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Abstract
GPU architectures are increasingly important in the multi-core era due to their high number of parallel pro-

cessors. Programming thousands of massively parallel threads is a big challenge for software engineers, but un-
derstanding the performance bottlenecks of those parallelprograms on GPU architectures to improve application
performance is even more difficult. Current approaches relyon programmers to tune their applications by exploiting
the design space exhaustively without fully understandingthe performance characteristics of their applications.

To provide insights into the performance bottlenecks of parallel applications on GPU architectures, we propose
a simple analytical model that estimates the execution timeof massively parallel programs. The key component of
our model is estimating the number of parallel memory requests (we call this thememory warp parallelism) by con-
sidering the number of running threads and memory bandwidth. Based on the degree of memory warp parallelism,
the model estimates the cost of memory requests, thereby estimating the overall execution time of a program. Com-
parisons between the outcome of the model and the actual execution time in several GPUs show that the geometric
mean of absolute error of our model on micro-benchmarks is 5.4% and on GPU computing applications is 13.3%.
All the applications are written in the CUDA programming language.

1. Introduction

The increasing computing power of GPUs gives them considerably higher peak computing power than

CPUs. For example, NVIDIA’s GTX280 GPUs [3] provide 933 Gflop/s with 240 cores, while Intel’s

Core2Quad processors [2] deliver only 100 Gflop/s. Intel’s next generation of graphics processors will

support more than 900 Gflop/s [35]. AMD/ATI’s latest GPU (HD5870) provides 2.72 Tflop/s [1]. How-

ever, even though hardware is providing high performance computing, writing parallel programs to take

full advantage of this high performance computing power is still a big challenge.

Recently, there have been new programming languages that aim to reduce programmers’ burden in

writing parallel applications for the GPUs such as Brook+ [5], CUDA [30], and OpenCL [21]. However,

even with these newly developed programming languages, programmers still need to spend enormous time

and effort to optimize their applications to achieve betterperformance [32]. Although the GPGPU com-

munity [15] provides general guidelines for optimizing applications using CUDA,clearly understanding
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various features of the underlying architecture and the associated performance bottlenecks in their appli-

cations is still remaining homework for programmers. Therefore, programmers might need to vary all the

combinations to find the best performing configurations [32].

To provide insight into performance bottlenecks in massively parallel architectures, especially GPU

architectures, we propose a simple analytical model. The model can be used statically without executing

an application. The basic intuition of our analytical modelis that estimating the cost of memory operations

is the key component of estimating the performance of parallel GPU applications. The execution time of an

application is dominated by the latency of memory instructions, but the latency of each memory operation

can be hidden by executing multiple memory requests concurrently. By using the number of concurrently

running threads and the memory bandwidth consumption, we estimate how many memory requests can be

executed concurrently, which we callmemory warp1 parallelism (MWP).We also introducecomputation

warp parallelism (CWP). CWP represents how much computation can be done by other warps while

one warp is waiting for memory values. CWP is similar to a metric, arithmetic intensity2[31] in the

GPGPU community. Using both MWP and CWP, we estimate effective costs of memory requests, thereby

estimating the overall execution time of a program.

We evaluate our analytical model based on the CUDA [28, 30] programming language, which is C with

extensions for parallel threads. We compare the results of our analytical model with the actual execution

time on several GPUs. Our results show that the geometric mean of absolute errors of our model on

micro-benchmarks is 5.4% and on the Merge benchmarks [23]3 is 13.3%

The contributions of our work are as follows:

1. To the best of our knowledge, we propose the first analytical model for the GPU architecture. This

can be easily extended to other multithreaded architectures as well.

2. We propose two new metrics, MWP and CWP, to represent the degree of warp level parallelism that

provide key insights identifying performance bottlenecks.

1A warp is a batch of threads that are internally executed together by the hardware. Section 2 describes a warp.
2Arithmetic intensity is defined as math operations per memory operation.
3The Merge benchmarks consist of several media processing applications.
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2. Background and Motivation

We provide a brief background on the GPU architecture and programming model that we modeled. Our

analytical model is based on the CUDA programming model and the NVIDIA Tesla architecture [3, 10,

28] used in the GeForce 8-series GPUs.

2.1. Background on the CUDA Programming Model

The CUDA programming model is similar in style to a single-program multiple-data (SPMD) software

model. The GPU is treated as a coprocessor that executes data-parallel kernel functions.

CUDA provides three key abstractions, a hierarchy of threadgroups, shared memories, and barrier

synchronization. Threads have a three level hierarchy. A grid is a set of thread blocks that execute a kernel

function. Each grid consists of blocks of threads. Each block is composed of hundreds of threads. Threads

within one block can share data using shared memory and can besynchronized at a barrier. All threads

within a block are executed concurrently on a multithreadedarchitecture.

The programmer specifies the number of threads per block, andthe number of blocks per grid. A thread

in the CUDA programming language is much lighter weight thana thread in traditional operating systems.

A thread in CUDA typically processes one data element at a time. The CUDA programming model has

two shared read-write memory spaces, the shared memory space and the global memory space. The shared

memory is local to a block and the global memory space is accessible by all blocks. CUDA also provides

two read-only memory spaces, the constant space and the texture space, which reside in external DRAM,

and are accessed via read-only caches.

2.2. Background on the GPU Architecture

Figure 1 shows an overview of the GPU architecture. The GPU architecture consists of a scalable

number ofstreaming multiprocessors(SMs), each containing eightstreaming processor(SP) cores, two

special function units (SFUs), a multithreaded instruction fetch and issue unit, a read-only constant cache,

and a 16KB read/write shared memory [10].

The SM executes a batch of 32 threads together called awarp. Executing a warp instruction applies

the instruction to 32 threads, similar to executing a SIMD instruction like an SSE instruction [18] in

X86. However, unlike SIMD instructions, the concept of warpis not exposed to the programmers, rather
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Figure 1. An overview of the GPU architecture

programmers write a program for one thread, and then specifythe number of parallel threads in a block,

and the number of blocks in a kernel grid. The Tesla architecture forms a warp using a batch of 32

threads [17, 11] and in the rest of the paper we also use a warp as a batch of 32 threads.

All the threads in one block are executed on one SM together. One SM can also have multiple concur-

rently running blocks. The number of blocks that are runningon one SM is determined by the resource

requirements of each block such as the number of registers and shared memory usage. The blocks that are

running on one SM at a given time are calledactive blocksin this paper. Since one block typically has

several warps (the number of warps is the same as the number ofthreads in a block divided by 32), the

total number of active warps per SM is equal to the number of warps per block times the number of active

blocks.

The shared memory is implemented within each SM multiprocessor as an SRAM and the global memory

is part of the offchip DRAM. The shared memory has very low access latency (almost the same as that of

register) and high bandwidth. However, since a warp of 32 threads access the shared memory together,

when there is a bank conflict within a warp, accessing the shared memory takes multiple cycles.

2.3. Coalesced and Uncoalesced Memory Accesses

The SM processor executes one warp at one time, and scheduleswarps in a time-sharing fashion. The

processor has enough functional units and register read/write ports to execute 32 threads (i.e. one warp)

together. Since an SM has only 8 functional units, executing32 threads takes 4 SM processor cycles for

computation instructions.4

4In this paper, a computation instruction means a non-memoryinstruction.
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When the SM processor executes a memory instruction, it generates memory requests and switches to

another warp until all the memory values in the warp are ready. Ideally, all the memory accesses within a

warp can be combined into one memory transaction. Unfortunately, that depends on the memory access

pattern within a warp. If the memory addresses are sequential, all of the memory requests within a warp

can be coalesced into a single memory transaction. Otherwise, each memory address will generate a dif-

ferent transaction. Figure 2 illustrates two cases. The CUDA manual [30] provides detailed algorithms to

identify types of coalesced/uncoalesced memory accesses.If memory requests in a warp are uncoalesced,

the warp cannot be executed until all memory transactions from the same warp are serviced, which takes

significantly longer than waiting for only one memory request (coalesced case).

