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Abstract—Programmers are looking for ways to exploit the
multi-core processors which have become commonplace today.
One of the options available is to parallelize the existing serial
programs using frameworks like OpenMP etc. However, such
parallelization does not always yield the speedup expected by the
programmer. This is due to various reasons, one of which is the
bottleneck presented by the memory system. Carefully optimized
serial algorithms fit into most of the cache available, yet these
cache optimized serial algorithms might have the worst speedup
when parallelized. We present an efficient method to identify such
cases and determine whether a serial algorithm’s use of shared
memory caches will seriously impact its parallel execution. This
can help a programmer adjust their program’s cache usage. We
demonstrate the effect in isolation with a parallelized synthetic
micro-benchmark which uses varying fractions of the shared
cache. We also present the results of our analysis of the NAS
Parallel Benchmark suite and the Rodinia benchmark suite.

I. INTRODUCTION

The multi-core era is posing a serious challenge to the
programmer looking to make efficient use of the hardware
resources available. The programmer has to either rewrite his
application using parallel algorithms or modify his legacy
application to use parallel constructs. In the later case, the
programmer has the difficult task of first identifying the re-
gions of code to parallelize and then choosing the appropriate
framework (such as Cilk [1], OpenMP [2] etc.,) to parallelize
these regions. Identification of regions of code to parallelize is
a non-trivial task. A seemingly obvious parallelizable region
of code, when parallelized, might not scale at all, instead the
performance may degrade due to severe resource contention
(cache, network, disk etc.,) or the overhead of parallelization
(locking, scheduling etc.,).

It would be helpful for the programmer to know beforehand
an estimate of the scalability of his code before investing
effort in parallelizing it. Previous work like Intel’s Parallel
Advisor [3], Kismet [4], and Parallel Prophet [5] aim to help
the programmer in making this decision. Although these tools
are very useful, we found that they do not sufficiently consider
the bottleneck posed by the memory sub-system. Especially,
we need to consider the effect of working set size on cache
contention because most of the previous methods of measuring
working set sizes used high overhead LRU stack distance [6]
algorithms. Hence, in this work, we focus on developing a
low-overhead memory profiling technique that is specifically

designed to understand the effect of cache contention on
scalability.

Estimating working set size has been studied extensively
starting with the LRU stack distance measurement [6]. Several
solutions were proposed to improve the speedup of measure-
ment mechanisms such as [7], [8], [9]. However the speedups
obtained were not sufficient for our purposes, because of the
high number of instructions executed during their O(nln(n))
behavior. Recently a few studies in [10], [11] measured the
working set size of parallel applications. Our work differs from
this earlier work in that, unlike previous work in measuring
working set size of either serial code or parallel code, our work
estimates memory usage when parallelized from serial code.
Our proposed solution is a hybrid algorithm that is a slight
variation of both the stack reuse distance algorithm and a cache
simulator to create an O(n) algorithm with a low number of
instructions per item, giving a lower resolution measurement
of the working set, but one that is adequate for performance
predictions. The profiling algorithm is called CHiP (Cache
Hit Profile), which estimates a program’s use of the cache
when parallelized by profiling only a sequential code. These
estimates can be used to either tune or predict an application’s
performance [12].

Contributions We make the following contributions in this
paper:

• We present a low-overhead memory usage profiler algo-
rithm to efficiently calculate the cache hit/miss ratio for
multiple cache sizes

• We present a benchmark which quantifies the effect of
the shared cache usage on speedup upon parallelization

• We apply our profiling algorithm to the NPB and Rodinia
benchmark suites and present our observations after an-
alyzing the results

II. RELATED WORK

Earlier work to calculate the variation in working set size
used either stack distance [13], [8] or LRU based distance
measurements [6], [14]. Cache miss equation based measure-
ments [15], [16] for estimating working set size have also
been investigated. Trace driven cache simulators for multi-
core processors which use Pin are also popular for calculating
the cache hit ratios [17]. CHiP is different from these works

1



because the main purpose of profiling here is to predict cache
hit/miss ratios when the code is parallelized. All the previous
works target to predict cache hit ratio only for either sequential
code or parallel code [7], [9].

