yield
well-balanced workload distribution. In our implementation,
we choose 128 bytes.

5.5.2 Choosing an optimal number of tasks

Even when taking the interleaved approach, we cannot avoid
the load imbalance problem. To address this issue, we attempt
to create sufficient tasks and employ the work-stealing sched-
uler [3], that is, exploiting fine-granularity task parallelism.
At a glance, this approach would yield better speedup, but
our data negated our hypothesis (not shown in the paper). We
observed that no speedup was gained using this approach.

There are two reasons for this: First, even if the number of
the memory events is reduced, the number of strides may not
be proportionally reduced. For example, in Fig. 14, despite the
revised stride-detection algorithm, the total number of strides
for all tasks is three; on a serial version of SD3, the number of
strides would have been one. Hence, having more tasks may
increase the overhead of storing and handling strides, even-
tually resulting in poor speedup. Second, the overhead of the
event distribution would be significant as the number of tasks
increases. Recall again that loop events are duplicated, while
memory events are distributed. This restriction makes the event
distribution a complex and memory-intensive operation. On
average, for SPEC 2006 with the train inputs, the ratio of the
total size of loop events to the total size of memory events is
8%. Although the time overhead of processing a loop event
is much lighter than that of a memory event, the overhead
of transferring loop events could be serious as the number of
tasks is increased.

Therefore, we let the number of tasks be identical to
the number of cores. Although data-dependence profiling is
embarrassingly parallel, the mentioned challenges, handling
strides and distributing events, hinder an optimal workload
distribution and an ideal speedup.

9

6 IMPLEMENTATION

Building a profiler that implements SD3 has many imple-
mentation challenges. We build SD3 using both Pin [21], a
dynamic binary-level instrumentation toolkit, and LLVM [19],
a compiler framework. We discuss the motivation for using Pin
and LLVM and several important issues.

6.1 Basic Architecture

Our profiler consists of a tracer and an analyzer, a typical
producer and consumer architecture:

• Tracer: This instruments a program, captures runtime ex-
ecution traces (i.e., memory events and loop events), and
transfers the traces to the analyzer via shared memory. A
tracer is built on either Pin or LLVM.

• Analyzer: This takes events from the tracer and performs
the SD3 algorithm, which is orthogonal to tracers.

Our profiler must be an online tool. Because the majority
of loads and stores could be instrumented, generated traces
could be extremely large, up to an order of 10 TB. We
cannot simply use an offline approach with such traces. An
example of such an offline approach would be storing and
compressing events (e.g., using bzip) and then decompressing
and analyzing the events. This approach is not effective at
all because compressing/decompressing traces takes most of
the time. One concern of this online approach would be the
overhead of inter-process communication. We observed that
the average event transfer rate between the two processes was
approximately 1 - 3 GB/s, which can be sufficiently handled by
modern computers. The size of the execution event is 12 bytes
(on x86-64), and events are transferred without compression.

This separation of tracer and analyzer results in two signif-
icant benefits. First, pipeline parallelism, explained in Section
5.2, is easily achieved. Second, the analyzer can be reused
by different tracers. We separately implement tracers based
on instrumentation mechanisms. We also define an abstracted
communication layer between the single analyzer and multiple
tracers, regardless of instrumentation toolkits.

6.2 Implementation of Analyzer

The analyzer first implements the data structures described in
Section 4.3 and Algorithm 2, and we then parallelize using
Intel Threading Building Block (TBB) [13]. To obtain even
better parallelism, we extend our profiler to work on multiple
machines, using an MPI-like execution model [10]. The same
tracer, analyzer, and application are running in parallel on
multiple machines, but each machine has an equally divided
workload. This is a simple extension of our data-parallel model
but applies across different machines.

6.2.1 Importance of programming techniques
Many programming techniques are extremely essential to
improve the performance of the pairwise and SD 3 significantly,
other than the key algorithms. Specialized data structures
should be implemented rather than using general data struc-
tures in C++ STL. Customized memory allocation is also
critical because the memory reference structures (POINT and
STRIDE) are frequently allocated and removed.

6.2.2 False Positive and False Negative Issues

For the implementation of the analyzer, we should consider
the false positive (reported as having dependences, but it was
a false alarm) and false negative (no dependences reported,
but it has a dependence) issues in data-dependence profiling.

False negatives can occur when not all code can be executed
with a specific input. Section 7.4 discusses this problem. False
positives can also occur if we take a larger granularity in
the memory instruction instrumentation, such as 8-byte or
cache-line granularity rather than a byte granularity. Data-
dependence profiling in the speculative multithreading domain
can use a large granularity to minimize overhead, but this
approach suffers from more false positive dependences [5].
In our implementation, the stride-based approach does not
suffer from false positives. We correctly handle the size of
the memory access (e.g., whether char, int, or double)
in the stride-based data structures and DYNAMIC-GCD.

For the pairwise method in which hash tables are keyed by
addresses, we always use 1-byte granularity, which does not
suffer from any false positives. False negatives, however, can
occur in a very unusual case, shown in Fig. 15.

