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ABSTRACT

With fully autonomous flight capabilities coupled with user-specific

applications, drones, in particular quadcopter drones, are becoming

prevalent solutions in myriad commercial and research contexts.

However, autonomous drones must operate within constraints

and design considerations that are quite different from any other

compute-based agent. At any given time, a drone must arbitrate

among its limited compute, energy, and electromechanical resources.

Despite huge technological advances in this area, each of these prob-

lems has been approached in isolation and drone systems design-

space tradeoffs are largely unknown. To address this knowledge

gap, we formalize the fundamental drone subsystems and find how

computations impact this design space. We present a design-space

exploration of autonomous drone systems and quantify how we

can provide productive solutions. As an example, we study widely

used simultaneous localization and mapping (SLAM) on various

platforms and demonstrate that optimizing SLAM on FPGA is more

fruitful for the drones. Finally, to address the lack of publicly avail-

able experimental drones, we release our open-source drone that is

customizable across the hardware-software stack.

CCS CONCEPTS

· Hardware → Analysis and design of emerging devices and

systems; · Computer systems organization→ Embedded and

cyber-physical systems; Architectures.
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1 INTRODUCTION & MOTIVATION

Over the last decade, significant progress has been made in the

development of autonomous systems. The numerous advances in
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drones popularized by quadcopters [1] is partly due to the countless

applications addressed by these systems, such as aerial mapping [2,

3], exploration [4, 5], military [6], natural disaster recovery [7],

search and rescue [8], ecology [9, 10], and entertainment [11ś14].

The quadcopter design possesses many advantages over other aerial

vehicle designs in terms of simplicity and efficiency [15ś17]. Thus,

quadcopters are becoming prevalent and many control, planning,

and perception methods have been assimilated for them [15, 18ś28].

Nevertheless, drones must operate under conditions that are

quite different than any other compute-based agent. First, weight

and power are restrictive parameters in drones. Second, drones

must arbitrate between their limited compute, energy, and elec-

tromechanical resources not only based on the current tasks and

local conditions (e.g., wind, air temperature), but also according to

the flight plan. Despite huge technological advances in drones, these

problems have been approached in isolation, and the end-to-end

design-space tradeoffs are largely unknown.

As a result of such isolated problem solving, architecting end-to-

end drone systems and their computation landscape still remains

an open question. For example (Figure 1), if we are making a special

chip for drones, is it useful to improve processor performance and,

if yes, is it because of energy savings or better control? How useful

is improving processor power efficiency given that the majority

of power consumption is coming from resources other than com-

puting power? Should we focus on optimizing the flight-related

tasks, or should we focus on secondary tasks such as recognition

and autonomy? These questions pertain to creating cost-effective

solutions with low system integration cost, reasonable development

time, and effectiveness on drone metrics. Prior studies [29, 30] have

proposed a closed-loop simulator and benchmark suite, which does

not completely answer the above questions because it is focused

on high-speed drones (more in ğ6).

Making Special 

Chips for Drones?

50mW

5W

make an ultra low-power chip?

focus on only one task?

Should we

Or should we

accelerate flight-related or 

   secondary tasks?

trade power for generality?

focus on several tasks?

even accelerate tasks similar 

   to other areas?

Understanding 

design-space

tradeoffs are 

critical to solve

correct set of

problems

?

Figure 1: Impactful contributions in drones are only realized

by quantifying the design-space tradeoffs.

To answer such questions and solve worthy research problems, we

need to understand fundamental drone subsystems, classify drone

computations and their requirements, extract design-space tradeoffs,

and have access to a reproducible experimental platform.

This is the first paper to formalize and quantify the design-space

tradeoffs of autonomous drone systems. To do so, first, we address
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Figure 2: Sections overview.

the lack of a publicly available and reproducible experimental drone

framework that is customizable across its hardware-software stack

by releasing our open-source drone. Then, by exploiting this new

experience, we study the computational profile and landscape of

such systems, in which we must understand three major drone

metrics: flight time, control response time, and autonomous features.

Despite the extensive knowledge in our community, we discover

several missing pieces of the puzzle in understanding conventional,

described in the following.