Recently a few tools have been proposed to predict parallel
code performance only from a serial version of code. Parallel
Prophet [5] implements an emulator along with a memory
performance model to estimate speedup for the annotated
regions of code. It assumes that the DRAM accesses do not
vary when going from serial to parallel. This assumption is
not always true. Our current work can be used to discover
and model such cases.

Intel Parallel Advisor [3] is another such tool but it does
not include memory interference effects in its current speedup
estimates. Kismet [4] implements an extension of hierarchical
critical path analysis to calculate the speedup estimates. It
implements a memory model in which the memory system
is assumed to be perfectly scalable.

III. BACKGROUND AND MOTIVATION

A. Motivation with Parallel Advisor’s Results

In this section, we motivate the problem by showing re-
sults from the current state-of-the-art commercial tool, Intel’s
Parallel Advisor [3]. First, we briefly explain the working of
Parallel Advisor. Parallel Advisor is a tool to estimate speedup
from a sequential code before programmers actually parallelize
applications.

Parallel Advisor takes an annotated serial program where the
annotations specify potential parallel and protected regions.

ANNOTATE_SITE_BEGIN (allloop);
for (int i = 0; i < N; ++i) { // parallel

ANNOTATE_TASK_BEGIN (p1); // each-loop
compute(p1);
ANNOTATE_TASK_END (p1);

}
ANNOTATE_SITE_END (allloop);

Fig. 1. An example of Parallel Advisor annotations. The for-loop is
parallelizable. The outcome of Parallel Advisor is an estimated speedup of
this code when parallelized.

Parallel Advisor measures execution time between
two annotations; ANNOTATE_SITE_BEGIN and
ANNOTATE_SITE_END. Based on the profiled results,
it mimics parallel program behavior and predicts performance
of parallel code. Finally, speedups are reported against
different parallelization parameters such as scheduling
policies, threading models and CPU numbers.

Figure 2 shows the estimated speedup from Parallel Ad-
visor and the real speedup for the NPB benchmarks. The
detailed experimental methods are described in Section VI.
The speedup is measured for each parallel site (i.e., only
parallelizable sections), which means that Amdahl’s law would
predict perfect scalability. The reasons many sites do not show
this predicted perfect scalability are as follows; load unbal-
ancing, lock-contention overhead, parallel construct overhead,
cache and memory resource contention, and others. Parallel
advisor models the first three overheads while estimating the

speedup but does not consider the memory resource contention
overhead.

The results are presented based on the order of DRAM
bandwidth consumption in the sequential code (ascending
order from the left side). For the two-thread case, many
sites have almost scalable speedups especially for low band-
width consumption sites except for a few exceptional cases
such as IS(B).rank1 or FT(B).compute_indexmap.
When the bandwidth consumption increases, the gap be-
tween estimated speedup from Parallel Advisor and ac-
tual speedup increases, which is due to memory band-
width consumptions [5]. For the four-thread case, in al-
most every cases the parallel advisor predictions are too
optimistic. The gap between estimated speedup and actual
speedup increases significantly. More benchmarks show a
much wider gap even in low-bandwidth sites. The noticeable
gaps are IS(B).rank1, SP(B).comput_rhs_3, and
FT(B).compute_indexmap. The case of IS(B).rank1
is particularly interesting. It improves performance when using
two threads (1.3) but on using four threads, it shows only 0.89
speedup, which is worse than the sequential version. Figure 3
also shows the predicted speedup from advisor and actual
speedup for the Rodina benchmarks. These results also show
similar trends. For the 2-thread cases, only high-bandwidth
sites show poor speedups but for 4-thread cases, even low-
bandwidth sides show poor speedups. Except nn.main and
kmeans.kmeans_clustering, parallel advisor over es-
timates the performance benefits when parallelized.