1: void* raw = malloc(1024);
2: double* pd = (double*)raw;
3: char* pc = (char*)raw;
4: pd[0] = 1.0; // Writing 8 bytes
5: char c = pc[2]; // Reading only part of pd[0];

Fig. 15: A false negative case with 1-byte granularity: both pd and pc
are the alias of raw, but their access types are different.

Even if there is an 8-byte write at line 4, the 1-byte
granularity policy records only the first byte of the access.
The read from line 5 results in a missing data dependence.
We believe such a case is very unlikely to occur in well-
written code. This problem can be resolved by our DAS-ID
optimization. The heap accesses at line 4 and 5 both have the
same allocation site at line 1. We then easily detect aliased
accesses by the different access types.

6.2.3 PC-set optimization for the Pairwise Method

To reduce both time and space overhead in the pairwise
method, we introduce PC-set optimization. Recall that SD3

still uses the pairwise method when a memory access does
not show stride behavior. As discussed in Section 4.5, the
pairwise method merges two point tables when the current
iteration finishes and when an inner loop is terminated.

Point Table (w/o PC-set) P i t T bl

100
Address

...
Point Table (with PC-set)

Set_3, RW, 6 PC_a, W, 4 PC_b, R, 2

P i t T bl

100
Address

... <PC, R/W, occurrence> <PC-set, RW, occurrence>

Set_1
Set_2
Set_3

PC-set Table

PC_a, W

PC_b, R
PC_a, W PC_b, R

Set_1 ∪ Set_2 = Set_3
…
…

Union-Computation Cache

Fig. 16: PC-set optimization for fast PC-list merging. A PC list can be
represented as a single PC-set ID, resulting in saving the memory. PC-
list merging can also be accelerated by a cache.

10

The same memory address may be accessed by multiple
PC locations. Since we report PC-wise sources and sinks of
dependences, each entry of a point table must have a PC list,
which was implemented as a list of POINT. Having a PC list
creates two challenges: (1) space overhead and (2) overhead
on merging two PC lists (computing a union of two lists).
Fortunately, we observed that the number of distinct PC lists
for SPEC 2006 was not significant: the geometric mean is only
6,242. We also learned that most of the union computation was
repeated.

Hence, we introduce a global PC-set table that remembers
all observed distinct PC lists and a cache for the union
computation. These two data structures, shown in Fig. 16,
not only save the total memory consumption, but also avoid
excessive computation time. The hit ratio of the union cache
is 95% on average.

This PC-set optimization causes another lossy compression
like the error discussed in Section 4.7. As illustrated in Fig. 16,
introducing a PC set loses the occurrence count per each PC;
the total occurrence count for the single PC set is just saved.
Hence, when reporting the frequency of the data dependence,
the pairwise method may have a minor error. Again, no error
exists on judging the existence of dependences.

6.3 Implementation of Tracers

We first implemented SD3 on Pin [15]. We discuss challenges
for Pin-based SD3 and the motivations for LLVM-based SD3.

6.3.1 Issues in a Pin-based Tracer

A Pin-based tracer enables dependence profiling at the dy-
namic and binary levels. This approach broadens the ap-
plicability of the tool compared to a compiler and source-
code-level approach. A dynamic instrumentation does not
require a recompilation of a profile. This is a great benefit
if the application does not have full source code that requires
different and complex tool chains.

The downside of the Pin-based approach is that additional
binary-level static analysis is needed to recover control flow
graphs and loop structures, which is difficult to implement.
For example, recovering indirect branches (e.g., jump tables
for switch-case) and pinpointing the correct locations of loop
entries and exits are challenges in binary-level analysis.

Regarding the instrumentation of loads and stores, an x86
binary executable typically has a lot of artifacts from push/pop
in stacks and system function calls. Without eliminating such
redundant loads and stores, results of a Pin-based profiler
would have a lot of dependences that are not useful for the
parallelization hints. Some loads and stores also do not need
to be instrumented if their dependences can be identified at
static time, notably inductions and reductions. Filtering such
loads and stores selectively is also difficult. These challenges
motivate the use of an LLVM-based SD3.

6.3.2 Issues in an LLVM-based Tracer

Using compiler-based instrumentation such as LLVM may
address the issues in the Pin-based tracer. LLVM provides
a very rich static-analysis infrastructure, including correct

control flows and loop structures. Furthermore, LLVM solves
many challenges in binary-level instrumentation. For example,
skipping inductions and reductions is relatively easy to imple-
ment since all the data-flow information is retained, unlike
with binaries. Further static analysis may be performed before
dynamic profiling to decrease the profiling overhead [7]. For
example, all memory loads and stores whose data dependences
can be identified at static time could be excluded as profiling
candidates. Our implementation in this paper skips induction
and reduction variables (both basic and derived ones) and some
read-only accesses.

The greatest downside of using an LLVM-based tracer is
that it requires recompilation. Recompiling an application
with instrumentation code is not always easy. It sometimes
requires modifications in compiler tool chains and compiler
driver code. The analyzer needs some information from the
instrumentation phase, such as a list of instrumented loops
and memory instructions. As the instrumentation phase is
separated from the runtime profiling, such information should
be transferred via a persistent medium like a file.