(1) Flight time: Flight time is determined by the power con-

sumption of the drone during flight and the battery capacity. But,

the power consumption is dependent on several factors: drone

weight, motor types, flying activity, and several other factors. The

battery capacity also directly affects weight; a larger battery is

heavier, but has a higher capacity. (2) Control response time:

The control response time of a drone is determined by its control

system. However, we do not know if additional computation power

would enhance this system. (3) Autonomous Features: With sev-

eral exciting new applications in drones, such as machine learning

applications, it is important to understand how they interact with

the main control system, what their computation profile is, and

know how to quantify any opportunity for optimization.

To answer the aforementioned questions for flight time, after

introducing fundamental propulsion and power systems (ğ2.1.1,

ğ2.1.2), we extract crucial metrics from over 300 commercial compo-

nents and 150 manufacturers (ğ3.1) to find the major relationships

in determining the weight and power consumption of drones (ğ3.2).

Using the empirical measurements and physics, our method directly

translates compute power efficiency to flight time by untangling the

multifaceted relationships in drones. For instance, we quantify the

percentage of computation power from total power widely ranges

from 2ś30%, enabling gaining of up to +5 minutes flight time.

In ğ2.1.3, we analyze the control system of drones, namely, inner-

loop and outer-loop controls. For instance, we discover that the

critical inner-loop controls in drones have an update frequency of

50ś500Hz, which is not limited by computation power, but by the

physical response of the drone. Finally, in ğ2.2, we shed light on

the wide variety of autonomy in drones, current customized com-

pute boards for drones, and discover that these systems are highly

dependent on a core family of algorithms, namely, simultaneous lo-

calization and mapping (SLAM). Then, in Figure 2 in ğ3, we present

several important tradeoffs in drones, including the computation

power footprint. Next, in ğ4, we develop our open-source platform.

Finally, in ğ5, we showcase optimizations for SLAM on various

platforms. For instance, we show that moving from GPU/CPU to

FPGA provides 20x power savings, enabling 15ś20% (+2ś3 minutes)

of additional flight time in small drones.

This is the first paper to contribute the following:

• Formalizes the fundamental drone subsystems and quantifies

the design-space tradeoffs for the computational profile of dro-

nes to discover how computation power consumption affects

drone flight time, accomplished by incorporating physics and

empirical measurements from 300 commercial components and

150 manufacturers.

• Clearly separates the required computing for inner-loop con-

trols (real-time requirements) vs. outer-loop controls (auto-

nomous features) in drones and outlines the required computa-

tion amount and benefits gained.

• Showcases the optimization landscape of the widely used SLAM

algorithm in autonomous drones and the effects on flight time

by using the presented data.

• Develops an open-source and reproducible platform with a

customizable hardware-software stack to address the lack of

publicly available drone platforms.

2 AUTONOMOUS DRONES

Autonomous drone subsystems determine several crucial properties

of a drone, and the associated design choices have a pivotal im-

pact on the effectiveness of the end-to-end system. However, each

subsystem has been studied in isolation. This section first briefly

introduces these subsystems, and then extracts necessary details

pertaining to computations.

2.1 Fundamental Subsystems

Figure 3 overviews the main subsystems for a quadcopter drone. We

divide the fundamental subsystems as follows: propulsion system,

which generates necessary force for movement and lift; power

delivery system, which delivers the power to electromechanical

components; and control, compute, and acquisition system, which

controls and stabilizes the drone with the help of sensors.

2.1.1 Propulsion System. Quadcopter drones utilize four identical

motor-rotors, two pairs of which spin in opposite directions, for the

generation of thrust (i.e., uplifting force). For maneuvers, drones

must precisely change the rotation speed of each rotor, which along

with their small size, necessitates electrical propulsion with batter-

ies. Thus, only direct current (DC) motors, specifically brushless

DC (BLDC) motors, are used. BLDC motors achieve higher rotation

speeds with improved control, while providing precise feedback

for measuring rotation speed. Nevertheless, BLDC motors require

complex and expensive electronic speed controllers (ESCs) (ğ2.1.2).

ESC
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+ Processing Unit

TransmitterGround Station
Telemetry

On-Board

Sensors:

IMU

Barometer

LiPo

Battery

Control & Monitoring

GPS

Additional

Sensors
LiDAR

I2C
PWM

MAVLink
PPM/PCM/DSM

FramePropulsion

Figure 3: General overview of an autonomous drone.
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Figure 4: Essential drone movements. Colored rectangles

near each rotor show how rotation speed changes, with red

representing decrease and green representing increase.

