
Understanding Energy Aspects of
Processing-near-Memory for HPC Workloads

Hyojong Kim† Hyesoon Kim† Sudhakar Yalamanchili† Arun F. Rodrigues‡

†Georgia Institute of Technology ‡Sandia National Laboratories
{hyojong.kim,hyesoon.kim,sudha}@gatech.edu afrodri@sandia.gov

ABSTRACT
Interests in the concept of processing-near-memory (PNM)
have been reignited with recent improvements of the 3D
integration technology. In this work, we analyze the en-
ergy consumption characteristics of a system which com-
prises a conventional processor and a 3D memory stack with
fully-programmable cores. We construct a high-level analyt-
ical energy model based on the underlying architecture and
the technology with which each component is built. From
the preliminary experiments with 11 HPC benchmarks from
Mantevo benchmark suite, we observed that misses per kilo
instructions (MPKI) of last-level cache (LLC) is one of the
most important characteristics in determining the friendli-
ness of the application to the PNM execution.

CCS Concepts
•Hardware → Power estimation and optimization;
Emerging architectures;

Keywords
PNM; Energy Estimation; Offloading

1. INTRODUCTION
Power and energy consumption are the primary concerns

for large-scale systems. The concept of processing-near-
memory (PNM), which places computation into the location
where data resides, has recently been getting a lot of atten-
tion because it is expected to reduce the energy consump-
tion associated with data movement. We envision that one
promising design for a PNM architecture is that of fully pro-
grammable cores, similar to GPU-like accelerators. In such
a PNM system, offloading based programs such as OpenCL
applications can be executed on PNM cores without any ad-
ditional programmer’s efforts. In this context, crucial ques-
tions are:

• What is the most important factor in deciding where
the computation should be performed on?

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’15, October 05-08, 2015, Washington DC, DC, USA
c© 2015 ACM. ISBN 978-1-4503-3604-8/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2818950.2818985

Figure 1: An envisioned PNM system where a host multi-
core processor is connected with a PNM stack. An appli-
cation can run on the host processor as in the traditional
manner, or it can be offloaded to the PNM processor where
data can be accessed in a more efficient way.

• What kind of applications will get performance and/or
energy benefits from PNM execution?

To answer these questions, we construct a first-order en-
ergy model that provides insights on the trade-offs of PNM
execution from energy aspects.

2. BACKGROUND
In this section, we provide an essential background on an

Hybrid Memory Cube (HMC) based PNM architecture and
the envisioned PNM system.

2.1 PNM architecture
Figure 1 shows our baseline PNM architecture. A PNM

stack is composed of a number of autonomous vaults, each
of which is roughly the equivalent of a channel in the tradi-
tional DDRx memory system. Each vault contains a num-
ber of autonomous partitions, each of which is located in
different story of DRAM dies and consists of more than one
independently operating memory banks. Assuming 16 vaults
within a PNM stack and two banks per each partition, for
instance, a total of 128 (in the case of four DRAM dies) or
256 (in the case of eight DRAM dies) concurrently operating
banks can respond to multiple memory requests at a time.

Each vault has a memory controller, or vault controller,
in the logic die, and it is responsible for ensuring DRAM-
specific timing constraints, DRAM sequencing, data routing
across distributed vaults, error detection and correction, etc.
The SerDes (Serialization/Deserialization) I/O interface en-
ables high-speed communication between the host processor

and a PNM stack, or between PNM stacks, with packetized
abstract protocol.

In this study, we assume PNM cores are located in the
logic die, one per vault; and a total of 16 PNM cores consti-
tute a PNM processor.1

2.2 PNM system
Figure 1 shows a high-level overview of the PNM system,

in which a host processor communicates with a PNM stack
using high-speed I/O links. A PNM stack can be daisy-
chained to other PNM stacks, or many PNM stacks can
form either processor-centric networks or memory-centric
networks to efficiently utilize the processor I/O bandwidth
in a system [10].