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 32

(a)

A Single Memory Transaction

(b)

Addr 1 Addr 2 Addr 3 Addr 31 Addr 32

Multiple Memory Transactions
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Figure 2. Memory requests from a single warp. (a) coalesced m emory access (b) uncoalesced memory access

2.4. Motivating Example

To motivate the importance of a static performance analysison the GPU architecture, we show an

example of performance differences from three different versions of the same algorithm in Figure 3. The

SVM benchmark is a kernel extracted from a face classification algorithm [38]. The performance of

applications is measured on NVIDIA QuadroFX5600 [4]. Thereare three different optimized versions of

the same SVM algorithm:Naive, Constant, andConstant+Optimized. Naiveuses only the global memory,

Constantuses the cached read-only constant memory5, andConstant+Optimizedalso optimizes memory

accesses6 on top of using the constant memory. Figure 3 shows the execution time when the number

of threads per block is varied. Even though the number of threads per block is varied, the number of

blocks is adjusted to keep the total work the same. The performance improvement ofConstant+Optimized

and that ofConstantover theNaiveimplementation are 24.36x and 1.79x respectively. Even though the

5The benefits of using the constant memory are (1) it has an on-chip cache per SM and (2) using the constant memory can
reduce register usage, which might increase the number of running blocks in one SM.

6The programmer optimized the code to have coalesced memory accesses instead of uncoalesced memory accesses.
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performance of each version might be affected by the number of threads, once the number of threads

exceeds 64, the performance does not vary significantly.
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Figure 3. Optimization impacts on SVM
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Figure 4. Occupancy values of SVM

Figure 4 shows SM processor occupancy [30] for the three cases. The SM processor occupancy in-

dicates the resource utilization, which has been widely used to optimize GPU computing applications.

It is calculated based on the resource requirements for a given program. Typically, high occupancy (the

max value is 1) is better for performance since many activelyrunning threads would more likely hide

the DRAM memory access latency. However, SM processor occupancy does notsufficientlyestimate the

performance improvement as shown in Figure 4. First, when the number of threads per block is less than

64, all three cases show the same occupancy values even though the performances of 3 cases are differ-

ent. Second, even though SM processor occupancy is improved, for some cases, there is no performance

improvement. For example, the performance ofConstantis not improved at all even though the SM pro-

cessor occupancy is increased from 0.35 to 1. Hence, we need other metrics to differentiate the three cases

and to understand what the critical component of performance is.

3. Analytical Model
3.1. Introduction to MWP and CWP

The GPU architecture is a multithreaded architecture. EachSM can execute multiple warps in a time-

sharing fashion while one or more warps are waiting for memory values. As a result, the execution cost of

warps that are executed concurrently can be hidden. The key component of our analytical model is finding

out how many memory requests can be serviced and how many warps can be executed together while one

warp is waiting for memory values.
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To represent the degree of warp parallelism, we introduce two metrics,MWP (Memory Warp Paral-

lelism)andCWP (Computation Warp Parallelism). MWP represents the maximum number of warps per

SM that can access the memory simultaneously during the timeperiod from right after the SM processor

executes a memory instruction from one warp (therefore, memory requests are just sent to the memory

system) until all the memory requests from the same warp are serviced (therefore, the processor can exe-

cute the next instruction from that warp). The warp that is waiting for memory values is called amemory

warp in this paper. The time period from right after one warp sent memory requests until all the memory

requests from the same warp are serviced is called one memorywarp waiting period. CWP represents the

number of warps that the SM processor can execute during one memory warp waiting period plusone.A

value one is added to include the warp itself that is waiting for memory values. (This means that CWP is

always greater than or equal to 1.)

MWP is related to how much memory parallelism in the system. MWP is determined by the memory

bandwidth, memory bank parallelism and the number of running warps per SM. MWP plays a very im-

portant role in our analytical model. When MWP is higher than1, the cost of memory access cycles from

(MWP-1) number of warps is all hidden, since they are all accessing the memory system together. The

detailed algorithm of calculating MWP will be described in Section 3.3.1.

CWP is related to the program characteristics. It is similarto an arithmetic intensity, but unlike arith-

metic intensity, higher CWP means less computation per memory access. CWP also considers timing

information but arithmetic intensity does not consider timing information. CWP is mainly used to decide

whether the total execution time is dominated by computation cost or memory access cost. When CWP

is greater than MWP, the execution cost is dominated by memory access cost. However, when MWP is

greater than CWP, the execution cost is dominated by computation cost. How to calculate CWP will be

described in Section 3.3.2.

3.2. The Cost of Executing Multiple Warps in the GPU architecture

To explain how executing multiple warps in each SM affects the total execution time, we will illustrate

several scenarios in Figures 5, 6, 7 and 8. A computation period indicates the period when instructions

from one warp are executed on the SM processor. A memory waiting period indicates the period when
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memory requests are being serviced. The numbers inside the computation period boxes and memory

waiting period boxes in Figures 5, 6, 7 and 8 indicate a warp identification number.

Figure 5. Total execution time when CWP is greater than MWP: ( a) 8 warps (b) 4 warps

3.2.1. CWP is Greater than MWP For Case 1 in Figure 5a, we assume that all the computation periods

and memory waiting periods are from different warps. The system can service two memory warps simul-

taneously. Since one computation period is roughly one third of one memory waiting warp period, the

processor can finish 3 warps’ computation periods during onememory waiting warp period. (i.e., MWP

is 2 and CWP is 4 for this case.) As a result, the 6 computation periods are completely overlapped with

other memory waiting periods. Hence, only 2 computations and 4 memory waiting periods contribute to

the total execution cycles.

For Case 2 in Figure 5b, there are four warps and each warp has two computation periods and two

memory waiting periods. The second computation period can start only after the first memory waiting

period of the same warp is finished. MWP and CWP are the same as Case 1. First, the processor executes

four of the first computation periods from each warp one by one. By the time the processor finishes the first

computation periods from all warps, two memory waiting periods are already serviced. So the processor

can execute the second computation periods for these two warps. After that, there are no ready warps.

The first memory waiting periods for the remaining two warps are still not finished yet. As soon as these

two memory requests are serviced, the processor starts to execute the second computation periods for the

other warps. Surprisingly, even though there are some idle cycles between computation periods, the total

execution cycles are the same as Case 1. When CWP is higher than MWP, there are enough warps that

are waiting for the memory values, so the cost of computationperiods can be almost always hidden by

memory access periods.
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For both cases, the total execution cycles are only the sum of2 computation periods and 4 memory

waiting periods. Using MWP, the total execution cycles can be calculated using the below two equations.

We divideComp cycles by #Mem insts to get the number of cycles in one computation period.

Exec cycles = Mem cycles ×

N

MWP
+ Comp p × MWP (1)

Comp p = Comp cycles/#Mem insts (2)

Mem cycles: Memory waiting cycles per warp (see Equation (18))

Comp cycles: Computation cycles per warp (see Equation (19))

Comp p: Execution cycles of one computation period

#Mem insts: Number of memory instructions per warp

N : Number of active running warps per SM

3.2.2. MWP is Greater than CWP In general, CWP is greater than MWP. However, for some cases,

MWP is greater than CWP. Let’s say that the system can service8 memory warps concurrently. Again

CWP is still 4 in this scenario. In this case, as soon as the first computation period finishes, the processor

can send memory requests. Hence, a memory waiting period of awarp always immediately follows the

previous computation period. If all warps are independent,the processor continuously executes another

warp. Case 3 in Figure 6a shows the timing information. In this case, the memory waiting periods are all

overlapped with other warps except the last warp. The total execution cycles are the sum of 8 computation

periods and only one memory waiting period.