7 EXPERIMENTAL RESULTS

7.1 Experimentation Methodology

We use 22 (out of 29) SPEC CPU2006 benchmarks [2] to
report runtime overhead by running the entire execution of
benchmarks with the reference input. Seven SPEC benchmarks
were not profiled successfully due to several implementation
issues. Among the successfully profiled 22 benchmarks, we
observed that a few loops from functions that parse input
files caused runtime errors due to incorrect binary-level loop
instrumentation. We excluded such erroneous loops.

We should note that we intentionally used highly optimized
binaries (-O3 of Intel compilers) in the experimentation to
reduce excessive profiling time overhead. It is true that a result
from a highly optimized binary is virtually useless when we
want to map the result to the source code by using debugging
information. Many variables, statements, loops, and functions
could be moved or eliminated by aggressive optimization. In
practice, one should profile an unoptimized binary to obtain
a human-readable result. However, the difference of native
execution time between unoptimized and optimized binaries
could be 10 times. The difference in memory overhead is not
worse as the time overhead because memory accesses to local
stacks are mostly optimized. The purpose of the experimenta-
tion is to measure the overhead, not to see actual dependence
profiling results. For the later purpose, we recommend using
unoptimized code with the train or test inputs.

We instrument all memory loads and stores except for
certain types of stack operations and corner cases. Our profiler
collects details of data-dependence information as enumerated
in Section 2. We profile the 20 hottest loops (based on the
number of executed instructions) and their inner loops. For
comparing the overhead, we use the pairwise method. We
also use seven OmpSCR benchmarks [1] to evaluate the input-
sensitivity problem.

Our experimental results were obtained on machines with
Windows 7 (64-bit), 8-core with Hyper-Threading Technology,

11

0.0
2.0
4.0
6.0
8.0
10.0

M
em

or
y

O
ve

rh
ea

d
(G

B)

Native

Pairwise

SD3(1-Task)

SD3(8-Task)

×

Fig. 17: Absolute memory overhead for SPEC 2006 with optimized (-O3) binaries and the reference inputs: 21 out of 22 benchmarks (✕ mark) need
more than 12 GB in the pairwise method. The benchmarks natively consume 158 MB memory on average.

0

50

100

150

200

Sl
ow

do
w

ns
 (T

im
es

) SD3(Serial)

SD3(8-Task)

SD3(32-Task)

Infinite CPUs

380× 397× 488× 391× 210× 845× 405× 323× 299× 497× 218× 319× 543× 521× 212× 260× 289×

Fig. 18: Slowdowns (against the native run) for SPEC 2006 with optimized (-O3) binaries and the reference inputs: From left to right, (1)SD3 (1-
task on 1-core), (2) SD3 (8-task on 8-core), (3) SD3 (32-task on 32-core), and (4) estimated slowdowns of infinite CPUs. For all experiments, the
address-range size is 128 bytes. The geometric mean of native runtime is 488 seconds on Intel Core i7 3.0 GHz.

and 16 GB main memory. Memory overhead is measured in
terms of the peak physical memory footprint. For results of
multiple machines, our profiler runs in parallel on multiple
machines but only profiles distributed workloads. We then take
the slowest time for calculating speedup.

Currently, the LLVM implementation cannot instrument
Fortran programs. The results in this paper are from the Pin-
based profiler, but the LLVM-based profiler shows a similar
performance.

7.2 Memory Overhead of SD3

Fig. 17 shows the absolute memory overhead of SPEC 2006
with the reference inputs. The memory overhead includes ev-
erything: (1) native memory consumption of a benchmark, (2)
instrumentation overhead, and (3) dynamic profiling overhead.
Among 22 benchmarks, 21 benchmarks cannot be profiled by
the pairwise method on a 16 GB memory system. Sixteen out
of 22 benchmarks consumed more than 12 GB even with the
train inputs.

Fig. 19 shows the memory consumption of the pairwise
method in every second for 433.milc, 434.zeusmp, 435.lbm,

0
1
2
3
4
5
6
7
8
9
10

0 100 200 300 400 500

M
em

or
y

O
ve

rh
ea

d
(G

B
)

Time (Seconds)

433.milc

436.cactusADM

470.lbm

434.zeusmp

Fig. 19: Memory overhead of the pairwise for 4 SPEC 2006 benchmarks.

and 436.cactusADM. Within 500 seconds, these four bench-
marks reached 10 GB memory consumption. We do not even
know how much memory would be needed to complete the
profiling. We also tested 436.cactus and 470.lbm on a 24 GB
machine, but still failed. Simply doubling memory size could
not solve this problem.