An application can run on the host processor as in the
traditional manner, or it can be offloaded to the PNM pro-
cessor where data can be accessed in a more efficient way. In
this work, we compare those two execution cases; one when
a given application is executed on the powerful but power-
hungry host multi-core processor and uses the PNM memory
as a “dumb” memory, and the other when a given applica-
tion is executed on the simple but power-efficient PNM pro-
cessor where it can exploit enormous memory bandwidth
without going through all the global wires associated with
PCB traces on a motherboard. When a given application is
executed on the PNM processor, the amount of data move-
ment is expected to be small, but since it cannot have as
deep a cache hierarchy as the host processor, the amount
of DRAM array accesses might increase. It is important to
understand the data movement dynamics in both execution
scenarios so as to estimate the performance and energy as-
pects of exploiting computational capabilities of the PNM
system.

3. ENERGY CHARACTERISTICS
In this section, we describe two execution scenarios for a

given application, host execution and PNM execution, from
the perspective of energy consumption. In particular, we
focus on the data path that a memory request/response tra-
verses through.

3.1 Host Execution
A host multi-core processor comprises multiple high per-

formance, out-of-order cores, each of which contains its pri-
vate cache(s). A large last-level cache (LLC) is shared across
all cores within the processor and only LLC misses are ser-
viced by the off-chip memory (here, “dumb” PNM memory).
Every access to the off-chip memory navigates the global
wires (PCB traces on a motherboard), and hence, consume
energy associated with it.

Once the memory request reaches the PNM side, it is
routed internally to the target vault. From this moment
onward, a vault controller is fully responsible for handling
the requests to the corresponding partition/bank/row. It
schedules all the requests attempting to achieve the best
performance, while conforming to the DRAM timing con-
straints.

A logic die and vertically stacked DRAM dies are con-
nected using Through Silicon Via interconnects (TSVs). Data

1We use 16 vaults organization based on [15], in which 16
vaults organization is reported to achieve the highest output
bandwidth with 256 total banks.

transfer through TSVs consumes less energy as compared to
data transfer through PCB-based global wires. It is reported
that the data transfer through TSVs is estimated to provide
over 60x energy savings over the data transfer through global
wires [8, 13].

Once a memory response has arrived in the memory con-
troller in the logic die, it is sent back to the host processor,
flowing through the interconnection network (in the form of
switch) of the logic die that connects local vaults to the links,
a link between the memory and the host processor, PCB-
based global wires, and finally get installed in the cache.

3.2 PNM Execution
As described in Section 2.1, a PNM processor comprises

a number of simple but power-efficient PNM cores. In our
configuration we use an in-order core with a private single-
level cache as a PNM core. It is worth noting that previous
research focused on PNM designs which did not feature a
cache hierarchy [6, 9]. However, recent studies include at
least one level of cache hierarchy, as the idea that PNM
would be expected to handle general purpose applications is
gaining support [13,22,23].

When a given application is executed on the PNM pro-
cessor, L1 misses are sent to the DRAM arrays through
direct TSV connections. Memory accesses, as opposed to
the host execution case, only navigate through TSVs, which
consumes many orders of magnitude less energy as com-
pared to the global wire traversals. According to [2,8], each
vault delivers 10 GB/s of memory bandwidth, provided by
32 TSV data lanes operating at faster than 1 GHz. Fur-
thermore, if an application can be executed in parallel using
16 PNM cores, it can enjoy an order of magnitude more
bandwidth (aggregate bandwidth of 160 GB/s) than cur-
rent DDRx solutions while consuming less energy. On the
other hand, since a PNM core cannot provide as much pow-
erful computation capabilities as a host multi-core processor
does, compute-intensive or sequential application would suf-
fer from performance hit.

To improve system-wide throughput, the host processor
can do other useful jobs while a given application is being
executed in the PNM side: other threads of the same appli-
cation or other programs. We leave such research, efficient
system resource utilization, for the future since the primary
objective of this work is to understand energy consumption
characteristics of the PNM architecture.

