
Securing GPU via Region-based Bounds Checking

Jaewon Lee
jaewon.lee@gatech.edu

Georgia Institute of Technology

USA

Yonghae Kim
yonghae@gatech.edu

Georgia Institute of Technology

USA

Jiashen Cao
jiashenc@gatech.edu

Georgia Institute of Technology

USA

Euna Kim
euna.kim@gatech.edu

Georgia Institute of Technology

USA

Jaekyu Lee
jaekyu.lee@arm.com

Arm Research

USA

Hyesoon Kim
hyesoon@cc.gatech.edu

Georgia Institute of Technology

USA

ABSTRACT

Graphics processing units (GPUs) have become essential general-

purpose computing platforms to accelerate a wide range of work-

loads, such as deep learning, scientific, and high-performance com-

puting (HPC) applications. However, recent memory corruption

attacks, such as buffer overflow, exposed security vulnerabilities in

GPUs. We demonstrate that out-of-bounds writes are reproducible

on an Nvidia GPU, which can enable other security attacks.

We propose GPUShield, a hardware-software cooperative region-

based bounds-checkingmechanism, to improveGPUmemory safety

for global, local, and heap memory buffers. To achieve effective

protection, we update the GPU driver to assign a random but unique

ID to each buffer and local variable and store individual bounds

information in the bounds table allocated in the global memory.

The proposed hardware performs efficient bounds checking by

indexing the bounds table with unique IDs. We further reduce

the bounds-checking overhead by utilizing compile-time bounds

analysis, workgroup/warp-level bounds checking, and GPU-specific

address mode. Our performance evaluations show that GPUShield

incurs little performance degradation across 88 CUDA benchmarks

on the Nvidia GPU architecture and 17 OpenCL benchmarks on

the Intel GPU architecture with a marginal hardware overhead.

CCS CONCEPTS

• Security and privacy→ Vulnerability management.

KEYWORDS

GPU, memory safety

ACM Reference Format:

Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and Hyesoon

Kim. 2022. Securing GPU via Region-based Bounds Checking. In The 49th

Annual International Symposium on Computer Architecture (ISCA ’22), June

18ś22, 2022, New York, NY, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3470496.3527420

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISCA ’22, June 18ś22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527420

1 INTRODUCTION

Graphics processing units (GPUs) were originally invented to speed

up graphics rendering, but the general-purpose adoption of GPUs

led to accelerating various application domainsÐcomputer vision,

computational finance, bio-molecular analysis [40], weather predic-

tion [44], and crypto-currency miningÐthanks to their enormous

high-throughput computing capability. Moreover, GPUs have re-

cently ignited the use of deep learning and artificial intelligence

(AI) models, and virtualized GPUs are used to accelerate these work-

loads in cloud platforms. Shared Virtual Memory (SVM) in OpenCL

2.0 [23] and Unified Memory (UM) in Nvidia CUDA 6 [50] were

introduced to improve data sharing between CPUs and GPUs in the

same system. Also, Nvidia recently announced Grace CPU [58] to

enable tighter integration between CPUs and GPUs via NVLink [51]

in data-centers to boost complex AI and HPC workloads. When

GPUs were used mainly for graphics in the past, they were con-

sidered passive, i.e., not too powerful to break system integrity.

However, with the broad adoption of GPUs and tighter integration

with CPUs, more GPU applications started to process sensitive and

private data, which led to increased security concerns on GPUs.

Re-steering the control flow by overwriting a function pointer

or return address, such as return-oriented program (ROP) [65]

and jump-oriented program (JOP) [8], is a well-known exploit to

compromise the system. By running a malicious gadget code on

an altered control flow path, attackers can collect sensitive data

or escalate the attacker’s privilege to the system administrator.

Recent work has shown that GPUs are also vulnerable to buffer

overflow attacks [12, 14, 47]. For example, research by Miele [45]

describes GPU attack scenarios in which the attacker manipulates

the function pointer by using a buffer overflow and successfully

forces the GPU kernel to execute the malicious function. The mind

control attack [61] leverages a buffer overflow attack to reduce the

prediction accuracy of machine learning workloads.

Researchers have proposed software-based GPU memory safety

mechanisms [13, 14] that use a compiler-generated canary [9] by

intercepting memory allocation functions to add secret bytes before

and after each buffer. After a kernel completes its execution, canary

bytes are checked to see if any write occurred. This approach incurs

little hardware overhead but cannot guarantee strong memory

safety because it cannot detect 1) illegal reads and 2) non-adjacent

out-of-bounds (OOB) reads and writes that jump over the canary

region. Buffer overflow detection tools [15, 31, 54, 63] also exist,

but their performance overhead is shown to be too high to be used

at runtime.

https://orcid.org/0000-0002-0768-384X
https://orcid.org/0000-0002-3088-5984
https://orcid.org/0000-0002-0079-2146
https://orcid.org/0000-0002-0090-3109
https://orcid.org/0000-0002-0574-5381
https://orcid.org/0000-0002-6061-7825
https://doi.org/10.1145/3470496.3527420
https://doi.org/10.1145/3470496.3527420
https://doi.org/10.1145/3470496.3527420

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

Various hardware-based memory safety mechanisms exist for

CPUs [11, 21, 22, 35, 38, 48, 59, 78], but no such mechanism exists

for GPUs to the best of our knowledge. Any hardware mechanism

should not increase memory traffic. Otherwise, it will incur severe

performance degradation due to the massively parallel execution

capability of GPUs. Thus, our primary goal is to implement an

efficient memory safety mechanism by utilizing the GPU’s unique

programming and execution models. Originated from traditional

graphics programming models, GPU programming models adopt

disciplined memory regionsÐglobal, local, heap, texture, and con-

stant memoryÐand several addressing modes. To better use mas-

sively parallel hardware, the GPU programming model enforces

the limited usage of memory buffers. All globally visible mem-

ory buffers used by a GPU kernel must be specified in the kernel

argument, and dynamic memory allocations are rarely used. Conse-

quently, a GPU kernel maintains only a few memory buffers during

its execution.

In this paper, we propose GPUShield, which implements a region-

based bounds-checking mechanism to improve GPUmemory safety.

We maintain the bounds information of each buffer in a newly

introduced per-kernel Region Bounds Table (RBT). We modify the

GPU driver such that it assigns a random but unique ID to each

buffer and local variable and sets up RBT upon a GPU kernel launch.

Also, the driver embeds the encrypted buffer ID in the unused

upper bits of the buffer base address pointers. This pointer-tagging

approach [21, 22, 35, 38, 78] is lightweight and efficient since it

removes the need for bounds propagation and does not require any

hardware changes.

We extend the memory system similar to a CPU-based mecha-

nism, AOS [35], to perform hardware-based bounds checking. How-

ever, we cannot adopt the CPU mechanism directly because of its

performance overhead. GPUs have too many memory operations,

leaving little room for extra memory operations needed for bounds

checking. Hence, we introduce the following three techniques. First,

we perform bounds checking per workgroup/warp/wave-front, not

per individual thread, by computing the minimum and maximum

address range from all threads in a workgroup. Second, we perform

compiler-based static analysis to effectively reduce the number

of runtime bounds checking. Third, we leverage a GPU-specific

memory addressing mode to embed the bounds information in eli-

gible memory operations, eliminating the need for explicit bounds

accesses in the GPU memory hierarchy.

The contributions of our paper are as follows:

◦ We propose GPUShield, a region-based bounds-checking mecha-

nism, to provide spatial memory safety for GPUs. To the best of

our knowledge, GPUShield is the first hardware-based bounds-

checking proposal for GPUs.

◦ We show that out-of-bounds writes are exploitable to incur mem-

ory corruption and are observable by the CPU under the CUDA

SVM environment running on an Nvidia GPU.

◦ We utilize the unique GPU programming and memory models

to reduce the overhead of bounds-checking mechanisms. Also,

compiler-based static analysis can reduce the number of run-

time bounds checking. As a result, GPUShield incurs negligible

runtime overhead across 88 Nvidia CUDA and 17 Intel OpenCL

benchmarks with low hardware overhead.

2 BACKGROUND

2.1 GPU Execution and Memory Models

GPUs maintain their high-throughput capability via massively par-

allel hardware and a hierarchical execution model. A GPU com-

prises multiple shader cores, each of which has multiple processing

elements (PEs). The total amount of work is defined as a multi-

dimensional compute domain. Each element in the domain is called

a workitem (or a CUDA thread). Multiple workitems form a work-

group (or a CUDA thread block), and each workgroup can be sched-

uled to any core, while all workitems in the same workgroup will be

scheduled to the same core. A workgroup is split into multiple sub-

workgroups (or CUDA warps), the basic scheduling unit in a core

for execution. Thus, the number of workitems in a sub-workgroup

usually matches the number of PEs in a core.

A GPU uses the Single Instruction Multiple Threads (SIMT) exe-

cutionmodel, i.e., all workitems in a sub-workgroupwill execute the

same instruction. Some workitems can be individually masked to

skip execution mostly due to branch divergence. A sub-workgroup

executes instructions in order. When a sub-workgroup encounters

a long latency instruction, such as memory loads, the scheduler will

switch to the next available sub-workgroup. In this way, GPUs can

hide execution latency with their thread-level parallelism (TLP).

Typical GPU programming models adopt various memory types

to improve memory latency and bandwidth. Most memory buffers

are placed in globally visible memory upon a kernel launch. Thread-

local variables reside in registers. Arrays that are too large or arrays

with dynamic indices will be placed in local memory, which resides

in costly device memory. Some data used by a workgroup can be

brought into shared memory to avoid expensive global memory

accesses. Some read-only buffers can utilize constant and texture

memory. GPUs also employ a multi-level cache hierarchy.

Recent Nvidia GPUs [57] support dynamic memory allocation,

while OpenCL has not supported that feature yet. Dynamically

allocated buffers reside in the device’s heap memory and are mainly

used to store per-workitem intermediate results. The heap mem-

ory is persistent during the lifetime of a GPU context and shared

between the kernels in the same GPU context. However, the per-

formance overhead of dynamic allocation is significant because

massive threads allocate the memory buffers in parallel.

Earlier GPU programming models used a host-accelerator com-

puting model that required programmers to explicitly transfer data

from/to the host processor. To reduce the programmer’s burden,

recent GPUs have adopted SVM, which allows the CPU and GPU

to efficiently share their virtual memory space [1, 23, 52, 53]. In

an integrated GPU, SVM can share even physical memory space.

However, in a discrete GPU, SVM (or UM in CUDA) provides au-

tomatic data migration via demand paging by the GPU driver’s

page fault handler and the Input Output Memory Management

Unit (IOMMU) [5, 19, 34, 66].