Figure 6. Total execution time when MWP is greater than CWP: ( a) 8 warps (b) 4 warps

Even if not all warps are independent, when CWP is higher thanMWP, many of memory waiting periods
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are overlapped. Case 4 in Figure 6b shows an example. Each warp has two computation periods and two

memory waiting periods. Since the computation time is dominant, the total execution cycles are again the

sum of 8 computation periods and only one memory waiting period.

Using MWP and CWP, the total execution cycles can be calculated using the following equation:

Exec cycles = Mem p + Comp cycles × N (3)

Mem p: One memory waiting period (=Mem L in Equation (12))

Case 5 in Figure 7 shows an extreme case. In this case, not evenone computation period can be finished

while one memory waiting period is completed. Hence, CWP is less than 2. Note that CWP is always

greater 1. Even if MWP is 8, the application cannot take advantage of any memory warp parallelism.

Hence, the total execution cycles are 8 computation periodsplus one memory waiting period. Note that

even this extreme case, the total execution cycles of Case 5 are the same as that of Case 4. Case 5 happens

whenComp cycles are longer thanMem cycles.

Figure 7. Total execution time when computation cycles are l onger than memory waiting cycles. (8 warps)

3.2.3. Not Enough Warps RunningThe previous two sections described situations when there are

enough number of warps running on one SM. Unfortunately, if an application does not have enough

number of warps, the system cannot take advantage of all available warp parallelism. MWP and CWP

cannot be greater than the number of active warps on one SM.

Figure 8. Total execution time when MWP is equal to N: (a) 1 war p (b) 2 warps
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Case 6 in Figure 8a shows when only one warp is running. All theexecutions are serialized. Hence, the

total execution cycles are the sum of the computation and memory waiting periods. Both CWP and MWP

are 1 in this case. Case 7 in Figure 8b shows there are two running warps. Let’s assume that MWP is two.

Even if one computation period is less than the half of one memory waiting period, because there are only

two warps, CWP is still two. Because of MWP, the total execution time is roughly the half of the sum of

all the computation periods and memory waiting periods.

Using MWP, the total execution cycles of the above two cases can be calculated using the following

equation:

Exec cycles =Mem cycles × N/MWP + Comp cycles×

N/MWP + Comp p(MWP − 1) (4)

=Mem cycles + Comp cycles + Comp p(MWP − 1)

Note that for both cases, MWP and CWP are equal to N, the numberof active warps per SM.

3.3. Calculating the Degree of Warp Parallelism

3.3.1. Memory Warp Parallelism (MWP) MWP is slightly different from MLP [13]. MLP represents

how many memory requests can be serviced together. MWP represents the maximum number ofwarps

in each SM that can access the memory simultaneously during one memory warp waiting period. The

main difference between MLP and MWP is that MWP is counting all memory requests from a warp as

one unit, while MLP counts all individual memory requests separately. As we discussed in Section 2.3,

one memory instruction in a warp can generate multiple memory transactions. This difference is very

important because a warp cannot be executed until all valuesare ready.

MWP is tightly coupled with the DRAM memory system. In our analytical model, we model the DRAM

system as a simple queue and each SM has its own queue. Each active SM consumes an equal amount of

memory bandwidth. Figure 9 shows the memory model and a timeline of memory warps.

The latency of each memory warp is at leastMem L cycles. Departure delay is the minimum departure

distance between two consecutive memory warps.Mem L is a round trip time to the DRAM, which

includes the DRAM access time and the address and data transfer time.
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Figure 9. Memory system model: (a) memory model (b) timeline of memory warps

MWP represents the number of memory warps per SM that can be handled duringMem L cycles. MWP

cannot be greater than the number of warps per SM that reach the peak memory bandwidth (MWP peak BW )

of the system as shown in Equation (5). If fewer SMs are executing warps, each SM can consume

more bandwidth than when all SMs are executing warps. Equation (6) representsMWP peak BW . If

an application does not reach the peak bandwidth, MWP is a function of Mem L and departure delay.

MWP Without BW is calculated using Equations (10) – (17). MWP cannot be alsogreater than the number

of active warps as shown in Equation (5). If the number of active warps is less thanMWP Without BW full,

the processor does not have enough number of warps to utilizememory level parallelism.

MWP = MIN(MWP Without BW, MWP peak BW, N) (5)

MWP peak BW =
Mem Bandwidth

BW per warp × #ActiveSM
(6)

BW per warp =
Freq × Load bytes per warp

Mem L
(7)

Figure 10. Illustrations of departure delays for uncoalesc ed and coalesced memory warps: (a) uncoalesced case (b) coal esced case

The latency of memory warps is dependent on memory access pattern (coalesced/uncoalesced) as shown

in Figure 10. For uncoalesced memory warps, since one warp requests multiple number of transac-

tions (#Uncoal per mw), Mem L includes departure delays for all#Uncoal per mw number of transactions.

Departure delay also includes#Uncoal per mw number ofDeparture del uncoal cycles.Mem LD is a round-trip

latency to the DRAM for each memory transaction. In this model, Mem LD for uncoalesced and coalesced

are considered as the same, even though a coalesced memory request might take a few more cycles because
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of large data size.

In an application, some memory requests would be coalesced and some would be not. Since multiple

warps are running concurrently, the analytical model simply uses the weighted average of memory latency

of coalesced and uncoalesced latency for the memory latency(Mem L). A weight is determined by the

number of coalesced and uncoalesced memory requests as shown in Equations (13) and (14). MWP is

calculated using Equations (10) – (17). The parameters usedin these equations are summarized in Table 1.

Mem LD, Departure del coal andDeparture del uncoal are measured with micro-benchmarks as we will show

in Section 5.1.

3.3.2. Computation Warp Parallelism (CWP) Once we calculate the memory latency for each warp,

calculating CWP is straightforward.CWP full is when there are enough number of warps. WhenCWP full

is greater than N (the number of active warps in one SM)CWP is N, otherwise,CWP full becomesCWP .

CWP full =
Mem cycles + Comp cycles

Comp cycles
(8)

CWP = MIN(CWP full, N) (9)

3.4. Putting It All Together in CUDA

So far, we have explained our analytical model without strongly being coupled with the CUDA pro-

gramming model to simplify the model. In this section, we extend the analytical model to consider the

CUDA programming model.

3.4.1. Number of Warps per SM The modeled GPU architecture executes 100s of threads concurrently.

Nonetheless, not all threads in an application can be executed at the same time. The processor fetches a

few blocks at one time and then it fetches additional blocks as soon as one block retires.#Rep represents

how many times a single SM executes multiple active number ofblocks. For example, when there are 40

blocks in an application and 4 SMs. If each SM can execute 2 blocks concurrently,#Rep is 5. Hence,

the total number of warps per SM is#Active warps per SM (N) times#Rep. N is determined by machine

resources.

3.4.2. Total Execution CyclesDepending on MWP and CWP values, total execution cycles for an entire

application (Exec cycles app) are calculated using Equations (22),(23), and (24).Mem L is calculated in
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Equation (12). Execution cycles that consider synchronization effects will be described in Section 3.4.6.