3.3 Energy Consumption Breakdown
We have constructed an analytical performance and en-

ergy model to roughly estimate how much energy will be
consumed when an application is executed on the host pro-
cessor and when it is executed on the PNM processor, a
collection of PNM cores. For this, the architectural differ-
ences between the host processor and the PNM processor
are considered. In addition, the energy consumption by the
medium that each data traverses through is also taken into
account. Before we present our analytical model, which will
be discussed in Section 4, we provide an energy consump-
tion breakdown of a processor, including energy consumed
at each operational stage, energy consumed for the caches
as well as the energy consumed for un-core part.

3.3.1 Host Processor Side
Throughout the execution, a core consumes different pow-

ers at different stages. Intel Xeon Processor E3-1275, for
example, is reported to dissipate 95W when operating at
base frequency with all cores active [3], while dissipating
only 23.6W with all cores idle [1]. Intel Core/Core 2 Duo
is reported to consume 0.5W to 1.05W on average when
idle [12] depending on the processor type and the frequency
of active/idle state transition.

We split core’s power consumption into three categories:
logic, cache, and miscellaneous. We assume each host core,
excluding on-chip caches, consumes 10W active power and
1W idle power; we approximate each core’s idle power at
10% of its active power. We split cache’s power consumption
into static and dynamic, so that application’s memory access
characteristics can be reflected in the estimation of overall
energy consumption. Lastly, we categorize power consump-
tion due to other logics as miscellaneous, since they cannot
be easily powered down for their wake-up latency having
relatively high impact on performance.

3.3.2 PNM Processor Side
It is reported that energy per bit for HMC access is mea-

sured at 10.48 pJ, of which about 3.7 pJ is consumed in
the DRAM dies and about 6.78 pJ is consumed in the logic
die [8]. According to [8, 17], about 43% of total logic die
power is consumed in the SerDes circuits for high-speed com-
munication. Note that power gating technique cannot be
easily applied to the SerDes circuits because of their rela-
tively long wake-up latency.

We assume that each PNM core, excluding on-chip caches,
consumes 80mW active power and 8mW idle power: a total
of 1.28W will be consumed if all PNM cores are in active
mode [13]; again, we approximate each core’s idle power
at 10% of its active power. We assume each PNM core
has a single-level L1 cache, and this will be reflected in the
estimation of overall energy consumption.

3.3.3 Global Transfer
It is reported that the global data transfer through PCB

consumes more than 60x energy than the data transfer through
TSVs [8, 13].2 More details on our analytical model will be
discussed in Section 4.

4. ANALYTICAL ENERGY MODEL
Our analytical model takes application characteristics and

estimates the energy consumption on both host and PNM
execution cases. Application characteristics include the num-
ber of cache accesses for each level, the number of memory
accesses, and the number of cycle during which the core is
in active or idle state. We profile the target application for
both host and PNM execution to collect such information.

Table 1: Power and energy parameters of each component

SRAM Leakage Power 4.050 nW per cell [7, 11]
L1 Cache Access Energy 0.494 nJ per access [7, 11]
L2 Cache Access Energy 3.307 nJ per access [7, 11]
L3 Cache Access Energy 6.995 nJ per access [7, 11]

DRAM Background Power 0.470 W per package [13]
DRAM Access Energy 28.034 nJ per access [20]
TSV Transfer Energy 0.078 pJ per bit [19,21]

Global Transfer Energy 4.700 pJ per bit [13]

2A 3D TSV traversal is expected to consume on the order
of 30-110 fJ/b.

Power and energy parameters for our analytical model
are summarized in Table 1. Please note that these param-
eters are dependent on the process technology generations,
design choices, the size of the component, as such. The en-
ergy consumed for each cache access depends on the process
technology as well as the size of the cache, for which we
used the value modeled from CACTI [11]. The energy con-
sumed for each DRAM access used in this study is borrowed
from [20], with which we summed up the energy for the de-
coder, wordline, senseamps, bitlines, and termination resis-
tors. The global transfer energy (PCB) and TSV transfer
energy value is borrowed from [13] and [19,21], respectively.
Please note that the global transfer energy is consumed for
data movement between the host processor and the PNM to
navigate the global wires. Therefore the global transfer en-
ergy is highly dependent on the distance between both ends,
and one would need different value for their own floorplan.