GPUs use a disciplined memory model [37] with a linear memory

space (in one or more dimensions) that is 1) explicitly passed as

kernel input arguments or 2) defined as GPU device memory. Pro-

grammers need to provide detailed informationÐsize and read-only

attributeÐabout memory buffers. Unlike CPU memory objects that

can be freely allocated and deallocated at runtime, GPU memory

buffers are usually allocated before a kernel launch and deallocated

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

Cha
i

Clo
ver

Lea
f

Fina
nce

Ben
ch

Het
ero

-Ma
rk

Ope
nDw

arf
Par

boil

Poly
Ben

ch/A
CCSHO

C
SNA

P
Tea

Lea
f

XsB
enc

h
pan

not
ia
rod

inia
0

20
40
60
80

100

#
 b

uf
fe

rs
 (%

)

7

2

2 11

6
6

19
11

4
1

12

4

5

5
3

2

6

4 1
5

4

3
5

2
1

5 4
1 1 1

1

1
<5 <10 <20 >=20

Figure 1: The distribution of the number of buffers in GPU

benchmark suites (max: 34, avg: 6.5).

/* Method A. Binding table + offset:
vaddr = BindingTable[BTI].base + offset */

LD dst , offset , BTI

/* Method B. Full virtual address: vaddr = src */

LD dst , src

/* Method C. Base address + offset: vaddr = base + offset */

LD dst , base , offset

Figure 2: GPU memory addressing methods.

after kernel completion. This memory model inevitably limits the

number of buffers used in a GPU kernel. For example, in OpenCL

2.0 [32], the number of kernel arguments is limited to 128 in a 64-bit

system, but a CPU program may spawn millions of memory objects.

Figure 1 shows the distribution of the number of memory buffers in

145 GPU benchmarks across 13 suites. Most benchmarks use fewer

than 10 buffers, and only five use more than 20.

2.2 Memory Addressing in GPU

GPUs use similar memory addressing methods to CPUs but have a

unique addressing mode that utilizes graphics structures. Figure 2

shows three addressing methods used by GPUs: A) binding table

(BT) indirect access, B) a 32-bit or a 64-bit virtual address, and C) a

base address with an offset.

The first method uses a BT to store various buffer information,

such as the base address and the size. This method is specific to

graphics, where the BT efficiently shares various objectsÐtextures

and buffersÐacross pipeline stages [24, 71]. Methods B and C are

commonly used in CPU programming models. All addresses are

computed using the base address of a memory region and an offset.

Methods A and C are similar except that the base address is stored

in BT or in the register.

We compare how GPUs use different addressing modes using a

vector add kernel code written in OpenCL, as shown in Figure 3.

Intel GPUs have four addressing models: Binding Table State (BTS),

Shared Local Memory (SLM), and 32/64-bit Stateless models [26].

The BTS model (Method A) uses a 256-entry BT. Intel GPUs use

the send instruction to access the memory [25, 27]. The GPU driver

assigns buffer IDs based on the order specified in kernel arguments,

e.g., a:0, b:1, and c:2 in Figure 3a. Each send instruction has amessage

descriptor (fourth operand), and the eight least significant bits (LSB)

1 void add(global int *a, global int *b, global int *c)

2 {

3 int id = (int)get_global_id (0);

4 c[id] = a[id] + b[id];

5 }

(a) Vector addition kernel example code.

1 send r20:w r16 0xC 0x04205E00 // &a + r16

2 add r32.0<1>:d r12.0<8;8,1>:d r9.2<0;1,0>:d

3 send r28:w r24 0xC 0x04205E01 // &b + r24

4 send r22:w r18 0xC 0x04205E00 // &a + r18

5 send r30:w r26 0xC 0x04205E01 // &b + r26

6 ...

7 sends null:w r32 r20 0x8C 0x04025E02 // [&c+r32] = r20

8 sends null:w r34 r22 0x8C 0x04025E02 // [&c+r34] = r22

(b) Intel assembly code.

1 s_load_dwordx4 s[0:3], s[6:7], 0x0

2 s_load_dwordx4 s[12:15] , s[6:7], 0x10

3 ...

4 v_add_co_u32_e32 v2, vcc , s0, v0 // v0: thread ID

5 v_addc_co_u32_e32 v3, vcc , v3, v1, vcc

6 global_load_dword v4, v[2:3], off

7 v_mov_b32_e32 v3, s3

8 v_add_co_u32_e32 v2, vcc , s2, v0

9 v_addc_co_u32_e32 v3, vcc , v3, v1, vcc

10 global_load_dword v2, v[2:3], off

(c) AMD assembly code.

1 MOV R1, c[0x0][0x28]

2 S2R R6, SR_CTAID.X

3 MOV R7, 0x4

4 S2R R3, SR_TID.X

5 IMAD R6, R6, c[0x0][0x0], R3

6 IMAD.WIDE R2, R6, R7, c[0x0][0 x168] //c[0x0][0 x168] = &b

7 LDG.E.SYS R2, [R2]

8 IMAD.WIDE R4, R2, R7, c[0x0][0 x160] //c[0x0][0 x160] = &a

9 LDG.E.SYS R5, [R4]

10 ...

11 IMAD.WIDE R6, R6, R7, c[0x0][0 x170] //c[0x0][0 x170] = &c

12 STG.E.SYS [R6], R9

(d) Nvidia assembly code.

Figure 3: Vector add code by various GPUs. Memory accesses

are highlighted, with emphasis on BTIs and source registers.

of the message descriptor are a binding table index (BTI) to index

BT to fetch the base address. For example, send instructions in lines

1 and 4 in Figure 3b access the buffer ID 0, which is a. Then, the

buffer address is computed with the memory offset stored in one of

the source registers.

AMD GPUs do not use BT and mainly use Methods B and C [3].

They have 32-bit scalar registers that are shared by a sub-workgroup

and per-thread 32-bit vector registers. The GPU driver allocates a

memory segment for kernel arguments and stores the segment ad-

dress in one of the scalar registers. For example, in Figure 3c, s[6:7]

stores the address of the kernel argument segment. s_load_dwordx4

in line 1 loads the base addresses of a (at offset 0x0) and b (at offset

0x8) in s[0:1] and s[2:3], respectively. Per-thread offset is added

to the base address, and Method B is used in lines 6 and 10.

Nvidia GPUs mainly use Method B, but Method C is often used

for texture and surface memory [56]. Kernel arguments are stored in

constant memory. For example, c[0][0x160] stores the base address

of a, and the per-thread offset is added to access a[id], as shown

in line 9 in Figure 3d.

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

1 __global__ void kernel_overflow(int * A, int *B)

2 {

3 // Case 1. OOB within a 512B boundary: suppressed

4 A[0x10] = 0xBAD;

5 // Case 2. OOB within a 2MB boundary: overflow

6 A[0x80] = 0xBAD;

7 // Case 3. OOB crossing a 2MB boundary: kernel aborted

8 A[0 x80000] = 0xBAD;

9 }

10

11 void main()

12 {

13 int *A, *B; // each buffer is 512B aligned.

14 cudaMallocManaged (&A, sizeof(int)*0x10);

15 cudaMallocManaged (&B, sizeof(int)*0x10);

16 kernel_overflow <<<1,1>>>(A,B);

17 cudaDeviceSynchronize ();

18 }

Figure 4: SVM buffer overflow examples on Nvidia CUDA. All

buffers are allocated in consecutive 512B-aligned addresses.

3 GPU SECURITY

3.1 Memory Safety in GPUs

GPUs have become a major computing component, but the security

measure is not as high as in CPUs. GPUs have been considered iso-

lated and incapable of affecting the system since IOMMU manages

confined device memory regions and prevents illegal access from a

device I/O bus. However, their general-purpose adoption and tighter

integration with CPUs in the same system, thanks to SVM, led GPU

applications to process security-critical information, such as en-

cryption keys and photographs. Recent studies [39, 43, 79] show

that IOMMU-based isolation can be compromised by an attacker-

controlled peripheral device, allowing it full access to the entire

physical memory.

Among existing GPU vulnerabilities, we focus on memory safety

because of its significant impact on systems. Arguably, memory

safety vulnerabilities are one of the major threats to modern com-

puter systems. Recent reports [17, 46] show that over 70% of all

security issues addressed in the industry stemmed from memory

safety violations. Also, prior studies reveal that most of the ex-

isting memory safety errors are exploitable in GPUs. Miele [45]

presented that buffer overflows are feasible in Nvidia CUDA GPUs

for statically (in the stack) and dynamically (in the heap) allocated

buffers.1 Di et al. [12] showed that stack overflow could influence

the execution of other threads, and integer and function pointer

overflow in a C/C++ struct data type is exploitable on GPUs. Re-

cently, the mind control attack [61] demonstrated a practical attack

on the deep learning frameworks by leveraging the buffer overflow

vulnerabilities in GPU kernels to achieve arbitrary code execution,

degrading the prediction accuracy of ML applications.

SVM buffers are also exploitable by overflow attacks. Figure 4

shows an example code that performs out-of-bounds writes. We

identify that these illicit writes can be easily performed on an Nvidia

CUDA GPU under the SVM environment with CPUs. We find that

1) out-of-bounds writes within a 512B boundary are suppressed,

i.e., no side effect, because of a default 512B address alignment, 2)

out-of-bounds writes within a 2MB memory are allowed, and 3)

1Unlike CPU stack, a GPU stack in Nvidia CUDA GPUs resides in the off-chip local
memory. A heap memory is allocated in the global memory.

Table 1: GPU memory types and their vulnerabilities.

Type Scope Location
Overflow

Possibility

Register Thread On-chip No

Local (stack) Thread Off-chip Yes [12, 45, 61]

Shared Workgroup On-chip Yes

Global Application Off-chip Yes [14, 61]

Heap Application Off-chip Yes [12, 13, 45, 62]

Constant Application Off-chip No (read only)

Texture/Surface Application Off-chip No (read only)

SVM Application Off-chip Yes

accesses crossing their 2MB boundary result in a kernel abortion

with an illegal memory access error. Given that Nvidia GPUs use

a 2MB-size page, we speculate that they use a 2MB-granularity

protection scheme. Out-of-bounds writes are observable from the

CPU side and can be used as a basis for other security attacks.

Table 1 summarizes different GPU memory types and their

known vulnerabilities. Unlike vulnerabilities in othermemory types,

access violations in the local memory occur between different lo-

cal variables within the same thread, and one thread cannot access

another thread’s variable. This is because each local variable is

organized in the local memory such that consecutive threads ac-

cess consecutive 32-bit words, i.e., the same local variable from

consecutive threads will reside in spatially adjacent memory [57].

The effective address is computed using the base address of a local

variable and an index, which is a function of a thread-id.

3.2 Threat Model

We assume that adversaries can attack GPU kernels by injecting ma-

licious inputs to invoke buffer overflow and perform illegal accesses

to a victim kernel’s memory regions. We do not limit the platforms

on which GPU programs are executed. Thus, victim kernels can run

on a personal desktop, data-center, or cloud environment, where

clients or residents may simultaneously request multiple jobs that

invoke GPU kernels on the shared GPUs. We assume that target

GPU binaries are owned by victims, and native binary forging is

prohibited by typical access control policies in operating systems

(OSes). We also assume that the GPU driver is trustworthy using

a kernel module signing facility [41]. Also, GPU hardware com-

ponents are considered reliable. Hence, we consider the side- and

covert-channel attacks that use resource contentions on hardware

units [28, 29] or measure power consumption activity [42] out of

the scope of this paper.