Mem L Uncoal = Mem LD + (#Uncoal per mw − 1) × Departure del uncoal (10)

Mem L Coal = Mem LD (11)

Mem L = Mem L Uncoal × Weight uncoal + Mem L Coal × Weight coal (12)

Weight uncoal =
#Uncoal Mem insts

(#Uncoal Mem insts + #Coal Mem insts)
(13)

Weight coal =
#Coal Mem insts

(#Coal Mem insts + #Uncoal Mem insts)
(14)

Departure delay = (Departure del uncoal × #Uncoal per mw) × Weight uncoal + Departure del coal × Weight coal

(15)

MWP Without BW full = Mem L/Departure delay (16)

MWP Without BW = MIN(MWP Without BW full, #Active warps per SM) (17)

Mem cycles = Mem L Uncoal × #Uncoal Mem insts + Mem L Coal × #Coal Mem insts (18)

Comp cycles = #Issue cycles × (#total insts) (19)

N = #Active warps per SM (20)

#Rep =
#Blocks

#Active blocks per SM × #Active SMs
(21)

If (MWP is N warps per SM) and (CWP is N warps per SM)

Exec cycles app = (Mem cycles + Comp cycles +
Comp cycles

#Mem insts
× (MWP − 1)) × #Rep (22)

Else if (CWP>= MWP) or (Compcycles > Mem cycles)

Exec cycles app = (Mem cycles ×

N

MWP
+

Comp cycles

#Mem insts
× (MWP − 1)) × #Rep (23)

Else

Exec cycles app = (Mem L + Comp cycles × N) × #Rep (24)

*All the parameters are summarized in Table 1.

3.4.3. Dynamic Number of Instructions Total execution cycles are calculated using the number of

dynamic instructions. The compiler generates intermediate assembler-level instruction, the NVIDIA PTX

instruction set [30]. PTX instructions translate nearly one to one with native binary microinstructions

later.7 We use the number of PTX instructions for the dynamic number of instructions.

The total number of instructions is proportional to the number of data elements. Programmers must

decide the number of threads and blocks for each input data. The number of total instructions per thread is

related to how many data elements are computed in one thread,programmers must know this information.

7Since some PTX instructions expand to multiple binary instructions, using PTX instruction count could be one of the error
sources in the analytical model.
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Table 1. Summary of Model Parameters

Model Parameter Definition Obtained
1 #Threadsper warp Number of threads per warp 32 [30]
2 Issuecycles Number of cycles to execute one instruction 4 cycles [17]
3 Freq Clock frequency of the SM processor Table 3
4 Mem Bandwidth Bandwidth between the DRAM and GPU cores Table 3

5 Mem LD DRAM access latency (machine configuration) Table 6
6 Departuredel uncoal Delay between two uncoalesced memory transactions Table 6
7 Departuredel coal Delay between two coalesced memory transactions Table 6

8 #Threadsper block Number of threads per block Programmer specifies inside a program
9 #Blocks Total number of blocks in a program Programmer specifies inside a program

10 #Active SMs Number of active SMs Calculated based on machine resources
11 #Active blocks per SM Number of concurrently running blocks on one SM Calculated based on machine resources [30]
12 #Active warpsper SM (N) Number of concurrently running warps on one SM Active blocks per SM x Number of warps per block

13 #Total insts (#Compinsts + #Meminsts)
14 #Compinsts Total dynamic number of computation instructions in one thread Source code analysis
15 #Mem insts Total dynamic number of memory instructions in one thread Source code analysis
16 #UncoalMem insts Number of uncoalesced memory type instructions in one thread Source code analysis
17 #CoalMem insts Number of coalesced memory type instructions in one thread Source code analysis
18 #Synchinsts Total dynamic number of synchronization instructions in one thread Source code analysis

19 #Coalper mw Number of memory transactions per warp (coalesced access) 1
20 #Uncoalper mw Number of memory transactions per warp (uncoalesced access) Source code analysis[16](Table 3)
21 Load bytesper warp Number of bytes for each warp Data size (typically 4B) x #Threadsper warp

If we know the number of elements per thread, counting the number of total instructions per thread is

simply counting the number of computation instructions andthe number of memory instructions per data

element. The detailed algorithm to count the number of instructions from PTX code is provided in an

extended version of this paper [16].

3.4.4. Cycles Per Instruction (CPI) Cycles per Instruction (CPI) is commonly used to represent the

cost of each instruction. Using total execution cycles, we can calculate Cycles Per Instruction using

Equation (25). Note that, CPI is the cost when an instructionis executed by all threads in one warp.

CPI =
Exec cycles app

#Total insts ×
#Threads per block
#Threads per warp

×
#Blocks

#Active SMs

(25)

3.4.5. Coalesced/Uncoalesced Memory AccessesAs Equations (15) and (12) show, the latency of mem-

ory instruction is heavily dependent on memory access type.Whether memory requests inside a warp can

be coalesced or not is dependent on the memory system design and memory access pattern in a warp. The

GPUs that we evaluated have two coalesced/uncoalesced polices, specified by the Compute capability ver-

sion. The CUDA manual [30] describes when memory requests ina warp can be coalesced or not in more

detail. Earlier compute capability versions have two differences compared with the later version(1.3): (1)

stricter rules are applied to be coalesced, (2) when memory requests are uncoalesced, one warp generates
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32 memory transactions. In the latest version (1.3), the rules are more relaxed and all memory requests

are coalesced into as few memory transactions as possible.8

The detailed algorithms to detect coalesced/uncoalesced memory accesses and to count the number of

memory transactions per each warp at static time are provided in an extended version of this paper [16].

Figure 11. Additional delay effects of thread synchronizat ion: (a) no synchronization (b) thread synchronization aft er each memory

access period

3.4.6. Synchronization EffectsThe CUDA programming model supports thread synchronization through

the syncthreads() function. Typically, all the threads are executed asynchronously whenever all the

source operands in a warp are ready. However, if there is a barrier, the processor cannot execute the in-

structions after the barrier until all the threads reach thebarrier. Hence, there will be additional delays due

to a thread synchronization. Figure 11 illustrates the additional delay effect. Surprisingly, the additional

delay is less than one waiting period. Actually, the additional delay per synchronization instruction is the

multiple of Departure delay, the number of blocks and (NpWB-1). NpWB, which is newly introduced in

this equation, is the number of parallel warps per block. NpWB is used instead of MWP since warps inside

a block are synchronized. The final execution cycles of an application with synchronization delay effect

8In the CUDA manual, compute capability 1.3 says all requestsare coalesced because all memory requests within each
warp are always combined into as few transactions as possible. However, in our analytical model, we use the coalesced
memory access model only if all memory requests are combinedinto one memory transaction.
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can be calculated by Equation (28).

Synch cost = Departure delay × (NpWB − 1) × #synch insts

× #Active blocks per SM × #Rep (26)

NpWB = MIN(MWP, #Active warps per block) (27)

Exec cycles with synch = Exec cycles app + Synch cost (28)

3.5. Code Example

To provide a concrete example, we apply the analytical modelfor a tiled matrix multiplication example

in Figure 12 to a system that has 80GB/s memory bandwidth, 1GHz frequency and 16 SM processors.