Recent work in Parallel Prophet adjusts the estimation of
speedup for high bandwidth consumption benchmarks [5].
However, Parallel Prophet also cannot predict slowdown for
medium bandwidth consumption sites. This motivates us to
investigate the effect of cache contention for the medium
bandwidth consumption benchmarks.

B. Analytical Model of Slowdown

To understand the cache contention behavior, we construct
a simple analytical model. We model four tasks that, when
executed serially, use 75% of the last-level cache (LLC). This
fits perfectly in the cache when run in serial. When executed in
parallel, there will be more evictions from the LLC resulting
in an increase in LLC misses.

This increase may cause the execution time of a task running
in parallel to exceed that of the corresponding task when
running in serial, since any extra cache misses will now need
to be serviced by the DRAM with its longer latencies and
lower bandwidth.

In Fig. 4, we plot the slowdown calculated by an analytical
model of four tasks using an equal percentage of the shared
cache running serially and in parallel. In this model, we vary
the percentage of shared cache being used by each of the tasks
being run in parallel and calculate the slowdown from a tasks
serial run. We can observe that the slowdown starts increasing
dramatically when all the tasks do not fit in the shared cache
anymore i.e., when each task is using ≈ 25% of the shared
cache. We can also observe that when the size of cache being
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Fig. 2. Advisor and Actual results comparison for NPB: (top) 2 threads, (bottom) 4 threads. The x-axis shows the benchmark name, input size and the
function name where the parallel site is located. e.g., FT(B).cffts2 is FT benchmark with B-input. cffts2 function contains the corresponding parallel site.
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Fig. 4. The slowdown of each task running in parallel as compared to when
run in serial

used by each task is approximately 75% of the size of the
shared cache, that task is the worst performing task when
run in parallel. This shows us that a cache optimized serial
algorithm is the most affected when parallelized. This result
also indicates that when an application has a large working
set size in sequential code, the performance degradation in
the parallel version is less severe because the application is
already memory bound.

C. ShuffledReads benchmark

To observe the slowdown behavior in real hardware, we de-
signed a synthetic micro-benchmark to measure the scalability.

Description: The synthetic parallel micro-benchmark is
designed to measure the effect on scalability caused by the
variation in fraction of shared cache used by a task. In
this benchmark we create homogeneous tasks, each of which
accesses two regions of memory. Each task accesses its own
exclusive regions of memory. These regions are not shared.
One is a smaller, very frequently accessed memory region
which acts as the tasks working set and the other is a very
large, rarely accessed memory region. Each region has a
pointer chain within it. We also have a bit vector with an even
number of 1s which encodes when to switch from the smaller
region to the larger region. Based on this bit vector we chase
the pointer chain in either one of the two regions for several
iterations. We run this task stand-alone and in parallel with
other similar tasks and measure the time taken to complete
the iterations in each case. We then use these execution times
to calculate the slowdown of each task when run in parallel
compared to when run in serial. Due to running multiple tasks
in parallel, there is contention for the shared cache and this
contention causes each task to slow down. We vary the fraction
of cache being used by the tasks (same for all the tasks) and
measure the execution times using which we calculate the
slowdown to get a slowdown graph.
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Fig. 3. Advisor and Actual results comparison for Rodinia: (top) 2 threads, (bottom) 4 threads

To summarize, we can now vary (a) the ratio of accesses
to the two regions (b) the size of the two regions and (c) the
number of such tasks to run in parallel, and see the effect these
variations have on the slowdown.
Timing Measurement: To get an accurate execution time

measurement of a task, we need to reduce the error introduced
by (a) rdtsc call overhead and (b) noise due to the OS.