SD3 successfully profiled 22 benchmarks on a 12GB ma-
chine although a couple of benchmarks needed 7+ GB. For
example, while both 416.gamess and 436.cactusADM demand
12+ GB in the pairwise method, SD3 requires only 1.06 GB
(just 1.26× of the native overhead) and 1.02 GB (1.58×
overhead), respectively. The geometric mean of the memory
consumption of SD3 (1-task) is 2113 MB, while the overhead
of native programs is 158 MB. Although 483.xalancbmk
needed more than 7 GB, we can conclude that the stride-based
compression is very effective.

Parallelized SD3 naturally consumes more memory than the
serial version of SD3, 2814 MB (8-task) compared to 2113
MB (1-task) on average. The main reason is that each task
needs to maintain a copy of the information of the entire loops
to remove synchronization. Furthermore, the number of total
strides is generally increased compared to the serial version
since each task maintains its own strides. Nonetheless, SD3

still reduces memory consumption significantly compared to
the pairwise method.

7.3 Time Overhead of SD3

The time overhead results of SD3 are presented in Fig. 18. The
time overhead includes both instrumentation-time analysis and
runtime profiling overhead. The instrumentation-time over-
head, such as recovering loops, is quite small. For SPEC 2006,
this overhead is only 1.3 seconds on average. The slowdowns
are measured against the execution time of native programs.

12

As discussed in Section 5.5, the number of tasks is the same
as the number of cores in the experimentation.

As shown in Fig. 18, serial SD3 shows a 289× slowdown
on average, which is not surprising given the amount of
computations on every memory access and loop execution.
The overhead could be improved by implementing better static
analysis that allows us to skip instrumenting loads and stores
that have proved not to create any data dependences. As dis-
cussed in Sections 6.2.1 and 6.2.3, implementation techniques
are critical to boost the baseline performance. Otherwise, a
profiler could easily show a thousand slowdown.

When using eight tasks on eight cores, parallelized SD3

shows a 70× slowdown on average, 29× and 181× in the best
and worst cases, respectively. We also measure the speedup
with four eight-core machines (total 32 cores). On 32 tasks
with 32 cores, the average slowdown is 29×, and the best
and worst cases are 13× and 64×, respectively.Calculating
the speedups over the serial SD3, we achieve 4.1× and 9.7×
speedups on eight and 32 cores, respectively.

Although the data-dependence profiling stage is embarrass-
ingly parallel, our speedup is lower than the ideal speedup
(4.1× speedup on eight cores). The first reason is that we
have an inherent load imbalance problem. The number of tasks
is equal to the number of cores to minimize redundant loop
handling and event distribution overhead. However, the address
space is statically divided for each task, and there is no simple
way to change this mapping dynamically. Second, with the
stride-based approach, the processing time for handling strides
is not necessarily decreased in the parallelized SD3.

We also estimate slowdowns with infinite CPUs. In such
cases, each CPU observes only conflicts from a single memory
address, which is extremely low. Therefore, the ideal speedup
would be very close to the runtime overhead without the data-
dependence profiling. Some benchmarks, like 483.xalancbmk
and 454.calculix, show 17× and 14× slowdowns even without
the data-dependence profiling. The large overhead of the loop
profiling mainly comes from frequent loop start/termination
and deeply nested loops.

7.4 Input Sensitivity of Data-Dependence Profiling

One of the concerns of using a data-dependence profiler as a
programming-assistance tool is the input-sensitivity problem.
We quantitatively measure the similarity of data-dependence
profiling results from different inputs. A profiling result has
a list of discovered dependence pairs (source and sink).
We compare the discovered dependence pairs from a set of
different inputs. We compare only the top 20 hottest loops
and ignore the frequency of the data-dependence pairs. We
define similarity as follows, where Ri is the i-th result (i.e., a
set of data-dependence pair):

Similarity = 1−∑N
i=1

|Ri−
⋂N

k=1 Rk|
|Ri|

A similarity of 1 means all sets of results are exactly the
same (no differences in the existence of discovered data-
dependence pairs, but not frequencies). We first tested eight
benchmarks in the OmpSCR [1] suite. All of them are small

numerical programs, including FFT, LUReduction, and Man-
delbrot. We tested them with three different input sets by
changing the input data size or iteration count, but the input
sets are long enough to execute the majority of the source
code. We found that the profiling results of OmpSCR were
not changed by different input sets (i.e., Similarity = 1).

0.95
0.96
0.97
0.98
0.99
1.00

40
1.
bz
ip
2

42
9.
m
cf

44
5.
go

bm
k

45
6.
hm

m
er

45
8.
sje

ng
46
2.
lib

qu
an

46
4.
h2

64
re
f

47
1.
om

ne
t

48
3.
xa
la
n

41
6.
ga
m
es
s

43
3.
m
ilc

43
4.
ze
us
m
p

43
5.
gr
om

ac
s

43
6.
ca
ct
us

43
7.
le
sl
ie
3d

44
4.
na

m
d

44
7.
de

al
II

45
3.
po

vr
ay

45
4.
ca
lc
ul
ix

46
5.
to
nt
o

47
0.
lb
m

48
2.
sp
hi
nx

3
G
EO

M
EA

N

Si
m

ila
ri

ty

Fig. 20: Similarity of the results from different inputs: 1.00 means all
results were identical (not the frequencies of dependence pairs).