Let’s assume that the programmer specified 128 threads per block (4 warps per block), and 80 blocks for

execution. And 5 blocks are actively assigned to each SM (Active blocks per SM) instead of 8 maximum

blocks9 due to high resource usage.
1: MatrixMulKernel<<<80, 128>>> (M, N, P);
2: ....
3: MatrixMulKernel(Matrix M, Matrix N, Matrix P)
4: {
5: // init code ...
6:
7: for (int a=starta, b=startb, iter=0; a<=enda;
8: a+=stepa, b+=stepb, iter++)
9: {
10: __shared__ float Msub[BLOCKSIZE][BLOCKSIZE];
11: __shared__ float Nsub[BLOCKSIZE][BLOCKSIZE];
12:
13: Msub[ty][tx] = M.elements[a + wM * ty + tx];
14: Nsub[ty][tx] = N.elements[b + wN * ty + tx];
15:
16: __syncthreads();
17:
18: for (int k=0; k < BLOCKSIZE; ++k)
19: subsum += Msub[ty][k] * Nsub[k][tx];
20:
21: __syncthreads();
22: }
23:
24: int index = wN * BLOCKSIZE * by + BLOCKSIZE
25: P.elements[index + wN * ty + tx] = subsum;
26:}

Figure 12. CUDA code of tiled matrix multiplication

We assume that the inner loop is iterated only once and the outer loop is iterated 3 times to simplify the

example. Hence,#Comp insts is 27, which is 9 computation (Figure 13 lines 5, 7, 8, 9, 10, 11, 13, 14, and

15) instructions times 3. Note thatld.shared instructions in Figure 13 lines 9 and 10 are also counted

9Each SM can have up to 8 blocks at a given time.
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1: ... // Init Code
2:
3: $OUTERLOOP:
4: ld.global.f32 %f2, [%rd23+0]; //
5: st.shared.f32 [%rd14+0], %f2; //
6: ld.global.f32 %f3, [%rd19+0]; //
7: st.shared.f32 [%rd15+0], %f3; //
8: bar.sync 0; // Synchronization
9: ld.shared.f32 %f4, [%rd8+0]; // Innerloop unrolling
10: ld.shared.f32 %f5, [%rd6+0]; //
11: mad.f32 %f1, %f4, %f5, %f1; //
12: // the code of unrolled loop is omitted
13: bar.sync 0; // synchronization
14: setp.le.s32 %p2, %r21, %r24; //
15: @%p2 bra $OUTERLOOP; // Branch
16: ... // Index calculation
17: st.global.f32 [%rd27+0], %f1; // Store in P.elements

Figure 13. PTX code of tiled matrix multiplication

as a computation instruction since the latency of accessingthe shared memory is almost as fast as that of

the register file. Lines 13 and 14 in Figure 12 show global memory accesses in the CUDA code. Memory

indexes (a+wM*ty+tx) and (b+wN*ty+tx) determine memory access coalescing within a warp. Since

a andb are more likely not a multiple of 32, we treat that all the global loads are uncoalesced [16]. So

#Uncoal Mem insts is 6, and#Coal Mem insts is 0.

Table 2 shows the necessary model parameters and intermediate calculation processes to calculate the

total execution cycles of the program. Since CWP is greater than MWP, we use Equation (23) to cal-

culateExec cycles app. Note that in this example, the execution cost of synchronization instructions is a

significant part of the total execution cost. This is becausewe simplified the example. In most real appli-

cations, the number of dynamic synchronization instructions is much less than other instructions, so the

synchronization cost is not that significant.

4. Experimental Methodology
4.1. The GPU Characteristics

Table 3 shows the list of GPUs used in this study. GTX280 supports 64-bit floating point operations

and also has a later computing version (1.3) that improves uncoalesced memory accesses. To measure the

GPU kernel execution time,cudaEventRecord API that uses GPU Shader clock cycles is used. All

the measured execution time is the average of 10 runs.
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Table 2. Applying the Model to Figure 12
Model Parameter Obtained Value
Mem LD Machine conf. 420
Departuredel uncoal Machine conf. 10

#Threadsper block Figure 12 Line 1 128
#Blocks Figure 12 Line 1 80
#Active blocks per SM Occupancy [30] 5
#Active SMs Occupancy [30] 16
#Active warpsper SM 128/32(Table 1) × 5 20
#Compinsts Figure 13 27
#UncoalMem insts Figure 12 Lines 13, 14 6
#CoalMem insts Figure 12 Lines 13, 14 0
#Synchinsts Figure 12 Lines 16, 21 6 = 2 × 3
#Coalper mw see Sec. 3.4.5 1
#Uncoalper mw see Sec. 3.4.5 32
Load bytesper warp Figure 13 Lines 4, 6 128B =4B × 32
Departuredelay Equation (15) 320=32 × 10
Mem L Equations (10), (12) 730=420 + (32 − 1) × 10
MWP without BW full Equation (16) 2.28 =730/320

BW per warp Equation (7) 0.175GB/S =1G×128B
730

MWP peakBW Equation (6) 28.57= 80GB/s
0.175GB×16

MWP Equation (5) 2.28=MIN(2.28, 28.57, 20)
Compcycles Equation (19) 132 cycles=4 × (27 + 6)
Mem cycles Equation (18) 4380 = (730 × 6)
CWP full Equation (8) 34.18=(4380 + 132)/132
CWP Equation (9) 20 = MIN(34.18, 20)
#Rep Equation (21) 1 = 80/(16 × 5)

38450 = 4380 × 20

2.28
+

Execcyclesapp Equation (23)
132

6
× (2.28 − 1)

12288=Synchcost Equation (26)
320 × (2.28 − 1) × 6 × 5

Final Time Equation (28) 50738 =38450 + 12288

4.2. Micro-benchmarks

All the benchmarks are compiled with NVCC [30]. To test the analytical model and also to find memory

model parameters, we design a set of micro-benchmarks that simply repeat a loop for 1000 times. We vary

the number of load instructions and computation instructions per loop. Each micro-benchmark has two

memory access patterns: coalesced and uncoalesced memory accesses.
Table 3. The specifications of GPUs used in this study

Model 8800GTX Quadro FX5600 8800GT GTX280
#SM 16 16 14 30

(SP) Processor Cores 128 128 112 240
Graphics Clock 575 MHz 600 MHz 600 MHz 602 MHz
Processor Clock 1.35 GHz 1.35GHz 1.5 GHz 1.3 GHz

Memory Size 768 MB 1.5 GB 512 MB 1 GB
Memory Bandwidth 86.4 GB/s 76.8 GB/s 57.6 GB/s 141.7 GB/s

Peak Gflop/s 345.6 384 336 933
Computing Version 1.0 1.0 1.1 1.3
#Uncoalper mw 32 32 32 [16]
#Coal per mw 1 1 1 1
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Table 4. The characteristics of micro-benchmarks
# inst. per loop Mb1 Mb2 Mb3 Mb4 Mb5 Mb6 Mb7
Memory 0 1 1 2 2 4 6
Comp. (FP) 23 (20) 17 (8) 29 (20) 27(12) 35(20) 47(20) 59(20)

Table 5. Characteristics of the Merge Benchmarks (Arith. in tensity means arithmetic intensity.)

Benchmark Description Input size Comp insts Mem insts Arith. Registers Shared
intensity memory

Sepia [23] Filter for artificially aging images 7000 x 7000 71 6 (uncoal) 11.8 7 52B
Linear [23] Image filter for computing 9-pixels avg. 10000 x 10000 111 30 (uncoal) 3.7 15 60B
SVM [23] Kernel from a SVM-based algorithm 736 x 992 10871 819 (coal) 13.3 9 44B
Mat. (naive) Naive version of matrix multiplication 2000 x 2000 12043 4001(uncoal) 3 10 88B
Mat. (tiled) [30] Tiled version of matrix multiplication 2000 x 2000 9780 - 24580 201 - 1001(uncoal) 48.7 18 3960B
Blackscholes [30] European option pricing 9000000 137 7 (uncoal) 19 11 36B

4.3. Merge Benchmarks

To test how our analytical model can predict typical GPGPU applications, we use 6 different bench-

marks that are mostly used in the Merge work [23]. Table 5 explains the description of each benchmark

and summarizes the characteristics of each benchmark. The number of registers used per thread and shared

memory usage per block are statically obtained by compilingthe code with-cubin flag. The rest of the

characteristics are statically determined and can be foundin PTX code.