For this purpose we designed and implemented an Interval
Profiling method. In this method, the execution of the task
is divided into unmeasured and measured intervals, with 9
measured intervals spread evenly throughout the execution. We
make sure that the length of each measured interval is such
that the rdtsc call overhead is not more than 1%. Also, we
make sure that the length of the interval is small enough such
that any noise introduced due to the OS is minimal. We then
time these intervals and choose the median measured times.
The shortest are possibly caused by rdtsc noise, and the longest
by OS noise.
Calculating Slowdown: We use the execution time measured

in calculating the slowdown for each individual task. We are
looking at the slowdown of each individual task instead of the
speedup of the region because heterogeneous tasks will slow
down by varying amounts when run in parallel. Also because
a task on the same core as the execution prior to the fork will

benefit from the initial cache contents. The tasks which are run
on a different core will have cache warm-up costs associated
with them. Looking at overall slowdown instead of slowdown
of each individual task will miss this important factor.

Results: We plot the results in Fig. 5. The system has an
8MB shared cache, and 3 cores were used to parallelize the
accesses. In Fig. 5 the peak slowdown is observed at about
3-4MB, where it would take 3x3MB to hold all the frequently
accessed memory regions and the reads from the much larger,
rarely accessed memory are using about 10% of the cache.
The combined 10MB is exceeding the available 8MB of
shared cache, causing extra cache misses. The slowdown in
this case may even be caused by the contention for the
memory accessing fabric itself. These experimental results are
consistent with the observations of the analytical model in
Section III-B.

IV. DEFINITIONS AND MEASUREMENTS

As we describe in Section III-A, we annotate the paralleliz-
able code sections in a serial program and generate a binary
executable, with all optimizations. This brings us closer to the
real life execution of the program. Our profiler is implemented
as a Pin[18] tool which instruments these annotated regions in
the executable. We instrument the memory accesses within the



Fig. 5. The graph shows the slowdown of each task for various working set sizes. x-axis: working set size(bytes), y-axis: slowdown, z-axis: number of times
all the working set is read

annotated region to extract the accessed memory addresses.
The collected addresses are used to generate a Cache Hit
Profile.
A. Cache Hit Profile

Each Cache Hit Profile (CHiP) consists of:
1) an array of CacheSets of width w. Each CacheSet is a

LRU array with d entries. Each entry in a CacheSet
represents a recently accessed cache line. The most
recently accessed cache lines are at the front of the
LRU array. The entire array of CacheSets describes a
(w ∗ d ∗ cacheLineSize) byte cache.

2) an array of counters of length (d + 1) which store the
total number of hits at the corresponding depth into the
CacheSets. The counter at depth (d+1) stores the total
misses. The first n counters of the CacheSets describe
a (n ∗ w ∗ cacheLineSize) byte cache.

B. The number of CacheSet entries d and CacheSets width w

The number of entries d in the CacheSet controls the
accuracy of our generated profile. A 1-wide, infinite entry
CacheSet is what is used in the Stack Distance algorithm [13].
Increasing the width, and decreasing the depth will decrease
accuracy and overhead. So choosing depth d is a trade-off
between accuracy and overhead.

We set d to 16, because knowing the fraction of the cache
used to within 1/16th is sufficiently accurate for our purposes,
and because the CacheSet then fits in one or two cache lines,
it can be very quickly updated.

The width w of the array of CacheSets is determined by
the maximum cache size for which we want to profile our
program.

w =
max cache size

d× cache line size

Example: Consider a profile which tries to map 16 MB
of shared cache with a 64 byte cache line. If the number of
entries in each CacheSet is 16, then the width of the array of

CacheSets is 16 MB / (64 x 16) = 16K. 16K CacheSets of 16
entries deep are required to map such a shared cache.

C. Measuring the CHiP

We extract the cache line addresses for each memory
address accessed using a Pin tool. The address is then mapped
to its corresponding CacheSet using a hash. We then lookup
the mapped CacheSet for the presence of this cache line by
updating from the front until the address is found or until the
end of the LRU array of the CacheSet is reached. If this cache
line was accessed recently enough, it will be present in the
CacheSet. If the cache line is being accessed for the first time
or if the cache line was not accessed recently enough, it will
not be present in the CacheSet. In either case the scanning
search updates the CacheSet to bring this cache line to the
front of the LRU array, pushing the other entries back by an
entry. We increment the array of counters entry for the depth
at which the cache line was found, otherwise we increment the
counter at depth (d + 1) signifying a miss. We also present
pseudo code in Listing 1.