Our analytical model reports back the estimated energy
consumption for the given application on both execution
cases. Note that one can profile any piece of code, such
as function, loop or any region of interest and feed the pro-
filed data into the analytical model to get a high-level sense
whether it is suitable for PNM execution.

The following factors are taken into account to estimate
overall energy consumption.

• Processor energy (Core & Un-core portions)

• Cache energy (Leakage & Access)

• DRAM energy (Background & Access)

• Data movement energy

Total energy consumption is a summation of the energy
consumed by host processor and memory parts, and the en-
ergy consumption due to the data movement.

ETOTAL = EHOST + EPNM + EGLOBAL XFER (1)

Host energy consumption can be expanded to:

EHOST = EHOST LOGIC + EHOST CACHE (2)

The host processor’s logic component energy consumption
can be attributed to either core or un-core. We assume
the un-core portion of the processor cannot be power-down
because of the long wake-up latency.

EHOST LOGIC = ECORE + EUNCORE (3)

ECORE = PACTIV E ×
N∑

tACTIV E + PIDLE ×
N∑

tIDLE

(4)

EUNCORE = NCHANNEL × PUNCORE × tTOTAL (5)

Cache energy consumption can be divided into either static
or dynamic. Static and dynamic energy are proportional to
the size of the cache and the number of accesses, respectively.

EHOST CACHE = ESTATIC + EDY NAMIC (6)

2Different cache access energy value is used for each cache
level.

ESTATIC =

L∑
PSRAM LEAKAGE × tTOTAL ×NSRAM (7)

EDY NAMIC =
L∑

EACCESS ×NACCESS (8)

PNM’s energy consumption can be attributed to either
logic or memory.

EPNM = EPNM LOGIC + EPNM MEMORY (9)

As in the host processor, logic component energy con-
sumption comes from either core or un-core portion.

EPNM LOGIC = ECORE + EUNCORE (10)

The same equation can be applied to the PNM core, though
actual power consumption would be different.

EUNCORE =
(
NLINK × PLINK + PMISC

)
× tTOTAL

3 (11)

It is worth noting that in the host execution case, we
assume EPNM LOGIC = EUNCORE ; PNM cores are turned
off. Memory energy consumption can be divided into static
and dynamic. Note TSV data transfer energy is included in
the dynamic portion of memory energy consumption.

We assume an equal amount of energy to be consumed re-
gardless of whether the requested data is present in an open
row (a row buffer hit) or not (a row buffer miss). To improve
the accuracy of our model, the memory access energy to an
open row has to be differentiated from the energy to a closed
row. We leave this potential improvement for future work.

EPNM MEMORY = ESTATIC + EDY NAMIC (12)

ESTATIC = PDRAM BACKGROUND × tTOTAL (13)

EDY NAMIC =
(
EACCESS + ETSV XFER

)
×NACCESS (14)

Global transfer energy accounts for the energy consumed
by off-chip data transfer through PCB-based bus.

EGLOBAL XFER = EPCB XFER ×NDRAM ACCESS (15)

5. METHODOLOGY
We conduct preliminary experiments to estimate the per-

formance and energy efficiency of PNM execution with our
analytical energy model in conjunction with cycle-level ar-
chitecture simulation frameworks. We use The Structural
Simulation Toolkit (SST) [14] with MacSim [4], a cycle-
level heterogeneous architecture simulator. We use DRAM-
Sim2 [16] for DRAM timing simulation, which has been
modified to model an HMC-based PNM architecture. For
detailed HMC model, we use the timing parameters used
in [15].

Our evaluation is performed in two steps; first, detailed
performance characterization is done with simulators. Next,

3PLINK and PMISC refer to PUNCORE SERDES and
PUNCORE MISC , respectively, from Table 3

overall system energy is estimated with analytic energy model.
Specifically, we use cycle-level simulators to collect the per-
formance numbers, such as the number of cache accesses for
each level, the number of memory accesses, and each core’s
active/idle cycle counts for each application in both host and
PNM executions. With these, we estimate the energy con-
sumption on both cases using our analytical energy model.