5. Results
5.1. Micro-benchmarks

The micro-benchmarks are used to measure the constant variables that are required to model the mem-

ory system. We vary three parameters (Mem LD, Departure del uncoal, andDeparture del coal) for each GPU

to find the best fitting values. FX5600, 8800GTX and 8800GT usethe same model parameters. Table 6

summarizes the results.Departure del coal is related to the memory access time to a single memory block.

Departure del uncoal is longer thanDeparture del coal, due to the overhead of 32 small memory access re-

quests.Departure del uncoal for GTX280 is much longer than that of FX5600. GTX280 coalesces 32 thread

memory requests per warp into the minimum number of memory access requests, and the overhead per

access request is higher, with fewer accesses.

Using the parameters in Table 6, we calculate CPI for the micro-benchmarks. Figure 14 shows the
Table 6. Results of the Memory Model Parameters

Model FX5600 GTX280
Mem LD 420 450
Departuredel uncoal 10 40
Departuredel coal 4 4
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Figure 14. CPI on the micro-benchmarks

average CPI of the micro-benchmarks for both measured valueand estimated value using the analytical

model. The results show that the average geometric mean of the error is 5.4%. As we can predict,

as the benchmark has more number of load instructions, the CPI increases. For the coalesced load cases

(Mb1 C – Mb7 C), the cost of load instructions is almost hidden because ofhigh MWP but for uncoalesced

load cases (Mb1UC – Mb7 UC), the cost of load instructions linearly increases as thenumber of load

instructions increases.

5.2. Merge Benchmarks
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Figure 15. The total execution time of the Merge benchmarks o n FX5600

Figure 15 and Figure 16 show the measured and estimated execution time of the Merge benchmarks on

FX5600 and GTX280. The number of threads per block is varied from 4 to 512, (512 is the maximum value

that one block can have in the evaluated CUDA programs.) Eventhough the number of threads is varied,

the programs calculate the same amount of data elements. In other words, if we increase the number of

threads in a block, the total number of blocks is also reducedto process the same amount of data in one
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Figure 16. The total execution time of the Merge benchmarks o n GTX280

application. That is why the execution times are mostly the same. For the Mat.(tiled) benchmark, as we

increase the number of threads the execution time reduces, because the number of active warps per SM

increases.
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Figure 17. CPI on the Merge benchmarks
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Figure 18. CWP per SM on the Merge benchmarks

Figure 17 shows the average of the measured and estimated CPIs in Figures 15 and 16 configurations.

The average values of CWP and MWP per SM are also shown in Figures 18 and 19 respectively. 8800GT

has the least amount of bandwidth compared to other GPUs, resulting in the highest CPI in contrast to

GTX280. Generally, higher arithmetic intensity means lower CPI (lower CPI is higher performance).

However, even though the Mat.(tiled) benchmark has the highest arithmetic intensity, SVM has the lowest

CPI value. SVM has higher MWP and CWP than those of Mat.(tiled) as shown in Figures 18 and 19.

SVM has the highest MWP and the lowest CPI because only SVM hasfully coalesced memory accesses.

MWP in GTX280 is higher than the rest of GPUs because even though most memory requests are not

fully coalesced, they are still combined into as few requests as possible, which results in higher MWP. All

other benchmarks are limited bydeparture delay, which makes all other applications never reach the peak
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memory bandwidth.

Figure 20 shows the average occupancy of the Merge benchmarks. Except Mat.(tiled) and Linear, all

other benchmarks have higher occupancy than 70%. The results show that occupancy is less correlated to

the performance of applications.

The final geometric mean of the estimated CPI error on the Merge benchmarks in Figure 17 over all

four different types of GPUs is 13.3%. Generally the error ishigher for GTX 280 than others, because

we have to estimate the number of memory requests that are generated by partially coalesced loads per

warp in GTX280, unlike other GPUs which have the fixed value 32. On average, the model estimates

the execution cycles of FX5600 better than others. This is because we set the machine parameters using

FX5600.
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Figure 19. MWP per SM on the Merge benchmarks
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Figure 20. Occupancy on the Merge benchmarks

There are several error sources in our model: (1) We used a very simple memory model and we assume

that the characteristics of the memory behavior are similaracross all the benchmarks. We found out that

the outcome of the model is very sensitive to MWP values. (2) We assume that the DRAM memory

scheduler schedules memory requests equally for all warps.(3) We do not consider the bank conflict

latency in the shared memory. (4) All computation instructions have the same latency even though some

special functional unit instructions have longer latency than others. (5) For some applications, the number

of threads per block is not always a multiple of 32. (6) The SM retires warps as a block granularity. Even

though there are free cycles, the SM cannot start to fetch newblocks, but the model assumes on average

active warps.
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5.3. Insights Into The Model

The MWP value is limited by three factors: memory level parallelism inside an application, DRAM

throughput, and bandwidth between SMs and GPU DRAM. The throughput is dependent on DRAM con-

figuration and the ratio of memory access types (between coalesced and uncoalesced accesses). To visual-

ize how MWP is affected by three components, we vary the number of warps and plot the corresponding

MWP values in Figure 21.5 04 05 0 M W P P e a k B W2 03 0MWP M W P _ P e a k _ B WM W P _ W i t h o u t _ B WM W P1 02 00 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6W a r p s p e r S M ( N )W a r p s _ p e r _ S M ( N )
1 01 268MWP 24M M W P _ P e a k _ B WM W P _ W i t h o u t _ B W0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6W S M ( N ) M W PW a r p s _ p e r _ S M ( N )

Figure 21. Visualization of MWP for GTX280 (Left:coalesced case, Right:uncoalesced case)

The results show that, uncoalesced memory accesses can never saturate available memory bandwidth.

Increasing the number of warps (through different parallelization techniques or changing the occupancy)

increases MWP until 9 for coalesced case but only 5 for uncoalesced case.

Now, to provide insights into the analytical model, we revisit the example in Section 2.4. Figures 22 and

23 show N, MWPwithout BW, MWP peakBW, MWP, and CWP forConstant+Optimized case and

Naive case from Figure 3 respectively. Here, we explain the performance behavior with MWPpeakBW

and MWPWithout BW instead of MWP, because final MWP is the minimum of those twoterms and

the number of running warps (N) as shown in Equation (5). Limiting MWP term for Figure 22 is 12

(MWP peakBW), and it is 2 (MWPWithout BW) for Figure 23. The main reason of this difference

is thatConstant+Optimized has coalesced memory accesses, butNaive has uncoalesced mem-

ory accesses. Until N reaches MWPpeakBW, which is 40, increasing N reduces execution time for

Constant+Optimized since more warps can increase memory level parallelism. However, inNaive,

N is always greater than MWPwithout BW, so increasing N does not improve performance since maxi-

mum memory level parallelism is already reached.
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Figure 22. MWP, CWP Analysis on the Optimized SVM
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Figure 23. MWP, CWP Analysis on the Naive SVM

6. Improving the Model and More validations

In this section, we improve the analytical model by considering more complex cases: independent

memory operations and long-latency computations. We also validate divergent warps and synchronization

effects in more detail.

6.1. Effects of Dependent/Independent Memory Accesses

The Tesla architecture is an in-order processor within a warp. It stops issuing an instruction from a warp

if not all source operands are ready and switches to another ready warp. When a warp generates a global

memory request, if the subsequent instructions do not source the outcome of the global load (i.e., the subse-

quent instructions are not dependent on the previous memory-requesting instruction), the instructions can

be still issued as long as all the source operands are ready. Hence, global memory memory requests from

the same warp could be serviced together if they (and including all the instructions between two global

load instructions) are not dependent on the first load instruction. Figure 24 illustrates both cases (depen-

dent instructions and independent instructions). The numbers inside the computation and memory periods

indicate warp identification numbers. In the dependent-instruction case, all memory operations from the

same warp is serialized, but in the independent-instruction case, memory operations from the same warp

can be still serviced concurrently, thereby increasing effective memory level parallelism (MWP).