D. Overhead

1) Memory Overhead: In our implementation each cache
line address is 8 bytes and cache line size is 64 bytes. Each
counter is an unsigned 8 byte integer. We profiled for a cache
size of 16 MB and the number of entries in each CacheSet is
16 giving us a granularity of 1 MB. The memory required for
the cache data structure in this case is:

=
max cache size× sizeof(address)

cacheLineSize
+

(d+ 1)× sizeof(counter)

which is = (16 MB * 8 / 64) + (17 * 8) = 2 MB.
If necessary a second CHiP can be maintained

simultaneously with a smaller max cache size, and it
can get finer resolution for determining effects when there
are 8 or more threads contending for the cache causing a



1 CacheSetArray is the array of all CacheSets
2 CountsArray is the array which stores the hits at each depth
3 cacheSet depth is the depth of a CacheSet
4

5 UPDATE CHIP(address):
6

7 cacheLine = address >> log2(CACHE LINE SIZE);
8 hashedCacheLine = hash function(address);
9 cacheSet index = hashedCacheLine & mask; /∗ 0 − width ∗/

10 current cacheSet = CacheSetArray[cacheSet index];
11

12 depth = find(cacheLine, current cacheSet);
13

14 CountsArray[depth]++;
15

16 /∗ This searches for cacheLine in the cacheSet
17 ∗ and returns the depth at which the cacheLine is found
18 ∗ else, return cacheSet depth
19 ∗/
20 find(cacheLine, cacheSet):
21 temp cacheLine = cacheLine;
22

23 idx = 0;
24 while(idx < cacheSet depth)
25 oldCacheLine = cacheSet[idx];
26 cacheSet[idx] = temp cacheLine;
27 if (oldCacheLine == cacheLine)
28 break;
29 temp cacheLine = oldCacheLine;
30 idx++;
31

32 return idx;

Listing 1. Pseudo code for CHiP

need to know the usage to greater precision.

2) Profiling Overhead: Our profiling overhead comes
from instrumenting the code regions using Pin and then
processing the extracted addresses through our CHiP profiler.
We found that the combined overhead to be ≈ 10x the non-
instrumented execution time. In the profiler, for each cache
line address we perform at most d comparison operations. So
the processing cost is O(n) where n is the number of memory
addresses extracted.

V. ANALYSIS

A. Analysis

In this section we present a method to analyze the increased
DRAM traffic using the the generated CHiP profile. The
CHiP profile gives us the cache hit percentage at various
depths which correspond to various cache sizes. Using these
hit percentages we can estimate the shared cache usage for
different sizes of the shared cache. When a parallel section of
code is being executed, each thread will effectively get a part
of the cache (ignoring the conflicts and true sharing in this
shared cache). The CHiP profile will give us an estimate of
the cache hit ratio in this parallelized scenario, using which
we can estimate the increase in memory traffic to the DRAMs.

B. Assumptions

• In our analysis, we assume that only the last level cache
(LLC) is being shared among all the cores. Our analysis

can be easily extended to cases where the LLC is not
shared by all the cores(i.e., multi-socket configurations).

• We also assume that the LLC will be equally divided
among the multiple cores, i.e., the contention in the
shared cache is purely due to capacity misses and not due
to either conflict or coherency misses because of sharing
of the same cache lines between multiple cores. In [19]
the authors examine PARSEC and conclude that positive
or negative interference effects of cache sharing between
threads are not significant on scalability. We assume sim-
ilar behavior in the NPB and Rodina benchmarks. Also,
although conflicts and coherency issues affect the speedup
in the shared cache, since we perform our analysis on a
serial program, it is not straight forward to estimate these
effects without incurring a large overhead.

• We did not consider the super scalar behavior that might
arise when the LLC misses are reduced due to paralleliza-
tion.

C. Analytical Model

Given the CHiP profile and the native execution time tser
for a serial region of code, we calculate the approximate
DRAM traffic generated using the following equations. The
total number of memory accesses is the sum of all the counts
over the depth d+ 1.