4 PRIOR ART ON CPU MEMORY SAFETY

Various CPU mechanisms have been proposed to secure computer

systems against memory corruption attacks. Although software

mechanisms typically provide strong safety, their significant perfor-

mance overhead hinders their adoption as a runtime solution. We

consider only hardware-based mechanisms since we aim to devise

a low-overhead runtime GPU defense mechanism. In this section,

we group these mechanisms into three categories and detail each

category. Then, we describe the requirements for the GPU memory

safety mechanisms to be practical.

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: Comparing GPUShield with previous memory safety mechanisms.

Mechanism Unit Protection
No Register

Extensions

No Duplicated

Memory usage

No Extra

Check Ops

Bandwidth

Increase

Perf.

Overhead

REST [67] CPU Canary ✓ ✓ - Low

Califorms [64] CPU Canary ✓ ✓ ✓ - Low

ARM MTE [4], SPARC ADI [60] CPU Tag ✓ ✓ ✓ - Low

Intel MPX [59] CPU Bounds checking ✓ High High

HardBound [11], Watchdog [48] CPU Bounds checking High Moderate

CHERI [74ś76]a CPU Bounds checking ✓ ✓ High Moderate

In-Fat Pointer [78] CPU Bounds checking ✓ ✓ High Moderate

AOS [35] CPU Bounds checking ✓ ✓ ✓ High Moderate

No-Fat [21] CPU Bounds checking ✓ ✓ ✓ - Low

C3 [38] CPU Bounds checking ✓ ✓ ✓ - Low

clArmor [14], GMOD [13] GPU Canary ✓ ✓ ✓ - High

CUDA-MEMCHECK [54] GPU Bounds checking ✓ ✓ High High

GPUShield GPU Bounds checking ✓ ✓ ✓ Low Low

aCHERI capability models support other security features, such as highly scalable software compartmentalization.

4.1 Canary-based Protection

This class inserts a canary, i.e., secret bytes, around objects to pro-

tect. Access to a canary is considered malicious. REST [67] embeds

random tokens into programs and detects illegal accesses by having

a token detector at the cache hierarchy. Califorms [64] enhances

security by providing intra-object protection while alleviating mem-

ory overhead by utilizing padding bytes inserted for address align-

ment. This class achieves low performance overhead but has limited

security coverage since non-adjacent accesses jumping over canary

bytes cannot be detected.

Recent software-based proposals for GPUs [10, 13, 14] belong to

this category. clArmor [14] intercepts OpenCL malloc calls to add

a canary around allocated buffers. After a kernel finishes, it checks

the canary to detect any bytes written beyond each buffer region.

GMOD [13] runs concurrent guard threads that regularly moni-

tor buffer overflows. However, in addition to their weak security

guarantee, instantaneous error detection is difficult to achieve.

4.2 Memory Tagging

This approach places tags into pointers and enforces tag checking

upon each pointer dereferencing. A memory access is allowed only

when a pointer’s tag matches that of the memory region being

accessed. For example, Arm Memory Tagging Extension (MTE) [4]

embeds a 4-bit tag into a pointer and associates it with a memory

region pointed to by the pointer. Even though memory tagging

approaches [4, 60] typically incur a marginal slowdown, the limited

size of tag bits reduces the security coverage because of a high

probability of false positives. Having more tag bits can enhance the

security level, but it requires extensions of all relevant hardware

units, such as tag cache, tag checker, and cache metadata.

4.3 Bounds Checking

Bounds-checking mechanisms provide the strongest security guar-

antees. Intel MPX [59] associates bounds information with pointers

and enforces bounds checking for memory accesses, but it incurs

significant performance overhead due to bounds propagation and

hierarchical bounds addressing. Some proposals [11, 48, 74ś76] im-

plement a hardware-assisted fat pointer, where a pointer includes

bounds and permission metadata. Such an implementation requires

register extensions (up to 256 bits) to hold metadata. On the other

hand, to maintain pointer metadata in memory, HardBound [11]

and Watchdog [48] implement shadow memory that mirrors allo-

cated memory pages in a program and stores metadata in locations

mapped to pointers’ addresses.

Pointer tagging mechanisms [21, 22, 35, 38, 78] place a pointer

tag in unused upper bits of pointers and use the tag to look up

object metadata in memory or perform an object-based tag match.

AOS [35] stores secret keys, instead of metadata, in the unused up-

per bits of pointers to avoid register extension and shadow memory.

AOS uses the keys to index a bounds table stored in memory. It also

develops microarchitectural extensions to eliminate explicit bounds-

checking instructions. In-Fat pointer [78] stores object metadata

along with in-memory type metadata and guarantees sub-object

granularity protection. No-FAT [21] utilizes a binning allocator to

expose memory allocation size to the architectural state and per-

forms bounds checking using the implicit allocation bounds. For

temporal safety, No-FAT places a pointer tag in the top bits of a

pointer and verifies it upon a memory access. C3 [38] proposes

a stateless memory-safety technique with a radix-bound pointer

encoding scheme, removing the need for additional metadata.

4.4 Challenges in GPU Memory Safety

We compare the hardware-based mechanisms mentioned above in

Table 2, in terms of hardware requirements, bandwidth increase,

and performance overhead, with other software-based GPU mecha-

nisms [13, 14]. Any practical memory safety mechanism for GPUs

needs the following requirements. First, extending registers, as in

some bounds-checking mechanisms [11, 48, 74ś76], is not accept-

able. Recent GPUs maintain huge register files to allow a massive

number of concurrently running threads. For example, Nvidia Am-

pere GPU has a 256KB register file per core [55]. Extending already

enormous register files can incur significant hardware overhead.

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

GPU

Driver

Static Analysis

Kernel Execution

main(argc,argv) {

 GPU_Malloc() for A,B,C;

 D = argv[1];

 Invoke Kernel(A,B,C,D);

 Synchronization();

 Kernel_err_check();

}

Kernel(A,B,C,D) {

 int off = 1<<32

 A[tid] = XX;

 B[tid+off] = YY +A[tid];

 C[tid+D] = ZZ;

}

Host Code Kernel code

GPU Driver

• Create RBT using BAT and copy to

device memory

• LLVM-based source-code

analysis generating BAT

BCU

Per-kernel
Secret Key

OoB Access Region Bounds Table

RCache

ID
EncryptIon

Arg# BaseAddr Size ID Mask

1 0x2512546000 1024B 4478 1

2 0x2512547000 64B 968 1

3 0x6210010000 16KB 5118 0

Skip Bounds CheckIng

Error

Logging

Runtime

Execption

LSU

Detection

@Static Time

Need Runtime

Check

If supported

Error

Report

@End

Arg# LD/ST Offset Out-of-Bounds

1 Store tid No

1 Load tid No

2 Store tid+off Yes

3 Store tid+? Unknown

BaseAddr Size

0x6210010000 16KB

Figure 5: System overview of GPUShield.

Second, GPU applications demand much higher memory band-

width than CPU applications, so cache and memory bandwidth

consumption have to be carefully managed. If a bounds-metadata

access increases bandwidth usage, this will lead to significant per-

formance loss due to massively parallel GPU computing capability.

Third, attacks become more sophisticated, so safety mechanisms

with high coverage, such as memory tagging and bounds checking,

are preferred to canary mechanisms.

All things considered, we aim to devise an efficient hardware-

based GPU bounds-checkingmechanism (for higher coverage) with-

out using a fat pointer (for less hardware overhead) or shadow

memory (for bandwidth savings).

5 GPUSHIELD

5.1 System Overview

Figure 5 shows the system overview. We maintain bounds metadata

for each global buffer, local variable, and the entire heap memory.

The metadata is stored in the newly introduced RBT (ğ5.2.3) in

the GPU global memory, which is indexed by the buffer ID. The

compiler statically analyzes all memory pointers in an application

to identify the associated buffer and their types (ğ5.3). The compiler

also performs static bounds checking for simple access types to

filter out unnecessary runtime bounds checking (ğ5.3). Findings

are stored in a bounds-analysis table (BAT) and passed to the GPU

driver (ğ5.4), which assigns a random but unique ID for each buffer

and embeds the encrypted ID in the pointer that holds the buffer

base address. The driver also initializes the RBT.

1 struct Bounds {

2 /* valid and readonly fields are physically stored in

the upper bit of base_addr */

3 //bool valid , readonly;

4 uint64_t base_addr; // 48-bit virtual address

5 uint32_t size;

6 };

Figure 6: Bounds metadata format.

When a sub-workgroup executes a memory instruction, we per-

form bounds checking in a new microarchitectural structure, the

bounds-checking unit (BCU) (ğ5.5), located next to the load-store

unit (LSU). The BCU comprises RBT cache (RCache) hierarchy and

address range comparison logic.

5.2 Region-based GPU Bounds Checking

5.2.1 Protection Coverage. GPUShield implements efficient region-

based bounds checking to protect the following GPUmemory types:

1) host-allocated buffers that are passed as kernel arguments, 2)

local variables, and 3) the entire heap memory chunk. As explained

in Section 2.1, a GPU kernel can support up to 128 kernel arguments,

so we need to maintain at most 128 entries in the bounds table for

host-allocated buffers. In addition, we treat each local variable (i.e.,

kernel variables allocated in the local memory) as a separate buffer.

Note that a kernel cannot maintain toomany local variables because

1) local memory has a size limitation (512KB per thread), and 2)

the size of constant memory that stores the base addresses of local

variables is also limited (64KB shared by all threads).

For the heap memory, we adopt coarser grain protection. Recent

Nvidia GPUs support each thread to allocate buffers at runtime,

but the performance overhead of dynamic allocation would be sig-

nificant when numerous threads allocate the memory buffers in

parallel.2 In this case, the number of dynamic buffers can be enor-

mous, considering that a GPU can support numerous concurrent

threads. The size of each dynamic buffer can vary for each thread,

so protecting individual dynamic buffers in the heap memory is

practically infeasible. For heap protection, we treat the entire heap

memory as a buffer and maintain its bounds information in a single

entry in the bounds table. The maximum size of the heap memory

is preset by using the cudaDeviceSetLimit function with argument

cudaLimitMallocHeapSize before a context creation.

5.2.2 Bounds Metadata. We maintain per-buffer bounds metadata,

as shown in Figure 6. The base_addr stores the 48-bit3 base address

of a buffer whose size is stored in the 32-bit size. The valid and

readonly fields are 1-bit each and embedded in the base_addr. Each

buffer has a unique ID, assigned by the GPU driver.

5.2.3 Region Bounds Table. We store the bounds metadata of each

buffer in a newly introduced per-kernel RBT. Since a GPU kernel

uses a few buffers (6.5 buffers on average in Figure 1), a small-size

2We have conducted a study of GPU dynamic memory allocation and discovered that
the performance overhead of using CUDA built-in malloc() ranges from a 4.9 to
63.7× slowdown. We use Nvidia RTX2080 with the following parameters: blocks per
grid: 1K to 16K, threads per block: 1024, buffer size: 16 bytes.
3The size of the virtual address (VA) depends on the host CPU and the compute
capability for Nvidia GPUs, e.g., 40-bit (Maxwell) and 47-bit (Pascal) under x86-64 [57].
Regardless, our mechanism can apply to different VA sizes.

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

1 Encrypted Buffer ID Address

04761 48

0 N/A Address

04761 48

2 Log2BufferSize Address

04761 48

Type 1.