Fig. 20 shows the similarity results of SPEC 2006, which
are obtained from the reference and train input sets. Our data
show that there are very high similarities (0.98 on average) in
discovered dependence pairs. Recall that we compare the sim-
ilarity for only frequently executed loops. Some benchmarks
show a few differences (as low as 0.95), but we found that
the differences were highly correlated with the executed code
coverage. In this comparison, we minimize x86-64 artifacts
such as stack operations in functions.

A related work also showed a similar result. Thies et al.
used a dynamic analysis tool to find pipeline parallelism in
streaming applications with annotated code [28]. Their results
showed that memory dependences between pipeline stages are
highly stable and predictable over different inputs.

7.5 Discussion: Do Simple Samplings Work?

Using sampling would be an obvious option to limit the
overhead of dependence profiling [5]. However, simple sam-
pling techniques are inadequate for the purpose of our data-
dependence profiler for two reasons: (1) Any sampling tech-
nique may introduce incorrect results, either false negatives or
false positives (See Section 6.2.2); (2) Sampling may not be
effective to solve the overhead problem.
• Correctness: Some usage models of the dependence profil-
ing can tolerate inaccuracy, notably thread-level data specula-
tion (TLDS) [5, 20, 27]. The reason is that in TLDS, incorrect
speculations can be recovered by the rollback mechanism in
hardware. However, when using dependence profiling to guide
programmer-assisted parallelization for conventional multicore
processors, we claim that the profile should be as correct as
possible. In this context, “correctness” means that a profiling is
correct for only a given input. We cannot prove the correctness
for all possible inputs using a dynamic approach.

Fig. 21 illustrates a case where a simple sampling could
make a wrong decision on parallelizability prediction. The
loop at line 307 of the figure is mistakenly reported as
potentially parallelizable. The reason is that the work function
that generated dependences was called just one time: at the end
of the iteration. A simple sampling technique that randomly
samples iterations in a loop may make this error.

13

307: for(item = 0 ; item < group->n_scheditems; item++)
308: {
309: switch(group->scheditems[group->order[item]].type)
310: {
311: case sched_function: // call work function
...
322: case sched_group: // call work function
...
338: }
339: }

Fig. 21: 436.cactusADM, ScheduleTraverse.c

• Overhead: A simple sampling technique also does not solve
the overhead problem inherently. To demonstrate the overhead
problem, we compare the following three simple sampling
techniques and SD3 for the Jacobi benchmark in OmpSCR:
(1) Burst sampling: Dependence profiling is triggered
every N instructions and then lasts for M consecutive memory
instructions. We fix N to be 5,000 and M to be 1,000 in this
evaluation; (2) Early stopping: For any given loop, we
profile up to N% of its total invocation count and M% of its
total iteration count; (3) Major-loops only: We perform
dependence profiling only on hot loops (at least 5% of the total
execution time).

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000
Input Parameter (Matrix Dimension)

Parallel Advisor
+ Major Loops Only
+ 100%/10%-Invo/Iter
+ 10%/100%-Invo/Iter
+ 10%/10%-Invo/Iter
Burst Sampling
SD3
Native

SD3

M
em

or
y

O
ve

rh
ea

d
(G

B)

Fig. 22: Memory overhead for Jacobi in OmpSCR by different profiling
mechanisms and policies.

Fig. 22 shows the results. When the matrix is 3000 by 3000,
the pairwise method requires more than 12 GB of memory.
Even when the samplings are used, the memory overhead is
still in the order of GBs. In contrast, SD3 requires only 50
MB because it can compress most of the memory references.

Of course, sophisticated and adaptive sampling techniques
could solve the overhead problem. To the best of our knowl-
edge, no advanced sampling is devised to reduce the overhead
while maintaining the correctness. Most sampling techniques
used in TLDS are not desirable for our purpose.

8 RELATED WORK

8.1 Dynamic Data-Dependence Analysis
One of the early works that used data-dependence profiling to
help parallelization is Larus’ parallelism analyzer pp [17]. The
profiling algorithm is similar to the evaluated pairwise method
but suffers from huge memory and time overhead. Tournavitis
et al. [30] proposed a dependence profiling mechanism to
overcome the limitations of automatic parallelization. They
also used a pairwise-like method and did not discuss the
overhead problem explicitly.

8.2 Data-Dependence Profiling for Speculation

As discussed in Section 7.5, the concept of dependence pro-
filing has been used for speculative hardware-based optimiza-
tions. TLDS compilers speculatively parallelize code sections

that do not have much data dependence. Several methods have
been proposed [5, 8, 20, 27, 34], and many of them employ
sampling or allow aliasing to reduce overhead. All of these
approaches do not have to give accurate results like SD 3,
assuming speculative hardware.

8.3 Reducing Overhead of Dynamic Analysis

Shadow Profiling [23], SuperPin [33], PiPA [37], and Ha et
al. [11] employed parallelization techniques to reduce the time
overhead of instrumentation-based dynamic analyses. Since
all of them focus on a generalized framework, they only ex-
ploit task-level parallelism by separating instrumentation and
dynamic analysis. SD3 further exploits data-level parallelism
while reducing the memory overhead at the same time.