Totalaccesses =

d+1�

1

(Counts) (1)

The number of cache hits until depth d� is given by:

Hitsd� =

d��

1

(Counts) (2)

The HitRatiod� is the ratio of all the memory accesses
which are hit in the cache which is mapped until depth d�:

HitRatiod� =
Hitsd�

Totalaccesses
(3)

Using these equations, we can now calculate the approxi-
mate DRAM traffic as follows:

Bandwidthser = Totalaccesses × (1−HitRatiod)

×cache line size

tser
(4)

where d is the depth in the CHiP profile which corresponds
to the size of the shared cache in the system.

When parallelized, the new depth d� will correspond to the
effective shared cache available to each thread. We approxi-
mate this as

d� ≈ d

#threads
(5)

The ideal execution time for this region of code will be

tpar =
tser

#threads
(6)

Using the above equations, the bandwidth required when
parallelized is:



Bandwidthpar = Totalaccesses × (1−HitRatiod�)

×cache line size

tpar
(7)

An ideal memory system which can supply the required
bandwidth should not have any adverse effect on the scalability
of this parallel region of code.

Consider that the individual hit % for this sample profile is
given and Figure 6 shows the % hits expected with a given
cache size (MB). So for a 16 MB cache size, the hit ratio is
almost 1, for a 8 MB cache, the hit ratio is 0.79.
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Fig. 6. Sample CHiP profile (cache hit ratio)

Assuming that the total accesses were 100 million, when
executed in a system with a 4 MB cache, the DRAM access
count will be 67 million. Similarly if the system has a 12 MB
cache the DRAM access count will be just 11 million. So on
a 12 MB shared cache machine the serial version would cause
11 million reads from the DRAM, but a 3 core parallel version
(only 4 MB shared cache available for each core) would
produce approximately 67 million reads (6x as many) in one
third the time, increasing the needed DRAM bandwidth from
11 million/unit time to 201 million/unit time assuming ideal
parallel execution time. If the memory subsystem bandwidth
limit is about a hundred million accesses per unit time, it will
be totally flooded because of the huge spike in memory traffic
caused by the extra cache misses, which would drastically
slowdown the parallel execution.

VI. RESULTS

A. Comparisons of CHiP and a Cache Simulator

In Figure 7, we compare the hit ratio result from the CHiP
profile and a cache simulator for the NPB bfs benchmark.
This graph shows that the hit ratio from a CHiP profile is
sufficiently accurate and can be used to estimate hit ratios for
multiple cache sizes. The overhead of CHiP is almost 1/16th of
the cache simulator for this case since CHiP requires only one
run of the cache simulation whereas a naive cache simulator
needs to simulate the same address trace multiple times.

B. Analysis on Benchmarks

We use a quad-core Intel Core i7 system which has an 8
MB 16-way shared cache for our experimentation [20]. In our
results we plot the bandwidth required so as not to affect the
speedup of the benchmarks analyzed. In the bandwidth graphs,
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Fig. 7. Comparison of hit ratio from CHiP profile and a Cache Simulator(sim)

we show overlapped bars for serial, serial*(2 or 4), and the
estimated bandwidth for 2/4 threads from CHiP. The delta
between the outcome of CHiP and serial*(2 or 4) shows the
additional required bandwidth because of the cache contention
in parallel programs. (This delta is presented as green color
bar in the figures). So, a higher green color bar means the
benchmark would have a severe slowdown because of the
cache contention when the code is parallelized.

We perform our analysis on the NAS Parallel Benchmark
(NPB) suite of benchmarks [21] and on the Rodinia [22]
benchmark suite. We identify the interesting regions of code
which are parallelized using OpenMP pragmas. We present
the results of our analysis on regions of code which have
significant execution time (>4% of total execution time).
We chose the B input parameter to the NPB suite except
for the benchmark BT for which we used the A set of
inputs. These inputs were chosen so that the benchmarks are
sufficiently memory intensive. The region names are based
on the functions in which the parallelized code regions were
found.