Unprotected

Type 2.

Base type

Type 3.

Offset Opt.

Figure 7: Pointer types used by GPUShield.

RBT can cover all bounds metadata. RBT is a 16384-entry direct-

mapped structure indexed by a 14-bit buffer ID. The GPU driver

allocates and updates RBT in the GPU global memory space upon

a kernel launch (ğ5.4).

5.2.4 Embedded Metadata in Pointer. To access bounds metadata,

inspired by pointer tagging [21, 22, 35, 38, 78], we use unused upper

bits in the memory address to store a buffer ID. In this way, we can

remove the need for hardware extension to store buffer IDs, and the

embedded buffer ID will be propagated with any pointer arithmetic

instruction and later used for bounds checking. This approach is

less intrusive than extending pointers or registers to store bounds

metadata.

However, the pointer value is not naturally protected, so pointer

forging attacks can exploit this method. Since the GPU driver as-

signs buffer IDs in ascending order based on the kernel argument

order, GPUShield can be vulnerable against pointer forging if we

use the originally assigned IDs. Considering only a smaller number

of buffers (at most 34 buffers, as shown in Figure 1) with their IDs

known from the source code, an attacker can maneuver the ID in a

pointer to exercise an illegal write to the victim’s benign buffer. To

prevent this forging attack, we assign a 14-bit random but unique

ID to each buffer.

Using random buffer IDs can obfuscate attackers but is still vul-

nerable since the original ID is exposed in the pointer. If the same

kernel runs multiple times, an attacker can infer metadata em-

bedded in pointers. Against this attack, we encrypt buffer IDs be-

fore storing them in pointers using the per-kernel encryption key.

Without knowing the encryption key, attack attempts will lead to

incorrect RBT access, resulting in bounds-checking failures and

subsequent faults. Note that a new encryption key will be used for

each kernel launch.

5.2.5 Pointer Formats. GPUShield uses three pointer types, shown

in Figure 7. The two most significant bits (the C field) indicate the

type of pointer, and the remaining 14 bits hold bounds informa-

tion. When C is 0, which is set after compiler-based static analysis

(ğ5.3), bounds checking will not be performed. When C is 1, this

indicates that the pointer uses Method B addressing mode (full

virtual address) in Figure 2, and the encrypted buffer ID is stored in

the pointer. When C is 2, the pointer uses an optimized addressing

Method C (base address with an offset) with the embedded buffer

size information, which is explained in Section 5.3.3.

1 store i32 * %a, i32 * %a.addr, align 8

2 %call = call i64 @_Z13get_global_idj(i32 0) #4

3 %conv = trunc i64 %call to i32

4 store i32 %conv , i32* %id, align 4

5 %0 = load i32 *, i32 * %a.addr, align 8

6 %idxprom = load i32 , i32 * %id, align 4

7 %arrayidx = getelementptr inbounds i32 ,i32*%0,i32 %idxprom

(a) LLVM IR example.

Target Reg

%arrayidx

GEP

%0
%idxprom

A+255I32*

1
st

 Arg

MaxID 255

: Operand Search Path : Value Fill Path

OpCode

Operands 1
...

ValueType

Legend

%0

LOAD

%a.addr

AI32*

%idxprom

LOAD

%id

255I32*

%a.addr

STORE

%a

AI32*

%id

STORE

%conv

255I32*

%conv

TRUNC

%call

255I32*

2
nd

 Arg

%call

CALL

@_Z13get_g

lobal_idj

255I32*

A

B

ADDR

1024

512

SIZE

Arg. Info & Constants

(b) Compiler-based data-flow analysis.

Figure 8: LLVM-based static bounds checking.

5.3 Compiler-based Static Analysis

We analyze all memory pointers by using the LLVM compiler frame-

work [36] to identify the pointer type and perform static bounds

checking.

5.3.1 Pointer Type Identification. The compiler first identifies the

type of each pointer, i.e., which memory it will access. In particu-

lar, we aim to identify pointers that access global memory (host-

allocated buffers and dynamic memory) and local memory.

5.3.2 Static Bounds Checking. Figure 8 shows how we perform the

analysis using an LLVM intermediate representation (IR) example.

To identify the pointers for which bounds checking can be done

at compile-time, we perform a data-flow analysis. First, we look

for GetElementPtr (GEP) instructions, which indicate the address of

memory operations. A GEP instruction (line 7 in Figure 8a) requires

one destination (%arrayidx) and two source operands, a base address

(%0) and an index (%idxprom). From this instruction, we construct

an operand tree. We search the producer (dependent) instructions

of all operands through the instruction dependency chain. In this

way, we can find the base address (%a.addr in line 1) of the GEP

instruction.

Then, we perform reverse traversal on the operand tree from the

leaf node to the root. At this time, we try to fill the value of the

operand, which we can identify from the host code analysis or the

given maximum value. For example, the maximum return value of

get_global_id function in line 2 is CL_DEVICE_MAX_WORK_GROUP_SIZE.

When the search reaches the root node, i.e., one of the operands

of GEP, we perform bounds checking if the value can statically be

known. Otherwise, we rely on dynamic bounds checking.

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

Bounds-

Analysis

Table

(BAT)

Type1

Type2

Type3

Masking

*Fig. 7

① Bounds Info.

Analysis (*Fig. 8)

② Type

Selection

③ BAT

Attaching

Static

Analysis

Kernel

Launch

D
e

v
.

M
e

m
.

RBT

⑤ Checking,

Reporting

BCU

LD/ST
Addresses

④ Buf. ID Gen,

Copy to Device

Binary File

BAT

Source

Code

Runtime

Checker

Compiler GPU Driver GPU HW

OoB

D
r
iv
e
r

Unique
Encrypted
Buffer ID

Constants

Kernel Arg Info

: Addr, Size⨁ []

Figure 9: GPUShield operation flow.

After the static bounds checking is completed, we log the findings

(pointer types) in the bounds-analysis table (see Section 5.4). We

report overflow errors to the user immediately after this step. For

pointers whose bounds checkingwas successfully done, we set them

to Type 1 (see Figure 7) to avoid runtime bounds checking. Other

pointers will become Type 2. Finally, the binary-format bounds-

analysis table is attached to the binary and later used by the GPU

driver upon kernel launch.

5.3.3 Optimization. We can optimize the Method C addressing in

Figure 2 to bypass RBT accesses. Instead of a buffer ID, we embed

the buffer size in a pointer and compare the address offset with the

embedded size. If the offset is negative or exceeds the size, these

are out-of-bounds memory accesses.

However, naïvely storing the size limits this optimization to

buffers whose size is less than 16KB. Instead, we can enforce all

buffers to always be alignedwith the power-of-two byte address and

extend support for any buffer sizes using log2 of the size. When the

buffer size is not the power-of-two, we can add padding bytes until

the next power-of-two address. Thus, this approach inevitably in-

cursmemory fragmentation. This optimization is similar to Guarded

Pointer [6], but we can add a canary in the padding bytes [13, 14]

to detect out-of-bounds writes to this region after the kernel execu-

tion, enabling a capability-based addressing [6, 16, 75] for this type

of pointer without extending pointers and registers.

It is worth noting that we can rarely find addressing Method C

from the analysis, except for Intel GPUs. As explained in Section 2.2,

Method A (send instructions) will be the same asMethod C if we can

use registers, instead of BT, to store the base address. Consequently,

we make these pointers Type 3.

5.4 Kernel Setup by GPU Driver

The GPU driver is responsible for setting up GPU kernels upon

their launch. Figure 9 depicts the overall procedure of how the

GPU driver obtains information from the compiler and sets up GPU

kernels in GPUShield.

The GPU driver uses the bounds-analysis table that is attached

in the binary from the compiler analysis for bounds checking. The

GPU driver also allocates RBT in the GPU memory and copies

bounds metadata into RBT. To prevent illegal accesses to RBT from

different kernels, the driver stores the physical address of RBT for

1 void Memory::UpdateBnds(Device *pDevice, uint64_t base, int sz,
bool ronly)

2 {

3 int id = assign_buffer_id ();

4 m_RBT[id]. base_addr = (base | (1<<63) | (ronly <<62));

5 m_RBT[id].size = sz;

6 pDevice ->VkInstance ()->PalPlatform ()->updateBnds(m_RBT

);

7 }

8

9 // AMD OpenSource Vulkan Driver

10 VkResult Memory :: Memory (...)

11 {

12 ...

13 m_RBT = new Bounds[16384];

14 // Allocate Bound table data on GPU Memory

15 Pal::GpuMemoryResourceBoundTableData(m_RBT);

16 ...

17 }

18

19 VkResult Memory :: Create(Device * pDevice ,

VkMemoryAllocateInfo* pAllocInfo , ...)

20 {

21 createInfo.size = pAllocInfo ->allocationSize;

22 // allocate physical memory in Driver

23 CreateGpuMemory (..., creatInfo , &pMemory);

24 ...

25 // Generate per -kernel key

26 uint64_t kernel_secret_key = key_generation();

27 uint64_t kernel_secret_id = id_generation();

28 ...

29 // Update the Bounds Table

30 UpdateBnds(pDevice, pMemory->base, pMemory->m_size, 1)

31 ...

32 }

Figure 10: GPU kernel driver code example to set up RBT.

all cores the kernel will be running on and makes the correspond-

ing pages inaccessible. RBT accesses in GPU cores will bypass the

address translation, while all other normal accesses require the

translation and fail if they try to access RBT because of the permis-

sion.

The driver assigns a random but unique ID to each buffer and

local variable and embeds it in the pointer that holds the base

address, for example, constant memory (Nvidia) or registers (AMD),

as explained in Section 2.2. Because of security concerns, we encrypt

the ID before embedding it (see Section 5.2.4). The encryption

key will be stored in the GPU cores to decrypt buffer IDs before

performing bounds checking. For the heap memory, the driver

assigns the ID and allocates a single entry in RBT. Upon dynamic

buffer allocations, this preassigned ID will be embedded into the

pointer. Figure 10 shows how to set up RBT using AMD opensource

Vulkan driver [2].4 The Memory::create function is called to set up

the GPU device memory.

5.5 Bounds-Checking Unit

We introduce a newmicroarchitectural structure, the bounds-checking

unit (BCU), to perform bounds checking. The BCU is located next

to the load-store unit (LSU) and comprises the RBT cache (RCache)

hierarchy, address gathering unit, and address range checking logic.

4We choose AMD’s Vulkan driver source code as the base platform to explain how a
GPU driver can be modified since it is the latest open-source GPU driver. Both Intel
and Nvidia do not release their driver source code.

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

b+t
ree

bac
kpr

op bfs cfd
dwt

2d
gau

ssia
n

hea
rtw

all
hot

spo
t

hot
spo

t3D

hyb
rids

ort
kme

ans
lava

MD lud
my

ocy
te nn nw

par
ticle

filte
r

pat
hfin

dersrad

stre
am

clus
ter

Geo
me

an
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

#
 o

f 4
KB

 p
ag

es
 p

er
 b

uf
fe

r

Figure 11: Number of 4KB pages per buffer in Rodinia suite.