A number of techniques that compress dynamic profiling
traces as well as standard compression algorithms like bzip
have been proposed to save memory space [18, 22, 25, 35].
Their common approach is to use specialized data structures
and algorithms to compress instructions and memory accesses
that show specific patterns. METRIC [22], a tool to find
cache bottlenecks, also exploits the stride behavior like SD3.
While METRIC only presents the compression algorithm, SD3

introduces a number of algorithms that effectively calculate
data dependence with the stride and non-stride formats.

9 APPLICATIONS OF SD3 ALGORITHM

In this section, we demonstrate the usefulness of SD3 with our
proposed profiling tool, Prospector [14]. Prospector is built on
top of SD3. It performs loop and data dependence profiling
and provides guidelines for how programmers can manually
parallelize their applications.

We demonstrate an actual usage of Prospector with SPEC
179.art, summarized in Fig. 23. Although 179.art could be
easily parallelized by TLS techniques, production compilers
cannot automatically parallelize it. A typical programmer who
does not know the algorithm detail would easily spend a day
or more on parallelizing. Table 1 shows the result with the
train input. The detailed steps are as follows:

• Prospector finds that the loop scan_recognize:5 in
Fig. 23 is the hottest loop with 79% execution coverage, only
one invocation, and 20 iterations. Every iteration has almost
an equal number of executed instructions (implying good
balance). The loop could be a good parallelization candidate.

• Regarding dependence profiling, the loop has no loop-carried
flow dependences except a reduction variable and an induction
variable (i.e., loop counter variables).

TABLE 1: Profiling result of the loop, scan_recognize:5, in 179.art

Loop
79% execution coverage;
1 invocation and 20 iterations;

Profiling Standard deviation of iteration lengths: 3.5%

Dependence

Loop-carried WAWs on f1_layer
...
Temporary variables on i, k, m, n

Profiling Induction variable on j at line 5
Reduction variable on highest_confidence
No Loop-carried RAWs: may be parallelizable

14

1: void scan_recognize(startx, starty, endx, endy, stride)
2: {
3: ...
4: #pragma omp for private (i,k,m,n)
5: for (j = starty; j < endy; j += stride)
6: for (i = startx; i < endx; i += stride){
7: ..
8: pass_flag = 0;
9: match();
10: if (pass_flag == 1) {
11: if (set_high[tid][0] == TRUE) {
12: highx[tid][0] = i, highy[tid][0] = j;
13: set_high[tid][0] = FALSE;
14: }
15: if (set_high[tid][1] == TRUE) {
16: ...
18: } // End of for-i
...
30: void match()
31: {
32: reset_nodes();
34: while (!matched) {
35: ...
48: int match_cnfd = simtest2();
41: if ((match_cnfd) > rho) {
43: pass_flag = 1;
44: if (match_cnfd > highest_confidence[tid][winner]){
45: highest_confidence[tid][winner] = match_cnfd;
46: set_high[tid][winner] = TRUE;
47: }
48: ...

4: #pragma omp for private (i,k,m,n)

[tid]
[tid] [tid]

[tid]

[tid]

70: void reset_nodes()
71: {
72: for (i=0;i<numf1s;i++) {
73: f1_layer[tid][i].W = 0.0;
74: Y[tid][i].y = 0.0;

[tid]
[tid]

Need parallel reduction

[tid]
[tid]

[tid]

Fig. 23: Simplified parallelization steps of 179.art on multicore by
Prospector’s result: (1) Privatize global variables; (2) Insert OpenMP
pragmas; (3) Add a reduction code (not shown here)

• scan_recognize:5 has many loop-carried output depen-
dences on global variables such as f1_layer and Y. These
variables are not automatically privatized to threads, so we
perform privatization, explicitly allocating thread-local private
copies of these global variables. (Not shown in Fig. 23)

• Temporary variables (in the scope of the loop:5) are also
found such as i at line 6. In this code, we need to insert i
to OpenMP’s private list. We classify a set of dependences
as a temporary variable if the very first time access in an
iteration is a write (initialization) and then is followed by loop-
independent flow dependences (uses).

• A potential reduction variable (in the scope of the loop:5),
highest_confidence, is identified. The variable is intended
to calculate the maximum, which is the commutative opera-
tion. We manually modify the code to obtain local results and
compute the final answer. (Not shown in Fig. 23) However,
detecting a reduction from raw dependence results has a
several challenges such as verifying commutativity property.
We will investigate this problem more in our future work.

Programmers do not need to know the very details of
179.art. By interpreting Prospector’s results, programmers
can easily understand and finally parallelize. It is true that
Prospector cannot prove the parallelizability. However, when
compilers cannot automatically parallelize the loop, program-
mers must prove its correctness by hand or verify it empirically
using exhaustive tests. In such cases, we claim Prospector
and SD3 are very valuable for programmers. Recent commer-
cial tools [12, 31] and research that use profiling to assist
parallelization [9, 26, 28, 29] also advocate this claim.