Due to space limitation, we present detailed results from a
subset of NPB and Rodina benchmarks. We select benchmarks
that show non-scalable behavior and also the benchmarks that
show significant deviation between Parallel Advisor’s speedup
prediction and the observed speedup.

1) NPB - FT.B: Figure 8 shows three graphs of which
Figure 8.(a) is a graph of per-region CHiP profiles for the
FT.B benchmark. Figure 8.(b) shows the serial bandwidth,
linearly scaled bandwidth for two threads and the required
bandwidth estimated using the per-site CHiP profile for two
threads. Figure 8.(c) shows a similar graph for the four thread
case. We can clearly identify regions in which bandwidth does
not linearly scale.

In Figure 8.(b), of the five significant parallelizable regions
in FT.B, only one region, evolve, generates significant band-
width in the serial version. When this region is parallelized by
creating two threads, the bandwidth required scales linearly.
But when this region is parallelized by creating 4 threads, the
increase in required bandwidth is no longer linear. This non-
linear increase can be explained by looking at the variation in
the cache hit ratio from the CHiP profile generated for this
region. There is an increase in the cache misses when the
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Fig. 8. FT(B): (a) CHiP (b) 2 threads (c) 4 threads

effective cache size is reduced from 8 MB to 2 MB which is
causing this increase in the required bandwidth.
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Fig. 9. BT.A: (a) CHiP (b) 2 threads (c) 4 threads

2) NPB - BT.A: Figure 9 shows BT.A. The parallelizable
regions with high cache miss ratio or equivalently, high
required bandwidth are lhsx, lhsy2, lhsz2, lhsz1, lhsy1.

On the other hand the low bandwidth required parallelizable
regions z solve2, y solve2, x solve2 perform much better
when parallelized due to not being limited by bandwidth.
The other medium bandwidth required regions z back, x back,
x back2 gain moderately when parallelized to two threads, but
do not gain anything when parallelized to four threads.

3) NPB - CG.B: In Figure 10, the two significant
parallelizable regions of code conj grad 4, conj grad 12
generate moderate bandwidth in serial and do not require
any significant bandwidth when parallelized to two and four
threads. The speedups in Figure 2 for these two regions shows
good speedup when using two threads and a moderate speedup
when using four threads.

4) NPB - IS.B: The rank1 region of the NPB benchmark
IS.B is significant in that it accounts for ≈ 30% of total
serial execution time. The bandwidth required by this region
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Fig. 10. CG(B): (a) CHiP (b) 2 threads (c) 4 threads
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Fig. 11. IS(B): (a) CHiP (b) 2 threads (c) 4 threads

in serial execution as seen in Figure 11 is not high. When
this is parallelized using four threads, the required bandwidth
increase is actually much greater than 20E+03 MBps. This has
a direct bearing on the speedup that it actually regresses when
four threads are created due to the bandwidth bottleneck in
Figure 2. In this case, we are better off creating two threads
instead of four for this particular region as the bandwidth
required for two threads can still be provided for moderate
gain in speedup. The bandwidth required for four threads is
more than 10x the region’s required bandwidth for the serial
version.

5) NPB - LU.B: In Figure 12, the regions buts1, blts1
require very low bandwidth in the serial run. Even when
parallelized for two threads, the increase in the required
bandwidth is not significant. But when we parallelize using
four threads, the required bandwidth increases dramatically.

In Figure 12(a), from the CHiP profile, we can observe
that different parallel regions are optimized for different cache
sizes. For example, if we have a 10 MB LLC, from the CHiP
profile we can see that most of the accesses will be hit. But
with a 4 MB cache, only two regions buts1, blts1 will have a
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Fig. 12. LU(B): (a) CHiP (b) 2 threads (c) 4 threads

high cache hit ratio.
For these two regions, when two threads are created, most

of the accesses are still being hit in the shared cache. But
once we create four threads, each thread gets only 2 MB of
the shared cache which increases the cache misses to 8%. This
is an 8x increases in the number of cache misses causing a
dramatic increase in the required bandwidth.
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Fig. 13. MG(B): (a) CHiP (b) 2 threads (c) 4 threads

6) NPB - MG.B: In Figure 13.(b) the regions resid,
psinv, rprj3 regress when four threads are created due to
the significant increase in the bandwidth required. In these
regions, no bandwidth increase is measured when going from
one thread to two threads but significant bandwidth is required
once you create four threads.