For efficient bounds checking, we introduce the RCache hierar-

chy next to the L1 data cache. Storing all bounds metadata in the

L1 data cache only costs several cache lines, but this will double

cache bandwidth pressure since every memory access now needs

one additional L1 cache access. The L1 RCache is a first-in, first-out

(FIFO) queue and performs parallel tag lookups and data reads upon

its access. The L2 RCache is a 64-entry fully associative structure,

which can sufficiently cover all buffers in all evaluated benchmarks.

The L2 RCache is physically split into tag and data arrays, similar

to other cache structures.

We store virtual base addresses in RBT so that bounds checking

in a core can overlap with address translation. Otherwise, bounds

checking will be serialized with the address translation, lengthening

the critical path. We store 14-bit buffer IDs in the RCache tag array,

and each data array entry has the following fields:

◦ Base address (48-bit): the virtual base address of the buffer.

◦ Size (32-bit): the size of the buffer.

◦ Read-only (1-bit): to indicate if the buffer is read-only.

◦ Kernel ID (12-bit): the kernel ID.

When a sub-workgroup executes a memory instruction, BCU

performs bounds checking along with the LSU pipeline. We first

try to get bounds data from an RCache. The L2 RCache is large

enough to avoid any miss during kernel execution other than initial

misses. Even if the L2 RCache is not big enough for some cases,

GPU kernels access most memory regions with only a few memory

buffers. Hence, the TLB misses will occur much more frequently

than L2 RCache misses. For example, Figure 11 shows that one

buffer touches 1425 4KB pages on average in Rodinia suite [7], while

we estimate 6.6 pages on average for SPEC CPU2006 benchmarks.

Thus, the RCache miss latency will overlap with the TLB miss

latency. Initial L2 RCache misses will be serviced from RBT using

the physical address of RBT stored in the GPU core (ğ5.4) and a

buffer ID as an offset while conforming to the underlying memory

consistency and coherency models.

We can dramatically reduce the dynamic power consumption of

the L2 RCache with a much smaller L1 RCache. Figure 1 shows that

55.9% of benchmarks have fewer than five buffers. Also, the lock-

step execution model of the GPU improves the temporal locality of

bounds metadata accesses. If a sub-workgroup encounters a long-

latency instruction, such as branch and memory, the GPU core

switches to another sub-workgroup to hide latency. As a result, a

workgroup in the same GPU core tends to execute spatially adjacent

LSU

BCU

Addresses

0x48….0000

0x48….0004

..

0x48….0078

0x48….007C

D-TLB

AGEN
Dcache

Data
Coalescing

Dcache

Tag
Data ready

Data ready

L1 RCache
Address

Gather

Bounds

Checking

L2 RCache

Tag

L2 RCache

Data

Bounds

Checking

Req0

Size: 128B

0x48….0000

Type:1, ID: 0x1148

Miss

Case 1. L1 RCache hit

No stall
Case 2. L2 RCache hit

1-cycle stall

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Legend

Figure 12: BCU pipeline stages with one coalesced 128B re-

quest.

memory instructions. This execution model makes a small (4-entry)

L1 RCache effective.

L1 RCache hits entirely avoid the L2 RCache accesses. Upon an

L1 RCache miss, we access the L2 RCache tag array. After finding a

matching tag from the tag array, the corresponding bounds data

will be fetched in the next cycle and added to the L1 RCache. Note

that the RCaches will be flushed upon a kernel termination or a

context switch.

5.5.1 BCU Pipeline Stages. Figure 12 shows the combined LSU and

BCU pipeline stage diagram. When a sub-workgroup executes a

memory instruction, the instruction is sent to LSU. Virtual addresses

are generated by an address generation unit (AGU), and the address

coalescing unit (ACU) merges adjacent addresses into a small num-

ber of larger-sizememory transactions. Based on thememory access

pattern, one memory instruction from a sub-workgroup can gen-

erate a single coalesced transaction or multiple transactions. The

data TLB (D-TLB) and the L1 data cache (Dcache) tag are accessed

in parallel, and the Dcache line will be read out in the next cycle in

the case of D-TLB and Dcache tag hits.

The BCU pipeline comprises address gathering, RCache access,

and address range checking. The AGU sends the encrypted buffer

ID and the pointer type from a pointer to the BCU. Type 1 pointers

bypass bounds checking. For Type 2 pointers, the buffer ID is de-

crypted using the per-kernel encryption key in the BCU, and the L1

RCache will be accessed. An L1 RCache miss initiates an L2 RCache

access. Thus, an RCache access has one- (L1 hit) or three-cycle

(L2 hit) latency. The BCU performs bounds checking for Type 3

pointers without RCache accesses.

The address gathering pipeline computes theminimum andmax-

imum address pair for bounds checking from the addresses the ACU

sends. The BCU pipeline incurs one cycle penalty only if a mem-

ory instruction results in a single transaction that hits in Dcache

but misses in the L1 RCache, as shown in Figure 12. For all other

cases, bounds-checking latency will be hidden by the LSU pipeline

latency.

5.5.2 Handling Bounds-Checking Failure. When the BCU detects a

bounds-checking failure, i.e., illegal memory access, it can immedi-

ately raise a fault if a GPU supports a precise exception. Otherwise,

the BCU logs the error and returns zero for loads or drops stores

silently. Memory safety violations can be reported 1) at the end

of a kernel execution or 2) at runtime by signaling the host using

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

Table 3: Area and power overhead by GPUShield.

Structure
of

Entry

SRAM

(Byte)

Area

(mm
2)

Leakage

(𝜇W)

Dynamic

(mW)

Comparators - - 0.0064 17.51 20.41

L1 RCache 4 53.5a 0.0060 26.40 22.93

L2 RCache tag 64 112 0.0166 256.71 55.39

L2 RCache data 64 744 0.0568 499.13 104.63

Total - 909.5 0.0858 799.75 203.36

a4 entries × (14b ID + 48b base addr. + 32b size + 1b read only + 12b kernel ID)

Table 4: Security coverage by GPUShield.

Type Coverage

Host-allocated buffers Isolation guaranteed per each buffer

Local memory Isolation guaranteed between threads

Heap memory Isolation guaranteed between kernels

an SVM buffer that the CPU and GPU share before a GPU kernel

finishes its execution.

5.6 Hardware Overhead

To estimate the area and power overhead of GPUShield, we synthe-

size the additional comparator logic and caches using a Synopsys

design compiler [70] at the 1 GHz clock frequency. We implement

the comparator using Verilog and use SRAMmodels generated from

OpenRAM [18] for caches. We use 45nm FreePDK libraries [68]

for synthesis. Table 3 shows that GPUShield incurs only modest

hardware overhead. The total overhead across all GPU cores is

14.2KB and 21.3KB for Nvidia and Intel GPUs, respectively, based

on the configurations in Table 5.

5.7 Security Coverage

Table 4 summarizes the security coverage by GPUShield described

in Section 5.2.1. Most prior studies exploit memory buffers spec-

ified as kernel arguments, i.e., host-allocated buffers, to initiate

overflow attacks. For example, a recent work, the mind control

attack [61], demonstrates an attack scenario on the existing Deep

Neural Network (DNN) server system. It consists of three phases:

setup, search, and downgrade. During the setup phase, the attack

utilizes the buffer overflow by injecting amalicious payload through

kernel arguments, which causes memory overwrites in a global

memory buffer that contains a function pointer or return address.

Then, it hijacks the control flow, enabling ROP [65] to run arbitrary

code. Since we protect each host-allocated buffer, GPUShield pro-

hibits the initial setup phase, and further steps become unfeasible.

In this way, GPUShield can mitigate this type of attack.

However, the effectiveness of GPUShield can be limited against

more futuristic, sophisticated, fine-grained attacks. In our current

design, supporting fine-grained protection for dynamically allo-

cated buffers may impose additional performance overhead and

require extra hardware support. For example, having too many

buffers can cause RCache thrashing, incurring pipeline stalls and

memory bandwidth increase. Alternatively, the protection could be

extended 1) by replacing dynamic buffers with pre-allocated buffers,

which also improves performance while potentially consuming

more memory, or 2) by using software-based bounds checking. We

leave supporting fine-grained protection as future work.

6 DISCUSSIONS

6.1 RBT Attacks

The GPU driver allocates and updates per-kernel RBT in the GPU

memory upon kernel launch (ğ5.4). We prevent illicit RBT accesses

from different kernels by storing the physical address of RBT in

all cores that the kernel will run and making corresponding pages

inaccessible.

An attacker may try to manipulate a victim application’s point-

ers via a pointer-forging attack. As explained in Section 5.2.4, we

mitigate this attack by using a 14-bit random encrypted buffer ID

with a per-kernel encryption key. Reading an invalid RBT entry

leads to a fault, so brute-force attacks are not feasible considering

encryption entropy.

6.2 Concurrent GPU Kernel Executions

Recent GPU architectures allow multiple kernels to run concur-

rently on the same GPU [77]. GPUShield can be extended to support

multi-kernels in the following ways:

1) Inter-core sharing: Multiple kernels from the same GPU appli-

cation can simultaneously run on the same GPU by splitting cores,

i.e., one kernel on the first half of the cores and the other on the

other half. Since RBT is maintained per kernel, and a core is occu-

pied by one kernel, GPUShield can work as is without incurring

any performance overhead.

2) Intra-core sharing: Recent GPUs support fine-grained core

slicing, i.e., multiple kernels can share the same core. Although

per-kernel RBT is not affected, kernels will share the same L1 and

L2 RCaches in a core. Since RCaches already have a kernel ID field,

GPUShield will work without a problem. To mitigate potential

performance degradation due to the reduced effective RCache size,

we can double and partition RCaches, i.e., bank-level partitioning.

Kernels will access their partitions based on the warp scheduler

position [77].

3) Fine-grained context switching [73] will not affect the bounds-

checking capability of GPUShield. As explained in Section 5.5,

RCaches are flushed upon context switching or kernel termination.

If the TLB is also flushed, any RBT miss latency will be amortized

with TLB-miss latencies.

6.3 Number of Memory Buffers in GPU

The maximum number of buffers that GPUShield can protect is

bounded by the number of unused bits in virtual addresses. Al-

though typical GPU kernels have fewer than 20 buffers, as shown

in Figure 1, one could also argue that having multiple concurrently

running kernels, too many local variables, or future programming

models might increase the number of active buffers. Since bounds

metadata is maintained per kernel, having multiple kernels would

not cause this problem. The dynamic parallelism supported by de-

vice kernel invocation from a parent thread has a very strict rule

for memory usages in a kernel, so it would not increase the number

of active buffers. As also discussed in Section 5.2.1, the number of

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

1 __kernel void kmeans_kernel_swap (...)

2 {

3 unsigned int tid = get_global_id (0);

4 if (tid < npoints) // SW bounds checking

5 for (int i = 0; i < nfeatures; i++)

6 feat_swap[i*npoints+tid] = feat[tid*nfeatures+i];

7 }

Figure 13: Software bounds checking in OpenCL kmeans.

Table 5: Configuration of the simulated system.