10 CONCLUSIONS AND FUTURE WORK

This paper proposed a new efficient data-dependence profiling
technique called SD3. SD3 is the first solution that attacks
both the memory and the time overhead of data-dependence

profiling at the same time. For the memory overhead, SD 3

not only reduces the overhead by compressing memory ref-
erences that show stride behavior, but also provides a new
data-dependence checking algorithm with the stride format.
SD3 presents several algorithms on handling the stride data
structures. For the time overhead, SD3 exploits pipeline and
data-level parallelism in our data-dependence profiling itself
while keeping the effectiveness of the stride compression.
Several issues for higher speedups were discussed. SD3 suc-
cessfully profiles top 20 loops and their inner loops of 22
optimizeSPEC CPU2006 benchmarks with optimized binaries
and the reference inputs.

In future work, we will focus on how such an efficient data-
dependence profiler can actually provide advice on paralleliz-
ing legacy code as discussed in Section 9. Also, advanced
static analysis can help further to reduce the overhead.

11 ACKNOWLEDGEMENTS

Special thanks to Puyan Lotfi and Hyojong Kim for their
supports for the implementation of LLVM-based SD 3. We
thank Geoffrey Lowney, Robert Cohn, and John Pieper for
their feedback and support; Paul Stravers for providing an
experimental result; Pranith D. Kumar, and HPArch members
for their comments; finally, many valuable comments from
the anonymous reviewers who help this paper. Minjang Kim,
Nagesh B. Lakshminarayana, and Hyesoon Kim are sup-
ported by National Science Foundation (NSF) CCF0903447,
NSF/SRC task 1981, NSF CAREER award 1139083, Intel
Corporation, and Microsoft Research. Any opinions, fndings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily refect those of
NSF, Microsoft, or Intel.

REFERENCES
[1] OmpSCR: OpenMP Source Code Repository.

http://sourceforge.net/projects/ompscr/.
[2] Standard Performance Evaluation Corporation, SPEC

CPU2006. http://www.spec.org/cpu2006/.
[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. In Proceedings of the fifth ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming,
PPOPP ’95, 1995.

[4] V. T. Chakaravarthy. New results on the computability and com-
plexity of points–to analysis. In Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’03, 2003.

[5] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew. Data
dependence profiling for speculative optimizations. In Compiler
Construction, Lecture Notes in Computer Science. 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[7] D. Das and P. Wu. Experiences of using a dependence profiler
to assist parallelization for multi-cores. In IPDPS Workshops,
2010.

[8] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F.
Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming language
design and implementation, PLDI ’04, 2004.

[9] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin:
rethinking and rebooting gprof for the multicore age. In

http://sourceforge.net/projects/ompscr/
http://www.spec.org/cpu2006/

15

Proceedings of the 32nd ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’11,
2011.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable
parallel programming with the message-passing interface. MIT
Press, Cambridge, MA, USA, 1994.

[11] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley. A
concurrent dynamic analysis framework for multicore hardware.
In Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications,
OOPSLA ’09, 2009.

[12] Intel Corporation. Intel Parallel Advisor.
http://software.intel.com/en-us/articles/intel-parallel-advisor/.

[13] Intel Corporation. Intel Threading Building Blocks.
http://www.threadingbuildingblocks.org/.

[14] M. Kim, H. Kim, and C.-K. Luk. Prospector: Helping parallel
programming by a data-dependence profile. In The 2nd USENIX
conference on Hot topics in parallelism, HotPar ’10, 2010.

[15] M. Kim, H. Kim, and C.-K. Luk. SD3: A scalable approach
to dynamic data-dependence profiling. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, 2010.

[16] X. Kong, D. Klappholz, and K. Psarris. The I test: An improved
dependence test for automatic parallelization and vectorization.
IEEE Trans. Parallel Distrib. Syst., 2, July 1991.

[17] J. R. Larus. Loop-level parallelism in numeric and symbolic
programs. IEEE Trans. Parallel Distrib. Syst., 4, July 1993.

[18] J. R. Larus. Whole program paths. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design
and implementation, PLDI ’99, 1999.

[19] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings
of the International Symposium on Code Generation and Opti-
mization, CGO ’04, 2004.

[20] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: a TLS compiler that exploits program struc-
ture. In Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming, PPoPP
’06, 2006.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumenta-
tion. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’05,
2005.

[22] J. Marathe, F. Mueller, T. Mohan, S. A. Mckee, B. R. De Supin-
ski, and A. Yoo. METRIC: Memory tracing via dynamic binary
rewriting to identify cache inefficiencies. ACM Trans. Program.
Lang. Syst., 29, April 2007.

[23] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri.
Shadow profiling: Hiding instrumentation costs with paral-
lelism. In Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’07, 2007.

[24] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., 1997.

[25] G. D. Price, J. Giacomoni, and M. Vachharajani. Visualizing
potential parallelism in sequential programs. In Proceedings of
the 17th international conference on Parallel architectures and
compilation techniques, PACT ’08, 2008.