5.1 Configuration
We model a high performance host processor with 4 GHz,

quad-cores, in which each core executes instructions out-
of-order with 256-entry ROB. Each core has a private L1
and L2 caches, and a last-level L3 cache is shared across all
cores. The architecture details and power consumptions per
operating mode for the host processor are summarized in
Table 2.

Table 2: Architecture & Powers for the host Processor

Processor Quad core, 4GHz
Core Parameter 4-wide OOO, 256-entry ROB
Cache Linesize 64 Byte

L1 Cache 32KB I and D, 3 cycle
L2 Cache 128KB, 8 cycle
L3 Cache 2MB, 30 cycles

Channels 4
Memory Latency L1,L2,L3 + Interconnect + PCB/TSV + DRAM

PACTIV E 10.000W
PIDLE 1.000W

PUNCORE 10.000W
EPCB XFER 4.700 pJ/bit
ETSV XFER 0.078 pJ/bit

The PNM processor is modeled to be a collection of 1
GHz, in-order PNM cores, each of which has a single-level
instruction and data cache. The architecture details and
power consumptions per operating mode for the PNM pro-
cessor are summarized in Table 3.

Table 3: Architecture & Powers for the PNM Processor

Processor 16 core, 1GHz
Core Parameter Single-issue, in-order
Cache Linesize 64 Byte

L1 Cache 32KB I and D, 3 cycle
Links 4

Partitions 16
Banks per Partition 2

Memory Latency L1 + TSV + DRAM
PACTIV E 80mW
PIDLE 8mW

PUNCORE SERDES 1.445W per link
PUNCORE MISC 2.890W per package
ETSV XFER 0.078 pJ/bit

We use the timing parameters used by [15] for 3D-stacked
memory model. Specifically, we use tRP = 17, tCCD = 6,
tRCD = 17, tCL = 17, tWR = 19, tRAS = 34 cycles for
DRAM timing parameters.

5.2 Benchmarks
We use a representative slice [18] of 200M instructions for

11 HPC mini-applications from Mantevo benchmark suite

Figure 2: Energy consumption of host and PNM execution cases, normalized to that of host execution case. Note that we
assume PNM cores are turned off in the host execution. Hence, we use Eq 10 for the PNM execution and Eq 11 for the host
execution for the energy consumed in the logic die.

[5]. Table 4 lists the applications used in our study and their
characteristics - the misses per kilo instructions (MPKI)
of last-level cache (LLC) and instruction-level parallelism
(ILP). We categorize applications into three different classes
based on LLC MPKI. Those with average MPKI rates greater
than 25 fall into High MPKI and those with average MPKI
rates less than 1 fall into Low MPKI. The remaining ap-
plications are grouped as Mid MPKI.

Table 4: List of Mantevo mini-applications [5] and each
application’s misses per kilo instructions of last-level cache
(LLC MPKI) and instruction-level parallelism (ILP). These
are measured from host execution.

Class Benchmark MPKI ILP

High
MPKI

MiniAMR 60.915 1.369
HPCCG 35.914 1.111
MiniXyce 34.032 1.467
MiniFE 28.383 1.104

Mid
MPKI

CloverLeaf 6.924 1.431
MiniMD 4.858 3.082
MiniAero 3.203 1.867

Low
MPKI

MiniSMAC2D 0.642 1.399
CoMD 0.352 3.556

MiniGhost 0.105 3.864
PathFinder 0.093 1.745

6. RESULTS AND ANALYSIS

Figure 3: Speedup of PNM execution and Energy-Delay
Product for each benchmark, normalized to the host exe-
cution case.

Figure 2 shows the energy consumption of each applica-
tion for both host and PNM execution cases. The energy

consumption is normalized to the host execution case. Each
bar further details the energy consumed by each architec-
tural components. Note that the host processor is assumed
to do other useful jobs to improve system-wide throughput
while a given application is being executed in the PNM side.
In other words, we do not include the host processor’s static
energy consumption in the PNM execution case.