The region comm3 1 has reasonable speedup because of
the low bandwidth generated in serial case and has a minor
increase in bandwidth required going from serial to two and
four threads which can be readily supplied.

7) NPB - SP.B: In Figure 14, most of the regions
are low bandwidth intensive regions and hence scale well
when parallelized. In the region compute rhs 3, the required
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bandwidth for four threads is significantly higher, causing the
slowdown when going from two to four threads.
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Fig. 15. Rodinia: backprop, bfs: (a) CHiP (b) 2 threads (c) 4 threads

8) Rodinia - backprop, bfs: In Figure 15.(a), the region
backprop.layerforward has an interesting CHiP profile as the
region has a high hit ratio when given a cache of 8 MB. When
run in parallel, we can observe that there is an increase in
required bandwidth because of the increased LLC misses in
Figure 15.(a),(b). In Figure 3, we can see the effect of the
increased bandwidth requirement on this regions speedup.

9) Rodinia - lud: The lud benchmark has two significant
parallel regions which have a smooth CHiP profile as shown
in Figure 16.(a). From this profile we can observe that a cache
size of 16 MB will give us a very high hit ratio in the serial
version. Also, when run in parallel, there will be a significant
increase in the miss ratio which will cause a spike in the
required bandwidth as shown in Figure 16.(b),(c).

10) Rodinia - srad - v1, v2: The v2 version of the
srad benchmark has parallel regions which show a linear
CHiP profile. Having bigger caches for such a benchmark
will not result in significant performance improvement. The
CHiP profile for the v1 version of this benchmark shows us



0

500

1000

1500

2000

2500

lud.lud_omp1 lud.lud_omp2

B
an

d
w

id
th

(M
B

ps
)

bandwidth(threads=2)

bandwidth(serial*2)

bandwidth(serial)

0

500

1000

1500

2000

2500

lud.lud_omp1 lud.lud_omp2

bandwidth(threads=4)

bandwidth(serial * 4)

bandwidth(serial)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H
it

 R
at

io

Cache Size(MB)

lud.lud_omp1
lud.lud_omp2

Fig. 16. Rodinia: lud: (a) CHiP (b) 2 threads (c) 4 threads

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H
it

 R
at

io

Cache Size(MB)

srad_v1.main1

srad_v1.main2

srad_v2.main1

srad_v2.main2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

B
an

d
w

id
th

(M
B

ps
)

bandwidth(threads=2)

bandwidth(serial*2)

bandwidth(serial)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

bandwidth(threads=4)

bandwidth(serial * 4)

bandwidth(serial)

Fig. 17. Rodinia: srad: (a) CHiP (b) 2 threads (c) 4 threads

that having an 8 MB cache will give significant benefit for hit
ratio in the serial version. But when parallelized, there is a
2.5% drop in the hit ratio which causes a significant increase
in the required bandwidth as shown in Figure 17.(b),(c).

VII. CONCLUSION AND FUTURE WORK

We presented a method of constructing a Cache Hit Profile
of a to-be parallelized region of code in the serial program,
which can be used to predict the possibility of poor parallel
scalability. We show that CHiP profiler can identify code
sections that could cause cache contention. In our future work,
we will apply our CHiP profile algorithm along with other
parallel speedup prediction algorithms to estimate possible
speedup. Tools of this kind will be very useful in aiding the
programmer to identify potential problematic regions of code
and in fixing identified problems. The CHiP profiler can be
also used in many other performance analysis tools to estimate
cache hit/miss ratio when cache size varies.
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