To evaluate the effect of dependent/independent memory accesses in actual performance, we design

micro benchmarks, where one benchmark is dependent on the previous value of the memory load (DEP),

but the other is not (INDEP). Both cases have the exact same number of instructions and instruction

mixtures. Figure 26 shows the execution time of two cases as we increase the number of warps (i.e., all

threads execute the same code, so the total amount of work is also increased.) When the number of warps
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Figure 24. Illustration of dependent/independent memory a ccesses

per SM is less than MWP, the execution time of INDEP is much shorter than that of DEP. However, once

N is greater than MWP, both benchmarks take similar execution time. The main reason is that when there

are enough running warps than available memory-level parallelism, the processor can always find other

ready warps for execution.
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Figure 26. Effects of dependent/independent memory access es

In our analytical model, we have assumed that all instructions within a warp is dependent on the previous

instructions, which results in a serialization of all memory requests from one warp. We improve the

analytical model by introducingNpw, which is the number of parallel warps. Typically, the number of

parallel warps is the same as the total number of warps (N). However, when there are independent memory

requests, more number of warps (i.e., more number of memory requests) can be executed in parallel.

We calculate this effective number of parallel warps by calculating the number of memory independent

requests.
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Npw = N ×

#ind mem req

(#mem req − #ind mem req)
(29)

#ind mem req: number of independent memory requests

#mem req: number of total memory requests

MWP = MIN(MWP Without BW, MWP peak BW, Npw) (30)

This Npw is only used for calculating MWP. As shown in Equation (30),Npw can affect MWP, only

whenN is less than eitherMWP Without BW or MWP peak BW , which explains the behavior in Figure 26.

This is the same case when there are not enough running warps (Section 3.2.3 case). Hence, this scenario

rarely occurs because multiple conditions need to be satisfied (not enough running warps, and independent

memory requests). Most memory requests are dependent on theoutcome of the previous memory request

inside the same warp, otherwise, programmers could simply increase the number of warps (actually they

should have increased) in application from the beginning especially when there are not enough running

warps.

Figure 25 shows the outcome of two models and actual measuredvalue for two different memory access

cases. (1) independent memory accesses with the original model: MODEL NOPW(IND), (2) independent

memory accesses with the new model: MODELPW (IND), and (3) dependent memory accesses with new

model: MODELPW (DEP).10 Figure 25 zooms the boxed area in Figure 26. The experiment demonstrates

two important behaviors when the number of threads is less than 48. First, for dependent memory accesses,

the execution time is not increased linearly (almost the same). Second, the execution time of dependent

memory accesses is much longer than that of the independent memory accesses. The reason the flat area

exists is when the number of warps is too small, even if we increase the total work, the work takes almost

the same amount of time because the execution time is dominated by memory operations. The additional

memory requests due to additional warps are all serviced concurrently thereby total memory operations

remain the same. The results show that the predicted execution time using (25)(MODELPW) estimates

the execution time precisely for these two cases but not withthe old model (MODELNOPW).
10dependent memory accesses with old model is the same as new model
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6.2. Long Latency Computation Instructions

In our analytical model, we apply different instruction latencies based on the instruction types.

Table 7 summarizes the throughput of instructions based on the CUDA manual and our experimental

measurement. Throughput of one means that each functional unit can finish one instruction at one time,

which results in 8 Ops/s. Ops/s means the operations per second per SM.11 M Factor term is equal to one

when the throughput is 8 Ops/s, and it is proportionately increased as the throughput is decreased.

Surprisingly, FP (floating-point) operations are faster than INT operations in GPU architecture. Through-

put for FP operations such as addition, multiplication and multiply-addition is equal to the number of

functional units (i.e., 8 SP processors in the Tesla architecture, 8 FP operations per cycle). But instruc-

tions such as modulo and integer multiplication take much longer latency, reducing the throughput by the

factors of 4.3 and 35 respectively.
Table 7. Instruction Throughput

Instructions Ops/s (M Factor)[M] M Factor [Experiment]

FPadd FPmul FPmad 8 (1) 1
Intadd 8 (1) 1
FPdiv 2 (4) 4.2
Intmul 2 (4) 4.3
Intdiv, Modulo Very Costly 30, 35

Comp cycles = (#Issue cycles × M Factor) × #total insts (31)

Equation (31) shows the improved calculation for computation cycles over the previous Equation (19) by

considering variable instruction latency.

6.3. Divergent branches

When a warp diverges (i.e., diverges within 32 threads), theexecution of diverged warps is serial-

ized [30]. 12 This means that while one path is executed, the threads on theother path are idle. Figure 27

shows an example. The branch at basic block 1 in the figure diverges. Active bitmap mask shows that first

four threads take the taken path while the rest takes the not-taken path. Basic block 2 also has a divergent

branch. Hence, there are three paths (B1B2B4B6B7, B1B2B5B6B7, B1B3B7) in this example.

11Ops/s is used in the CUDA manual. MFactor is the term used to model longer-latency instructions.
12Several recent studies have focused on reducing unnecessary idle cycles during divergent execution [12, 37].
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Figure 27. Illustration of a divergent execution
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Figure 28. Effects of divergent branches on the execution ti me

Figure 28 shows the model predictions and the measured execution time. If the model only takes

execution time of each individual path into account (the first three bars in the figure), the execution time

is much shorter than the actual execution time. In the current GPU architecture, all the divergent paths are

serially executed [12].All pathsbar in the figure is the sum of all the paths in the divergent branch, which

shows only 6% delta with the actual measured time.

6.4. Effects of Synchronization

The cost of synchronization is modeled in Section 3.4.6 using equations (26) and (28). To evaluate the

synchronization cost in more detail, we compare the performance delta between two programs in Figure

29 where the only difference is the barrier instruction (bar.sync).
Program A (Synchronization)
...
9: ld.global.f32 %f1, [%r8+0];
10: mov.f32 %f2, 0f41200000;
11: mul.f32 %f3, %f1, %f2;
12: bar.sync 0; //Synchronization
13: st.global.f32 [%r8+0], %f3;

Program B (No Synchronization)
...
9: ld.global.f32 %f1, [%r8+0];
10: mov.f32 %f2, 0f41200000;
11: mul.f32 %f3, %f1, %f2;
12: st.global.f32 [%r8+0], %f3;

Figure 29. PTX code for synchronization analysis

Figure 30 shows an experiment where only one SM is active (i.e., one block is used). When there is only

one warp, there should no performance penalty due to synchronization. However, in the measured data,

we still observe some minor penalties from thebar.sync instruction. We estimate that this overhead

is coming from the fetch unit or other schedulers. Please note that using bar.synch just for one warp is

29



not a typical case which might cause unexpected overhead. Programmers should not use bar.sync just for

only one warp. Having predicted, as we increase the number ofthreads (warps) in the core, the cost of

synchronization increases. The model predicts the increasing cost accurately but with the absolute delta

due to the initial cost difference. In this experiment, we intentionally use only one SM to observe the cost.
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Figures 31 shows the performance delta when all SMs are actively running multiple blocks. Resource

usage for each GPU kernel is manually controlled to allocatetwo blocks per SM forBL2 and four blocks

per SM for BL4. In this experiment, we observe both the effect of number of blocks and MWP. In-

creasing the number of blocks also increases the cost of synchronization, because memory requests are

delayed by intervention with warps in other blocks. Since the number of warps is still less thanMpWB,

the synchronization cost is increased continuously. The model predictions show that a high-level trend

for synchronization is modeled. The geometric error for BL2is 19.65% and 11.42% for BL4. As previ-

ously mentioned in Section 3.4.6, with respect to overall performance, synchronization delay cycles are

not significant.
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6.5. Limitations of the Analytical Model

Our analytical model does not consider the cost of cache misses such as I-cache, texture cache, or

constant cache. The cost of cache misses is negligible due toalmost 100% cache hit ratio in most of

GPGPU applications. The current G80 architecture does not have a hardware cache for the global memory.