The energy savings are realized across all evaluated bench-
marks with PNM execution. These energy savings are ob-
tained for mainly two reasons: power-efficient core and shal-
low cache hierarchy, thereby avoiding exess memory access
latency. For benchmarks that have high MPKI, PNM ex-
ecution outperforms the host execution counterpart by an
average of 73.3% while an average of 88.30% energy savings
are obtained. Benchmarks that have mid or low MPKI, how-
ever, experience average performance degradations of 43.7%
and 67.6%, respectively, with PNM execution, while modest
energy savings (67.85% and 53.17% reduction), yet still sig-
nificant, are achieved. Thus, for these benchmarks, a large
performance degradation must be tolerated in order to ob-
tain energy savings. It is worth noting that performance
degradation does not necessarily mean energy inefficiency.
As shown in the bar chart in Figure 3, CloverLeaf experi-
ences performance degradation of 18.8% while about 80.0%
energy savings are obtained.

Therefore, we infer that one important application charac-
teristic to realize a significant savings in energy consumption
without performance degradation is high LLC MPKI. Line
chart in Figure 3 shows the Energy-Delay Product (EDP)
for each benchmark, normalized to the host execution case.
It is clearly shown that high MPKI benchmarks are PNM-
friendly in terms of both performance and energy consump-
tion. Average memory access latency of MiniFE being re-
duced by 52.7% when the application is executed on PNM
processor also supports this argument. Other high MPKI
applications show similar behavior.

We also observed interesting results for benchmarks that
have similar MPKIs; CloverLeaf and MiniMD. While 80.0%
energy savings are obtained with 18.8% performance degra-
dation for the former, the latter experiences about 137.6%
degraded performance for 54.5% energy savings. These as-
pects are clearly shown in Figure 3; the line chart shoots up
when moving from CloverLeaf to MiniMD. This discrepancy
is due to different level of instruction-level parallelism (ILP)
each application has; specifically, the performance boost for
MiniMD when out-of-order core is used is 167.3%, while
that for CloverLeaf is more modest; 39.3%. This explains
the reason as to why MiniMD sees more performance degra-
dation than CloverLeaf does, even though they have similar

MPKIs. Furthermore, benchmarks that have high ILP, for
instance, MiniMD, CoMD, MiniGhost, experience particu-
larity high performance loss when executed on PNM proces-
sor. Hence, relatively low energy reductions are achieved.

Figure 4: The number of DRAM accesses for host execution
case, and its relative increment for PNM execution case.

Figure 4 shows the number of DRAM accesses for both
execution cases, in which the number is normalized to the
average number of DRAM accesses across all benchmarks.
This clearly shows that the more dram accesses an applica-
tion has, the more PNM-friendly the application is.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we analyze the energy consumption char-

acteristics of a processing-near-memory (PNM) system that
has a conventional processor and a 3D memory stack with
fully-programmable cores. We provide comprehensive expo-
sitions on the data movement dynamics in such a system
when computations are performed in the host processor and
when the computations are performed in the PNM proces-
sor. Based on the underlying architecture and the tech-
nology with which each component is built, we construct
a high-level analytical energy model. From the preliminary
experiments with 11 HPC benchmarks from Mantevo bench-
mark suite, we observed that LLC MPKI is one important
characteristic in determining the friendliness of the applica-
tion to the PNM execution; High MPKI benchmarks enjoy
both performance and energy benefit from PNM execution.

Although this study focused on a HMC-based PNM ar-
chitecture, it can easily be extended to other memory tech-
nologies, such as High Bandwidth Memory (HBM). Further-
more, since the concept of PNM is not necessarily restricted
to the 3D-stacking memory, another form of PNM architec-
ture is also conceivable. Exploring these extensions is a part
of our future work.

8. ACKNOWLEDGMENTS
We gratefully acknowledge the support of National Sci-

ence Foundation (NSF) XPS-1337177 and Sandia National
Laboratories. We would like to thank the anonymous re-
viewers for their comments and suggestions. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of NSF or Sandia National Laboratories.

9. REFERENCES
[1] Haswell-Based Xeon E3-1200. http://goo.gl/EDF3nh.

[2] Inside the HMC. http://goo.gl/DYoMY4.