Nvidia-GPU Configuration

Core 16 SMs, 1.6 GHz, 1024 threads per SM,

256KB register files per SM

Private L1 Cache 16KB, 4-way, LRU

Private L1 TLB 64 entries per core, fully associative, LRU

Intel-GPU Configuration

Core 24 Cores, 1GHz, 7 HW threads per core,

integrated GPU model

Private L1 Cache 32KB, 4-way, LRU

Private L1 TLB 64 entries per core, fully associative, LRU

Memory Configuration

Shared L2 Cache 2MB total, 16-way, LRU

Shared L2 TLB 1024 entries total, 32-way associative, LRU

Memory 2KB row buffer, FRFCFS policy, 16 channels

local variables cannot be too high. A future programming model

that increases the number of kernel arguments would require more

significant hardware changes for various other changes. More im-

portantly, since the GPU driver is responsible for maintaining buffer

ID generation and RBT allocation, we could enhance the driver al-

gorithm to adapt to programming model changes. For example,

when the driver detects that the number of remaining buffer IDs

is running low, GPUShield can enforce two adjacent buffers to

share the same buffer ID and the merged bounds metadata. In sum,

GPUShield is capable of handling these cases.

6.4 Replacing Software Bounds Checking

Bounds-checking code is often placed in the program [20] to

prevent overflows. Bounds checking in If clauses is quite com-

mon, as shown in Figure 13 line 3. This If -statement is executed by

all workitems. We measure that the performance overhead could

be up to 76% from 1) increased instruction counts and 2) poten-

tial control-flow divergence if overflow exists, i.e., the number of

threads exceeds the buffer size. GPUShield can perform hardware-

based bounds checking instead of adding bounds-checking code

in a program. Note that we do not implement this optimization in

GPUShield and leave it as future work.

7 EVALUATION METHODOLOGY

We use MacSim [33], a cycle-level microarchitecture simulator.

The simulator supports virtual memory. We evaluated both the

Nvidia and Intel GPU architectures. Table 5 shows the simulation

parameters used in evaluations. We used both CUDA and OpenCL

applications for simulations. For CUDA, among 88 benchmarks

from Rodinia [7], Parboil [69], GraphBig [49], and CUDA-SDK,

Table 6: Evaluated benchmarks (the italic font indicates the

RCache-sensitive benchmarks).

Domain (Abbr.) Benchmarks

Machine learning (ML) mm, convolution (ConvSep), kmeans, backprop

Linear Algebra (LA) sad, spmv, stencil, Scalarprod, vectoradd, dct,

Reduction

Graph-traversal (GT) between centrality (bc), bfs-dtc, graph coloring

(gc-dtc), sssp-dwc, lavaMD, gaussia, nn

Graph-iterative (GI) pagerank, kcore, traingle count

Phys. and modeling (PS) cutcp, tpacf, blacksholes, mersennetwister,

sorting, MergeSort

Image and media (IM) mri-q, sobolQRNG, Dct, DwtHarr, hotspot, lud,

LineOfSight, Dxtc, Histogram, HSOpticalFlow

Data mining (DM) streamcluster, nw

OpenCL backprop, bfs, Bitonicsort, GEMM, Image,

lavaMD, MedianFilter, cfd, MonteCarlo,

pathfinder, svm, hotspot, hotspot3D,

hybridsort, kmeans, nn, streamcluster

ML LA GT GI PS IM DM
Benchmark category

0.98

1.00

1.02

1.04

1.06

1.08
N

or
m

al
iz

ed
 e

xe
c.

 t
im

e
(o

ve
r

no
 b

ou
nd

s
ch

ec
k) L1:1-cycle, L2:3-cycle (default)

L1:2-cycle, L2:5-cycle

Figure 14: Performance results per category (normalized to

the no bounds checking baseline). The legend shows the L1

and L2 RCache latencies, e.g., L1:1 L2:3 has 1- and 3-cycle

latency for the L1 and L2 RCaches, respectively.

we categorized benchmarks per domain, as shown in Table 6. We

collected OpenCL traces for Intel GPUs using GT-Pin [30].

8 RESULTS

8.1 Nvidia GPU Architecture Evaluations

Figure 14 shows the performance overhead of GPUShield compared

to the baseline (no bounds checking). We show per-category aver-

age performance results. In the default GPUShield configuration,

we use a 4-entry, 1-cycle L1 RCache and a 64-entry, 3-cycle L2

RCache. As explained in Section 5.5.1, we run into one cycle per-

formance penalty only upon an L1 RCache miss with the L1 data

cache hit. Even if we encounter pipeline bubbles introduced by

bounds checking, abundant thread-level parallelism (TLP) in GPUs

can tolerate the penalty to some degree. As a result, we observe that

benchmarks in all categories do not show performance degradation,

and most benchmarks exhibit close to 100% L1 RCache hit rate.

We measured the latency sensitivity of the L1 and L2 RCaches.

Most benchmarks do not show any performance degradation if the

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

bc
bfs-

dtc
Con

vSe
p
Dxt

c
gc-d

tc

Hist
ogr

am

Line
OfS

ightlud-
64
lud-

256

Mer
geS

ort

nn-
256

k-1 nw

Red
uct

ion

Sca
larP

rod

Sob
olQ

RNG
sss

p-d
wc

stre
am

clus
ter

Geo
me

an
0

20
40
60
80

100

L1
 R

BT
 c

ac
he

 h
it

ra
te

 (%
)

1-entry 2-entry 4-entry 8-entry 16-entry

Figure 15: L1 RCache size sensitivity result.

bac
kpr

op bfs

Bito
nicS

ort
GEM

M
ima

ge
lava

MD

Med
ianF

ilte
r

Mon
teC

arlo

pat
hfin

dersvm cfd
hot

spo
t

hot
spo

t3D

hyb
rids

ort
kme

ans nn

stre
am

clus
ter

Geo
me

an
0

20
40
60
80

100

L1
 R

BT
 c

ac
he

 h
it

ra
te

 (%
) 1-entry 2-entry 4-entry 8-entry 16-entry

Figure 16: L1 RCache hit rate on Intel GPU evaluations.

L1 RCache latency is less than three cycles, which is one cycle less

than the LSU pipeline. We identify that streamcluster in the DM

category shows the worst performance degradation. Unlike other

benchmarks, it has a massive number of memory requests, which

mostly hit in the L1 Dcache, and adding one cycle pipeline bubble

degraded its performance significantly.

Figure 15 shows the L1 RCache hit rate of 17 RCache-sensitive

benchmarks as we increase the size from 1 to 16 entries. For most

benchmarks, 4-entry sufficiently covers all buffers, resulting in

close to a 100% hit rate, which is not surprising since GPU kernels

typically have a small number of buffers, as shown in Figure 1.

Furthermore, sub-workgroups in the same GPU core can exploit

strong temporal locality in the buffer accesses (see Section 5.5).

8.2 Intel GPU Architecture Evaluations

We also evaluated GPUShield on the Intel GPU architecture. Un-

like Nvidia GPUs, the Intel GPU architecture has fewer hardware

threads (7) but uses vectorization to sustain high throughput. Simi-

lar to the results on the Nvidia architecture in the previous section,

Figure 16 shows that most of the benchmarks show a near 100% hit

rate with a 4-entry L1 RCache, leading to negligible performance

degradation.

8.3 Benefits of Static Code Analysis

GPUShield incurs little performance overhead, but we can further

reduce it with static bounds checking. While static analysis costs

a few tens of milliseconds of compilation time, it can significantly

improve performance for applications whose dominant memory

bc
bfs-d

tc
ConvSep

Dxtc
gc-dtc

Histo
gram

LineOfSight
lud-64

lud-256

MergeSort

nn-256k-1nw

Reductio
n

ScalarProd

SobolQRNG
sss

p-dwc

stre
amcluster

Geomean
0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c.
 t

im
e

(o
ve

r
no

 b
ou

nd
s

ch
ec

k)

0

50

100

Bo
un

ds
 c

he
ck

in
g

re
du

ct
io

n
(%

)

L1:1 L2:5
L1:1 L2:5 + static
Bounds checking reduct.

L1:2 L2:5
L1:2 L2:5 + static

Figure 17: The effect of static time bounds-checking filtering.

bfs_
cfd

bfs_
hot

spo
t3D

bfs_
hyb

rids
ort

bfs_
kme

ansbfs_
nn

bfs_
stre

am
clus

ter

cfd_
hot

spo
t3D

cfd_
hyb

rids
ort

cfd_
kme

anscfd_
nn

cfd_
stre

am
clus

ter

hot
spo

t3D
_hy

brid
sort

hot
spo

t3D
_km

ean
s

hot
spo

t3D
_nn

hot
spo

t3D
_str

eam
clus

ter

hyb
rids

ort_
kme

ans

hyb
rids

ort_
nn

hyb
rids

ort_
stre

am
clus

ter

kme
ans

_nn

kme
ans

_str
eam

clus
ter

nn_
stre

am
clus

ter

Geo
me

an
0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c.
 t

im
e

(o
ve

r
no

 b
ou

nd
s

ch
ec

k) Inter-core Intra-core

Figure 18: Multi-kernel execution results.

access patterns use a base address with thread ID or block ID index-

ing. Figure 17 shows the performance benefits on the Nvidia GPU

architecture when we apply compiler-based static bounds checking.

Note that we choose two configurations in which RCache latencies

are longer than the baseline because the baseline does not incur

performance degradation.

First, static bounds checking (+static in the legend) reduces the

performance overhead even with one cycle extra latency in the L1

RCache pipeline (L1:2). Second, we identify that applying static

bounds checking completely removes the necessity of runtime

bounds checking for some benchmarks with simple addressing.

However, graph benchmarksÐbc, bfs-dtc, gc-dtc, sssp-dwc, and

nwÐuse many indirect memory accesses, which limit the applicabil-

ity of static time analysis. This result affirms the need for dynamic

bounds checking even with the GPU’s distinct programming and

memory models.

8.4 Multi-kernel Execution Results

To see how GPUShield performs when we run multiple kernels

simultaneously on the same GPU, we run 21 combinations of two

benchmarks on the Intel GPU architecture. We test two modes

described in Section 6.2: 1) inter-core (one kernel runs on core 0

to 11, and the other runs on core 12-23) and 2) intra-core (kernels

can share any core). Figure 18 shows that the average performance

overhead of multi-kernel execution is under 0.3% for both cases.

When we run memory-intensive benchmarks, such as bfs, nn, and

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

bfs

gaussia
n

heartw
all
hotspot

kmeans
lavaMD lud

partic
lefilte

r

stre
amcluster

Geomean
0
1
2
3
4
5
6
7
8
9

10

N
or

m
al

iz
ed

 e
xe

c.
 t

im
e

(o
ve

r
no

 b
ou

nd
s

ch
ec

k)

156 197 217 53
11

195 150 224
109

72

0

50

100

Bo
un

ds
 c

he
ck

in
g

re
du

ct
io

n
(%

)

CUDA-MEMCHECK
GMOD

clArmor
GPUShield

Bounds checking reduct.

Figure 19: Software bounds-checking performance overhead

and bounds-checking reduction ratio by static analysis.

streamcluster, we could see 6.2% performance degradation (bfs

and nn in inter-core mode) over no bounds-checking case. We can

mitigate this performance loss using static bounds checking.