[26] S. Rul, H. Vandierendonck, and K. De Bosschere. A profile-
based tool for finding pipeline parallelism in sequential pro-
grams. Parallel Comput., 36, September 2010.

[27] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scal-
able approach to thread-level speculation. In Proceedings of the
27th annual international symposium on Computer architecture,
ISCA ’00, 2000.

[28] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical
approach to exploiting coarse-grained pipeline parallelism in
C programs. In Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 40,
2007.

[29] G. Tournavitis and B. Franke. Semi-automatic extraction and
exploitation of hierarchical pipeline parallelism using profiling
information. In Proceedings of the 19th international conference
on Parallel architectures and compilation techniques, PACT ’10,
2010.

[30] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle.
Towards a holistic approach to auto-parallelization: integrating
profile-driven parallelism detection and machine-learning based
mapping. In Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation,
PLDI ’09, 2009.

[31] Vector Fabrics. Pareon: Optimize applications for multicore
phones, tablets and x86. http://www.vectorfabrics.com/.

[32] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling
optimistic concurrency using quantitative dependence analysis.
In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’08,
2008.

[33] S. Wallace and K. Hazelwood. SuperPin: Parallelizing dynamic
instrumentation for real-time performance. In Proceedings of
the International Symposium on Code Generation and Opti-
mization, CGO ’07, 2007.

[34] P. Wu, A. Kejariwal, and C. Caşcaval. Languages and compilers
for parallel computing. chapter Compiler-Driven Dependence
Profiling to Guide Program Parallelization. 2008.

[35] X. Zhang and R. Gupta. Whole execution traces. In Proceedings
of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 37, 2004.

[36] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A
transparent dependence distance profiling infrastructure. In Pro-
ceedings of the 7th annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’09, 2009.

[37] Q. Zhao, I. Cutcutache, and W.-F. Wong. PiPA: pipelined
profiling and analysis on multi-core systems. In Proceedings of
the 6th annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’08, 2008.

Minjang Kim is a PhD candidate in the College of Computing at
Georgia Tech. His research interests are parallel programming tools
and compilers. He received a BS in computer science and a BS in
naval architecture and ocean engineering, both from Seoul National
University. In 2008, he obtained an MS in computer science from
Georgia Tech.

Nagesh B Lakshminarayana is a 3rd year PhD student in the
College of Computing at Georgia Tech. His research interests are in
the field of Computer Architecture. He obtained his Master’s degree
in computer science from Georgia Tech in 2009 and his Bachelor’s
degree in computer science and engineering from RV College of
Engineering, India in 2003.

Hyesoon Kim is an assistant professor in the School of Computer
Science at Georgia Institute of Technology. Her research interests in-
clude high-performance energy-efficient heterogeneous architectures,
and programmer-compiler-microarchitecture interaction. She received
a BA in mechanical engineering from Korea Advanced Institute of
Science and Technology (KAIST), an MS in mechanical engineering
from Seoul National University, and an MS and a PhD in computer
engineering at The University of Texas at Austin.

Chi-Keung Luk is a senior staff engineer at Intel. His research in-
terests include parallel programming tools and techniques, compilers,
and virtualization. Luk has a Ph.D. in computer science from the
University of Toronto.

http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://www.threadingbuildingblocks.org/
http://www.vectorfabrics.com/

	Introduction
	Background
	The Baseline Pairwise Method
	Checking Data Dependences in a Loop Nest
	Handling Loop-independent Dependences
	Problems of the Pairwise Method

	A Memory-Efficient Algorithm of SD3
	Dynamic Detection of Strides
	Stride-Based Dependence Checking Algorithm
	Clarification of Equation (1) and Figure 5

	Overview of the Memory-Efficient SD3 Algorithm
	Optimizing Stride-Based Dependence Checking
	Merging Stride Tables for Loop Nests
	Handling Killed Addresses in Strides
	Lossy Compression in Strides

	An Time Efficient Algorithm of SD3
	Overview of the Algorithm
	Parallelization Model of SD3: A Hybrid Approach
	 Event Distribution for Parallel Processing
	Strides in Parallelized SD3
	Details of the Data-Parallel Model
	Choosing a good address-range size
	Choosing an optimal number of tasks

	Implementation
	Basic Architecture
	Implementation of Analyzer
	Importance of programming techniques
	False Positive and False Negative Issues
	PC-set optimization for the Pairwise Method

	Implementation of Tracers
	Issues in a Pin-based Tracer
	Issues in an LLVM-based Tracer

	Experimental Results
	Experimentation Methodology
	Memory Overhead of SD3
	Time Overhead of SD3
	Input Sensitivity of Data-Dependence Profiling
	Discussion: Do Simple Samplings Work?

	Related Work
	Dynamic Data-Dependence Analysis
	Data-Dependence Profiling for Speculation
	Reducing Overhead of Dynamic Analysis

	Applications of SD3 Algorithm
	Conclusions and Future Work
	Acknowledgements