[3] Intel Xeon Processor E3-1275. http://goo.gl/EjmNJd.

[4] MacSim Simulator. https://goo.gl/gkosY6.

[5] Mantevo. https://mantevo.org/.

[6] D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and
R. McKenzie. Computational RAM: implementing
processors in memory. 16(1):32–41, Jan 1999.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: simple techniques for
reducing leakage power. In Computer Architecture,
2002. Proceedings. 29th Annual International
Symposium on, pages 148–157, 2002.

[8] J. Jeddeloh and B. Keeth. Hybrid memory cube new
DRAM architecture increases density and
performance. In VLSI Technology (VLSIT), 2012
Symposium on, pages 87–88, June 2012.

[9] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge,
V. Lam, P. Pattnaik, and J. Torrellas. FlexRAM:
toward an advanced intelligent memory system. In
Computer Design, 1999. (ICCD ’99) International
Conference on, pages 192–201, 1999.

[10] G. Kim, J. Kim, J. H. Ahn, and J. Kim.
Memory-centric system interconnect design with
hybrid memory cubes. In Parallel Architectures and
Compilation Techniques (PACT), 2013 22nd
International Conference on, pages 145–155, Sept
2013.

[11] N. Muralimanohar, R. Balasubramonian, and N. P.
Jouppi. CACTI 6.0: A Tool to Understand Large
Caches, 2009.

[12] A. Naveh, E. Rotem, A. Mendelson, S. Gochman,
R. Chabukswar, K. Krishnan, and A. Kumar. Power
and thermal management in the Intel core duo
processor. Intel Technology Journal, 10(2), 2006.

[13] S. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian,
V. Srinivasan, A. Buyuktosunoglu, A. Davis, and
F. Li. NDC: Analyzing the impact of 3D-stacked
memory+logic devices on MapReduce workloads. In
Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on,
pages 190–200, March 2014.

[14] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B. Jacob. The
structural simulation toolkit. SIGMETRICS Perform.
Eval. Rev., 38(4):37–42, Mar. 2011.

[15] P. Rosenfeld. Performance Exploration of the Hybrid
Memory Cube. Ph.D. dissertation, University of
Maryland, College Park, 2014.

[16] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
DRAMSim2: A Cycle Accurate Memory System
Simulator. IEEE Comput. Archit. Lett., 10(1):16–19,
Jan. 2011.

[17] G. Sandhu. DRAM Scaling & Bandwidth Challenges.
In NSF Workshop on Emerging Technologies for
Interconnects (WETI), February 2012.

[18] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS X, pages 45–57, New York, NY, USA, 2002.
ACM.

[19] A. N. Udipi, N. Muralimanohar, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Combining Memory and a
Controller with Photonics Through 3D-stacking to
Enable Scalable and Energy-efficient Systems. In
Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11,
pages 425–436, New York, NY, USA, 2011. ACM.

[20] A. N. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. P. Jouppi.
Rethinking DRAM Design and Organization for
Energy-constrained Multi-cores. In Proceedings of the
37th Annual International Symposium on Computer
Architecture, ISCA ’10, pages 175–186, New York, NY,
USA, 2010. ACM.

[21] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An
optimized 3D-stacked memory architecture by
exploiting excessive, high-density TSV bandwidth. In
High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, pages
1–12, Jan 2010.

[22] D. Zhang, N. Jayasena, A. Lyashevsky, J. L.
Greathouse, L. Xu, and M. Ignatowski. TOP-PIM:
Throughput-oriented Programmable Processing in
Memory. In Proceedings of the 23rd International
Symposium on High-performance Parallel and
Distributed Computing, HPDC ’14, pages 85–98, New
York, NY, USA, 2014. ACM.

[23] D. P. Zhang, N. Jayasena, A. Lyashevsky,
J. Greathouse, M. Meswani, M. Nutter, and
M. Ignatowski. A New Perspective on
Processing-in-memory Architecture Design. In
Proceedings of the ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness,
MSPC ’13, pages 7:1–7:3, New York, NY, USA, 2013.
ACM.