Typical stream applications running on the GPUs do not have strong temporal locality. However, if an

application has a temporal locality and a future architecture provides a hardware cache, the model should

include a model of cache. In future work, we will include cache models.

7. Related Work

We discuss research related to our analytical model in the areas of performance analytical modeling,

and GPU performance estimation.

7.1. Analytical Modeling

There have been many existing analytical models proposed for superscalar processors [29, 27, 26]. Most

work did not consider memory level parallelism or even cachemisses. Karkhanis and Smith [19] proposed

a first-order superscalar processor model to analyze the performance of processors. They modeled long

latency cache misses and other major performance bottleneck events using a first-order model. They used

different penalties for dependent loads. Recently, Chen and Aamodit [8] improved the first-order super-

scalar processor model by considering the cost of pending hits, data prefetching and MSHRs(Miss Sta-

tus/Information Holding Registers). They showed that not modeling prefetching and MSHRs can increase

errors significantly in the first-order processor model. However, they only showed memory instructions’

CPI results comparing with the results of a cycle accurate simulator.

There is a rich body of work that predicts parallel program performance prediction using stochastic

modeling or task graph analysis, which is beyond the scope ofour work. Saavedra-Barrera and Culler [33]

proposed a simple analytical model for multithreaded machines using stochastic modeling. Their model

uses memory latency, switching overhead, the number of threads that can be interleaved and the interval

between thread switches. Their work provided insights intothe performance estimation on multithreaded

architectures. However, they have not considered synchronization effects. Furthermore, the application

characteristics are represented with statistical modeling, which cannot provide detailed performance esti-
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mation for each application. Their model also provided insights into a saturation point and an efficiency

metric that could be useful for reducing the optimization spaces even though they did not discuss that

benefit in their work.

Sorin et al. [36] developed an analytical model to calculatethroughput of processors in the shared

memory system. They developed a model to estimate processorstall times due to cache misses or re-

source constrains. They also discussed coalesced memory effects inside the MSHR. The majority of their

analytical model is also based on statistical modeling.

7.2. GPU Performance Modeling

Our work is strongly related with other GPU optimization techniques. The GPGPU community pro-

vides insights into how to optimize GPGPU code to increase memory level parallelism and thread level

parallelism [15]. However, all the heuristics are qualitatively discussed without using any analytical mod-

els. The most relevant metric is an occupancy metric that provides only general guidelines as we showed

in the Section 2.4. Ryoo et al. [32] proposed two metrics to reduce optimization space for programmers

by calculating utilization and efficiency of applications.However, their work focused on non-memory

intensive workloads. We thoroughly analyzed both memory intensive and non-intensive workloads to

estimate the performance of applications. Furthermore, their work just provided optimization spaces to

reduce program tuning time. In contrast, we predict the actual program execution time. Bakhoda et al. [7]

implemented a GPU simulator and analyzed the performance ofCUDA applications using the simulation

output.

Recently, Baghsorkhi et al. [6] proposed a model using a workflow graph as an abstract interpretation of

a GPU kernel. PDG (program dependence graph) which containscontrol and data dependence information

is used to predict performance. Kothapalli et al. [22] used acombination of known models (BSP, PRAM,

QRQW) for predicting GPU performance. Predicting multipleGPU performance using a single GPU

performance is proposed by Schaa et al. [34].

Luk et al. [24] empirically modeled the performance of GPGPUapplications as a linear model using

run-time information for a dynamic compilation system. Williams et al. proposed a roofline model to

visualize the performance of multicore architectures [40]. The roofline model sets an upper bound on the
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performance of a kernel that depends on memory intensity andcomputation intensity metrics.

Recently, several application programmers have developeda performance model for specific applica-

tions. Choi et al. [9] proposed a GPU Kernel performance model of sparse matrix-vector multiply (SpMV)

kernel for autotuning. The proposed model guides the autotuning process that is input-matrix dependent.

Meng et al. [25] presented a model for optimizing iterative stencil loops used for image processing, data

mining and physical simulations. Govindaraju et al. [14] presented a memory model to improve the per-

formance of applications (SGEMM, FFT) by improving texturecache usage. The work by Liu et al [39]

modeled the performance of bio-sequence alignment applications written in GLSL (OpenGL Shading Lan-

guage) [20]. All these models are simplified for specific applications where our model is generic to all

GPGPU applications.

8. Conclusions

This paper proposed and evaluated a memory parallelism aware analytical model to estimate execution

cycles for the GPU architecture. The key idea of the analytical model is to find the maximum number

of memory warps that can execute in parallel, a metric which we called MWP, to estimate the effective

memory instruction cost. The model calculates the estimated CPI (cycles per instruction), which could

provide a simple performance estimation metric for programmers and compilers to decide whether they

should perform certain optimizations or not. Our evaluation shows that the geometric mean of absolute

error of our analytical model on micro-benchmarks is 5.4% and on GPU computing applications is 13.3%.

We believe that this analytical model can provide insights into how programmers should improve their

applications, which will reduce the burden of parallel programmers.
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Algorithms 1 and 2 describe how to to determine the type of memory accesses and the number of memory in-
structions for each type. Depending on GPU computing version, the number of memory transactions for uncoalesced
case is different. Algorithm 1 is for versions less than 1.3 and Algorithm 2 is for versions higher than or equal to 1.3.

Algorithm 1 Algorithm to detect coalesced/uncoalesced memory requests
INPUT
A source code which accesses a global memory is obtained.
(e.g., float localvar = dmdata[Index] where dmdata is a pointer to a global memory)
(Note: Index is a function of induction variables (if any), thread and block identifiers)
STEP1
If sizeof(localvar) is 4, 8, or 16 bytes, then STEP1 successful
STEP2
If d/d(tx) Index == 1, then STEP2 successful // Incremental value of Index with respect to tx
STEP3
Let T be a subset of Index in which beginning thread indices for an half-warp are used
(e.g., T = Index|tx=16t, t=0,1,2,...,n such that tx<= txmax)
If all index values in T are divisible by 16, then STEP3 successful
OUTPUT
If STEP1, STEP2, STEP3 are all successful, then the memory access is coalesced
Else the memory access is uncoalesced

Algorithm 2 Algorithm to detect the size and the number of memory transactions (Computing version 1.3
or above)

INPUT
A source code which accesses a global memory is obtained.
(e.g., float localvar = dmdata[Index] where dmdata is a pointer to a global memory)
(Note: Index is a function of induction variables (if any), thread and block identifiers)
STEP1
N = 0
STEP2
Let T be a subset of Index in which beginning thread indices for an half-warp are used
(e.g., T = Index|tx=16t, t=0,1,2,...,n such that tx<= txmax)
If any index value in T is not divisible by 16, then N=N+1
STEP3
Resultincrement = d/d(tx) Index // Incremental value of Memoryindex with respect to tx
Resultsize = 32 bytes if sizeof(localvar) is 1 64 bytes if sizeof(localvar) is 2 128 bytes if sizeof(localvar) is 4, 8, 16
STEP4
N = N + ceiling[(Resultincrement * 16 * sizeof(localvar)) / Resultsize]
OUTPUT
Transactional size = Resultsize
Number of memory transactions = N
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