8.5 Performance Overhead of GPU Buffer
Overflow Detection Tools

Various overflow detection tools also exist. For example, Nvidia’s

CUDA-MEMCHECK [54] is a runtime memory error detector for

out-of-bounds andmisaligned accesses. clArmor [14] andGMOD [13]

are canary-based buffer overflow detectors.

Figure 19 shows the performance results of these tools across

Rodinia benchmarks [7]. CUDA-MEMCHECK, clArmor, and GMOD

incur 72.3×, 3.1×, and 1.5× overhead on average, respectively, while

GPUShield shows only a 0.8% slowdown. As expected, canary-based

mechanisms (GMOD and clArmor) perform better than CUDA-

MEMCHECK. streamcluster shows the highest overhead by both

CUDA-MEMCHECK and GMOD (224× and 109.2×, respectively).

This is because 1) it has a high percentage of load/store instruc-

tions (31.22%) that are instrumented for bounds checking by CUDA-

MEMCHECK, and 2) GMOD has a software structure that enforces

users to call constructor/destructor upon all kernel launches, which

incurs significant performance degradation when an application fre-

quently invokes a kernel, e.g., streamcluster conducts 1000 kernel

invocations.

The high performance overhead in software tools is due to 1)

just-in-time (JIT) binary instrumentation, 2) extra instrumented

instructions, 3) extra load instructions for bounds metadata, and

4) software-based bounds-checking operations. NVBit [72], which

takes a similar approach to CUDA-MEMCHECK, shows up to 20%

overhead from JIT binary instrumentation and 112× for running

instrumented binary for memory profiling. Compile-time binary

instrumentation would reduce the performance overhead, but the

overhead will still be much higher than CPU because additional

register usage and increased memory footprint may reduce GPU

occupancy, i.e., less throughput.

Static analysis used in GPUShield can be applied to these soft-

ware schemes to alleviate the performance overhead. For exam-

ple, we expect the performance of bfs, lud, and streamcluster to

significantly improve with this optimization thanks to the high

runtime bounds checking reduction rate (53.3%, 100%, and 49.4%,

respectively). However, not all benchmarks can benefit from this

optimization. For example, graph applications have many indirect

memory accesses, which solely rely on runtime bounds checking.

GPUShield would still outperform software tools with static bounds

checking optimization thanks to efficient hardware-based bounds

checking.

9 CONCLUSIONS

This paper proposed GPUShield, which is the first hardware-based

GPU bounds-checkingmechanism to provide spatial memory safety.

We first compared addressing methods by various GPUs. We also

demonstrated that out-of-bounds writes can be easily done on

Nvidia CUDA SVM. Thanks to GPU’s unique programming and

execution models, GPUShield can implement an efficient region-

based bounds-checking mechanism. Our evaluations showed that

GPUShield incurs negligible performance overhead. We also de-

scribed how compiler-based static bounds checking can be per-

formed to reduce unnecessary runtime bounds checking. With

increasingly complex GPU applications introduced by the wide

adoption of GPUs, we believe in the value of our proposed mecha-

nism for secure GPU computing.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

insightful feedback to improve the paper. We also thank Sunpyo

Hong, Aamer Jaleel, Sam Jijina, Andrei Bersatti, and other HPArch

members for their support and suggestions. We gratefully acknowl-

edge support from Intel.

REFERENCES
[1] AMD. 2012. AMD Graphics Cores Next (GCN) Architecture. https://www.amd.

com/Documents/GCN_Architecture_whitepaper.pdf.
[2] AMD. 2018. AMD Vulkan® Open Source Driver. https://github.com/GPUOpen-

Drivers/AMDVLK.
[3] AMD. 2020. RDNA 1.0 Instruction Set Architecture Reference Guide. https:

//developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf.
[4] Arm. 2020. Arm®Architecture Reference Manual Armv8, for Armv8-A archi-

tecture profile. https://developer.arm.com/docs/ddi0487/fb/arm-architecture-
reference-manual-armv8-for-armv8-a-architecture-profile.

[5] Rachata Ausavarungnirun, VanceMiller, Joshua Landgraf, Saugata Ghose, Jayneel
Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu. 2018. MASK:
Redesigning the GPU Memory Hierarchy to Support Multi-Application Concur-
rency. In Proceedings of the 23rd ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Association
for Computing Machinery, New York, NY, USA, 503ś518.

[6] Nicholas P. Carter, StephenW. Keckler, and William J. Dally. 1994. Hardware Sup-
port for Fast Capability-Based Addressing. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Association for Computing Machinery, New York, NY, USA,
319ś327.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, Piscataway, NJ, USA, 44ś54.

[8] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming
without Returns. In Proceedings of the 17th ACM SIGSAC Conference on Computer
and Communications Security (CCS). Association for Computing Machinery, New
York, NY, USA, 559ś572.

[9] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
Guard: Automatic Adaptive Detection and Prevention of Buffer-OverflowAttacks.
In Proceedings of the 7th USENIX Security Symposium (Security). USENIX Asso-
ciation, USA, 1ś15. https://www.usenix.org/conference/7th-usenix-security-
symposium/stackguard-automatic-adaptive-detection-and-prevention

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://github.com/GPUOpen-Drivers/AMDVLK
https://github.com/GPUOpen-Drivers/AMDVLK
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
https://developer.arm.com/docs/ddi0487/fb/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/fb/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention

ISCA ’22, June 18–22, 2022, New York, NY, USA Lee et al.

[10] Datalogisk Institut. 2020. The Futhark Programming Language. https://futhark-
lang.org.

[11] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008.
Hardbound: Architectural Support for Spatial Safety of the C Programming
Language. In Proceedings of the 13th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Association
for Computing Machinery, New York, NY, USA, 103ś114.

[12] Bang Di, Jianhua Sun, and Hao Chen. 2016. A Study of Overflow Vulnerabilities
on GPUs. In IFIP International Conference on Network and Parallel Computing
(NPC). Springer International Publishing, Cham, 103ś115.

[13] Bang Di, Jianhua Sun, Dong Li, Hao Chen, and Zhe Quan. 2018. GMOD: A
Dynamic GPU Memory Overflow Detector. In Proceedings of the 27th ACM Inter-
national Conference on Parallel Architecture and Compilation Techniques (PACT).
Association for Computing Machinery, New York, NY, USA, 1ś13.

[14] Christopher Erb, Mike Collins, and Joseph L Greathouse. 2017. Dynamic buffer
overflow detection for GPGPUs. In Proceedings of the 15th International Sympo-
sium on Code Generation and Optimization (CGO). IEEE, Piscataway, NJ, USA,
61ś73.

[15] Christopher Erb and Joseph L. Greathouse. 2018. ClARMOR: A Dynamic Buffer
Overflow Detector for OpenCL Kernels. In Proceedings of the International Work-
shop on OpenCL (IWOCL). Association for Computing Machinery, New York, NY,
USA, Article 15, 2 pages. https://github.com/ROCm-Developer-Tools/clARMOR.

[16] Robert S. Fabry. 1974. Capability-based addressing. Communications of the ACM
17, 7 (1974), 403ś412.

[17] Google. 2017. Google Queue Hardening. https://security.googleblog.com/2019/
05/queue-hardening-enhancements.html.

[18] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu, and
Mehedi Sarwar. 2016. OpenRAM: An Open-Source Memory Compiler. In Pro-
ceedings of the 35th International Conference on Computer-Aided Design (ICCAD).
Association for Computing Machinery, New York, NY, USA, 1ś6.

[19] Yuchen Hao, Zhenman Fang, Glenn Reinman, and Jason Cong. 2017. Supporting
address translation for accelerator-centric architectures. In Proceedings of the
23rd IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, Piscataway, NJ, USA, 37ś48.

[20] Troels Henriksen. 2021. Bounds Checking on GPU. International Journal of
Parallel Programming 49, 6 (2021), 761ś775.

[21] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan Piersma,
and Simha Sethumadhavan. 2021. No-FAT: Architectural Support for Low Over-
head Memory Safety Checks. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE Press, Piscataway, NJ, USA,
916ś929.

[22] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, and Simha
Sethumadhavan. 2021. ZeRé: Zero-Overhead Resilient Operation Under Pointer
Integrity Attacks. In Proceedings of the 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, Piscataway, NJ, USA, 999ś1012.

[23] Intel. 2014. OpenCL 2.0 Shared Virtual Memory Overview. https:
//software.intel.com/content/www/us/en/develop/articles/opencl-20-shared-
virtual-memory-overview.html.

[24] Intel. 2015. Introduction to Resource Binding in Microsoft DirectX*
12. https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-resource-binding-in-microsoft-directx-12.html.

[25] Intel. 2016. In-Depth Discussion of Intel® Processor Graphics.
https://software.intel.com/content/www/us/en/develop/blogs/micro49-
tutorial-on-intel-processor-graphics-microarchitecture-and-isa.html.

[26] Intel. 2017. Intel® Iris® Plus Graphics and UHD Graphics Open
Source Programmer’s Reference Manual. Volume 7: 3D-Media-GPGPU.
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol07-
3d_media_gpgpu.pdf.

[27] Intel. 2020. Intel® Iris® Plus Graphics and UHD Graphics Open Source Pro-
grammer’s Reference Manual. Volume 2a - Command Reference: Instructions
(Command Opcodes). https://01.org/sites/default/files/documentation/intel-gfx-
prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf.

[28] Gurunath Kadam, Danfeng Zhang, and Adwait Jog. 2018. Rcoal: mitigating gpu
timing attack via subwarp-based randomized coalescing techniques. In Proceed-
ings of the 24th IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, Piscataway, NJ, USA, 156ś167.

[29] Gurunath Kadam, Danfeng Zhang, and Adwait Jog. 2020. Bcoal: Bucketing-based
memory coalescing for efficient and secure gpus. In Proceedings of the 26th IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, Piscataway, NJ, USA, 570ś581.

[30] Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk,
Sohaib Sajid, and Martha A. Kim. 2015. Fast Computational GPU Design with
GT-Pin. In Proceedings of the 2015 IEEE International Symposium on Workload
Characterization (IISWC). IEEE Computer Society, USA, 76ś86.

[31] Khronos Group. 2014. WebCL Validator. https://github.com/KhronosGroup/
webcl-validator.

[32] Khronos Group. 2015. The OpenCL Specification. https://www.khronos.org/
registry/OpenCL/specs/opencl-2.0.pdf.

[33] Hyesoon Kim, Jaekyu Lee, Nagesh B. Lakshminarayana, Jaewoong Sim, Jieun
Lim, Tri Pho, Hyojong Kim, and Ramyad Hadidi. 2012. MacSim: A CPU-GPU
Heterogeneous Simulation Framework User Guide. https://github.com/gthparch/
macsim.

[34] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hyesoon Kim.
2020. Batch-Aware Unified Memory Management in GPUs for Irregular Work-
loads. In Proceedings of the 25th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Association
for Computing Machinery, New York, NY, USA, 1357ś1370.

[35] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. 2020. Hardware-based Always-on
Heap Memory Safety. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, Piscataway, NJ, USA, 1153ś1166.

[36] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO): Feedback-Directed and
Runtime Optimization. IEEE Computer Society, USA, 75ś86.

[37] Jaekyu Lee, Dong HyukWoo, Hyesoon Kim, andMani Azimi. 2015. GREEN cache:
Exploiting the disciplined memory model of openCL on GPUs. IEEE Transactions
on Computers (TC) 64, 11 (2015), 3167ś3180.

[38] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Gre-
wal, and Sreenivas Subramoney. 2021. Cryptographic Capability Computing. In
Proceedings of the 54th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). Association for Computing Machinery, New York, NY, USA,
253ś267.

[39] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In Pro-
ceedings of the 28th USENIX Security Symposium (Security). USENIX Association,
USA, 1257ś1272.

[40] Tao Liao, Yongjie Zhang, Peter M Kekenes-Huskey, Yuhui Cheng, Anushka
Michailova, Andrew D McCulloch, Michael Holst, and J Andrew McCammon.
2013. Multi-core CPU or GPU-accelerated multiscale modeling for biomolecular
complexes. Computational and Mathematical Biophysics 1 (2013), 164ś179.

[41] Linux kernel development community. 2020. Kernel module signing facility.
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html#:
~:text=module%20signing%20facility-,Overview,signed%20with%20an%
20invalid%20key.

[42] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. 2015. Side-
channel power analysis of a GPU AES implementation. In Proceedings of the 33rd
IEEE International Conference on Computer Design (ICCD). IEEE, Piscataway, NJ,
USA, 281ś288.

[43] A. Markettos, Colin Rothwell, Brett Gutstein, Allison Pearce, Peter Neumann, Si-
mon Moore, and Robert Watson. 2019. Thunderclap: Exploring Vulnerabilities in
Operating System IOMMU Protection via DMA from Untrustworthy Peripherals.
In Proceedings of 2019 Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society, USA, 1ś15.

[44] John Michalakes and Manish Vachharajani. 2008. GPU acceleration of numerical
weather prediction. Parallel Processing Letters 18, 04 (2008), 531ś548.

[45] Andrea Miele. 2016. Buffer overflow vulnerabilities in CUDA: a preliminary
analysis. Journal of Computer Virology and Hacking Techniques 12, 2 (2016),
113ś120.

[46] Matt Miller. 2019. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-
%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf.

[47] Sparsh Mittal, SB Abhinaya, Manish Reddy, and Irfan Ali. 2018. A survey of
techniques for improving security of gpus. Journal of Hardware and Systems
Security 2, 3 (2018), 266ś285.

[48] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for Safe and Secure Manual Memory Management and Full Memory
Safety. In Proceedings of the 39st Annual International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, USA, 189ś200.

[49] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin.
2015. GraphBIG: Understanding Graph Computing in the Context of Industrial
Solutions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). Association for Computing
Machinery, New York, NY, USA, Article 69, 12 pages.

[50] Nvidia. 2013. Unified Memory in CUDA 6. https://developer.nvidia.com/blog/
unified-memory-in-cuda-6/.

[51] Nvidia. 2014-2021. NVLink and NVSwitch. https://www.nvidia.com/en-us/data-
center/nvlink.

[52] Nvidia. 2016. Nvidia Tesla P100. https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf.

[53] Nvidia. 2016. Nvidia Tesla V100. http://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf.

[54] Nvidia. 2020. CUDA-MEMCHECK User Manual. https://docs.nvidia.com/cuda/
pdf/CUDA_Memcheck.pdf.

https://futhark-lang.org
https://futhark-lang.org
https://github.com/ROCm-Developer-Tools/clARMOR
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-20-shared-virtual-memory-overview.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-20-shared-virtual-memory-overview.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-20-shared-virtual-memory-overview.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-resource-binding-in-microsoft-directx-12.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-resource-binding-in-microsoft-directx-12.html
https://software.intel.com/content/www/us/en/develop/blogs/micro49-tutorial-on-intel-processor-graphics-microarchitecture-and-isa.html
https://software.intel.com/content/www/us/en/develop/blogs/micro49-tutorial-on-intel-processor-graphics-microarchitecture-and-isa.html
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol07-3d_media_gpgpu.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol07-3d_media_gpgpu.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://github.com/KhronosGroup/webcl-validator
https://github.com/KhronosGroup/webcl-validator
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://github.com/gthparch/macsim
https://github.com/gthparch/macsim
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html##:~:text=module%20signing%20facility-,Overview,signed%20with%20an%20invalid%20key
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html##:~:text=module%20signing%20facility-,Overview,signed%20with%20an%20invalid%20key
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html##:~:text=module%20signing%20facility-,Overview,signed%20with%20an%20invalid%20key
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://www.nvidia.com/en-us/data-center/nvlink
https://www.nvidia.com/en-us/data-center/nvlink
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Memcheck.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Memcheck.pdf

Securing GPU via Region-based Bounds Checking ISCA ’22, June 18–22, 2022, New York, NY, USA

[55] Nvidia. 2020. Nvidia A100 Tensor Core GPU Architecture. https:
//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf.

[56] Nvidia. 2020. Parallel Thread Execution ISA. https://docs.nvidia.com/cuda/pdf/
ptx_isa_7.1.pdf.

[57] Nvidia. 2021. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#dynamic-global-memory-allocation-
and-operations.

[58] Nvidia. 2021. NVIDIA GRACE CPU. https://www.nvidia.com/en-us/data-center/
grace-cpu.

[59] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2018. Intel MPX Explained: A Cross-Layer Analysis of the Intel MPX
System Stack. Proceedings of the ACM Measurement and Analysis of Computing
Systems (POMACS) 2, 2, Article 28 (June 2018), 30 pages.

[60] Oracle. 2015. Hardware-assisted checking using Silicon Secured Memory (SSM).
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

[61] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo Yoon.
2021. Mind control attack: Undermining deep learning with GPU memory
exploitation. Computers & Security 102 (2021), 102115.

[62] Can Peng, Chenlin Huang, Daokun Hu, Di Bang, Jianhua Sun, Hao Chen, and
Xionghu Zhong. 2019. Address Randomization for Dynamic Memory Allocators
on the GPU. In 2019 IEEE 21st International Conference on High Performance Com-
puting and Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS). IEEE, Piscataway, NJ, USA, 570ś577.

[63] James Price and Simon McIntosh-Smith. 2015. Oclgrind: An Extensible OpenCL
Device Simulator. In Proceedings of the 3rd International Workshop on OpenCL
(IWOCL). Association for Computing Machinery, New York, NY, USA, Article 12,
7 pages.

[64] Hiroshi Sasaki, Miguel A. Arroyo, M. Tarek Ibn Ziad, Koustubha Bhat, Kanad
Sinha, and Simha Sethumadhavan. 2019. Practical Byte-Granular Memory Black-
listing Using Califorms. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Association for Computing Machinery,
New York, NY, USA, 558ś571.

[65] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Association
for Computing Machinery, New York, NY, USA, 552ś561.

[66] Seunghee Shin, Guilherme Cox, Mark Oskin, Gabriel H. Loh, Yan Solihin, Ab-
hishek Bhattacharjee, and Arkaprava Basu. 2018. Scheduling Page Table Walks
for Irregular GPU Applications. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, Piscataway, NJ, USA, 180ś192.

[67] Kanad Sinha and Simha Sethumadhavan. 2018. Practical Memory Safety with
REST. In Proceedings of the 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE Press, Piscataway, NJ, USA, 600ś611.

[68] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett
Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi
Jenkal. 2007. FreePDK: An open-source variation-aware design kit. In Proceedings
of the 2007 IEEE International Conference on Microelectronic Systems Education

(MSE’07). IEEE, Piscataway, NJ, USA, 173ś174.
[69] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. 2012. Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Computing. Technical
Report. IMPACT, UIUC. http://impact.crhc.illinois.edu/parboil/parboil.aspx

[70] Synopsys. 2020. DC Ultra. https://www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/dc-ultra.html.

[71] The Khronos®Vulkan Working Group. 2020. Vulkan®1.2.160 - A Specification
(with all registered Vulkan extensions). https://www.khronos.org/registry/
vulkan/specs/1.2-extensions/html/vkspec.html#shader-binding-table.

[72] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. 2019.
NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). Association for Computing Machinery, New York, NY, USA,
372ś383.

[73] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2016. Simultaneous multikernel GPU: Multi-tasking throughput
processors via fine-grained sharing. In Proceedings of the 22nd IEEE International
Symposium onHigh-Performance Computer Architecture (HPCA). IEEE, Piscataway,
NJ, USA, 358ś369.

[74] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert M.
Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo,
A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson,
and SimonW. Moore. 2019. CHERI concentrate: Practical compressed capabilities.
IEEE Transactions on Computers (TC) 68, 10 (2019), 1455ś1469.

[75] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In Proceedings of the 41st Annual International Symposium on Computer
Architecture (ISCA). IEEE Press, Piscataway, NJ, USA, 457ś468.

[76] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore,
Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising
Pointer Revocation Using CHERI Capabilities for Temporal Memory Safety. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). Association for Computing Machinery, New York, NY, USA,
545ś557.

[77] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
2016. Warped-slicer: efficient intra-sm slicing through dynamic resource partition-
ing for GPU multiprogramming. In Proceedings of the 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, Piscataway, NJ, USA, 230ś242.

[78] Shengjie Xu, Wei Huang, and D. Lie. 2021. In-fat pointer: hardware-assisted
tagged-pointer spatial memory safety defense with subobject granularity pro-
tection. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Association
for Computing Machinery, New York, NY, USA, 224ś240.

[79] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel, and Mark
Silberstein. 2017. Understanding The Security of Discrete GPUs. In Proceedings
of the 10th Workshop on General Purpose GPUs (GPGPU-10). Association for
Computing Machinery, New York, NY, USA, 1ś11.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.1.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.1.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##dynamic-global-memory-allocation-and-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##dynamic-global-memory-allocation-and-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html##dynamic-global-memory-allocation-and-operations
https://www.nvidia.com/en-us/data-center/grace-cpu
https://www.nvidia.com/en-us/data-center/grace-cpu
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html##shader-binding-table
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html##shader-binding-table

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Execution and Memory Models
	2.2 Memory Addressing in GPU

	3 GPU Security
	3.1 Memory Safety in GPUs
	3.2 Threat Model

	4 Prior Art on CPU Memory Safety
	4.1 Canary-based Protection
	4.2 Memory Tagging
	4.3 Bounds Checking
	4.4 Challenges in GPU Memory Safety

	5 GPUShield
	5.1 System Overview
	5.2 Region-based GPU Bounds Checking
	5.3 Compiler-based Static Analysis
	5.4 Kernel Setup by GPU Driver
	5.5 Bounds-Checking Unit
	5.6 Hardware Overhead
	5.7 Security Coverage

	6 Discussions
	6.1 RBT Attacks
	6.2 Concurrent GPU Kernel Executions
	6.3 Number of Memory Buffers in GPU
	6.4 Replacing Software Bounds Checking

	7 Evaluation Methodology
	8 Results
	8.1 Nvidia GPU Architecture Evaluations
	8.2 Intel GPU Architecture Evaluations
	8.3 Benefits of Static Code Analysis
	8.4 Multi-kernel Execution Results
	8.5 Performance Overhead of GPU Buffer Overflow Detection Tools

	9 Conclusions
	Acknowledgments
	References