The physics behind the essential movements of quadcopters is

relatively simple, shown in Figure 4. By ignoring several complexi-

ties, covered in ğ2.1.3, all movements stem from the precise control

over each rotor’s thrust while accounting for several environmental

factors such as wind and air density. Drones use the same uplift

thrust for horizontal movements by tilting. The maximum horizon-

tal speed depends on the maximum stable angle of attack (i.e., tilt

angle), which depends on the thrust-to-weight ratio (ğ2.3).

2.1.2 Power Delivery System. Lithium polymer (LiPo) batteries

(lithium-ion polymer), which have the highest energy density (Wh/Kg)

and discharge rate (measures how fast the battery can be safely

discharged) in rechargeable lithium-ion technology, are the main

source of power in drones. Since BLDCmotors require high current,

the high current flow of LiPo batteries is a critical factor. However,

the downfall is that LiPo batteries are relatively fragile; only 85%

(LiPoDrainLimit) of their capacity should be used during a flight. LiPo

batteries have various configurations that are multiples of cells with

a nominal voltage of 3.7V/cell, studied in ğ3.1.

Each BLDC motor requires three-phase currents, which are gen-

erated by a separate ESC using DC current. The complexity of the

ESC circuits is evident, as they need a switching frequency of 60ś

600KHz while delivering hundreds of Watts. ESCs also provide

necessary electronics to implement feedback to achieve precise

control of the rotation speed of their own microcontroller. ESC pro-

tocols usually go beyond PWM (pulse-width modulation) signals

for modern-day drones due to high precision in control (e.g., the

DShot1200 protocol has a communication frequency of 74.6 KHz).

The above criteria make ESCs one of the heavier components (ğ3.1).

2.1.3 Control, Compute, and Acquisition System.

A. Inner vs.Outer Loops:The recent advancements in autonomous

drone systems have mainly been accomplished with the devel-

opments of high-level algorithms in state estimation, trajectory

tracking, localization, and deep learning [18, 20, 21, 24ś26, 28].

Nonetheless, such high-level algorithms (i.e., outer-loop compu-

tations) rely on and are directly impacted by the inner-loop con-

trol [15, 17, 22, 23] (Figure 6). High-level algorithms only provide

state targets, grouped into position, velocity, and attitude1, to the

inner-loop control. The inner loop reaches those target set points

over time by direct manipulation of the drone actuators while also

maintaining a stable flight. Furthermore, remote controller (RC)

commands and safety override commands pass through the inner-

loop to minimize response latency. Table 1 summarizes a handful

of dynamic effects, such as stabilization, that are compensated by

the inner-loop control for a stable flight, emphasizing inner-loop

control relative importance to the high-level algorithms.

1Defined as orientation of a solid body around three Cartesian axes.

Table 1: Unpredictable effects compensated by the inner-loop

control vs. decisions made by the outer-loop control.
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B. Hardware-Software Stack: Figure 5 shows the hardware-

software stack abstraction of a drone. The flight controller boards

with additional on-board sensors directly manipulate ESCs and

sensors. Flight controllers have the following main components

(Table 4 provides some examples): (i) a microcontroller (MCU) usu-

ally STM32F 32-bit Arm Cortex-M series; (ii) one or two 6-axis

inertial measurement units (IMUs); (iii) a barometer, for altitude

measurements; (iv) and possibly several chips for sensors, video feed

codec, and communication. If necessary, external sensors with their

dedicated full-stack supporting system are added. The operating

system (OS) is dominated by Linux, except for racing applications.

The hardware abstraction layer (HAL) provides necessary APIs.

The shared libraries layer provides common sensor fusion algo-

rithms (e.g., Extended Kalman Filter). The control layer is described

in the next paragraph. The final application-specific flight code

layer largely depends on the application. Finally, the communica-

tion layer delivers stats to the ground station and, if necessary, a

MAVLink [31] protocol offloads computations to another node.

C. Inner-Loop Control: In the inner loop, the control layer uses

the on-board sensors to stabilize the drone and reach to target set

points dedicated by the outer loop. This layer extensively uses high-

performance hierarchical proportional-integral-derivative (PID)

controllers, whose filter response and quality of the estimated state

variables defines the drone behavior. The feedback loop is shown

in Figure 6 and is completed by sensor measurements. The control

is performed hierarchically2 by dividing the control problem into

three levels depending on their response time, shown in Table 2b,

known as time scale separation. The three levels are as follows:

High-level position or trajectory, mid-level attitude, and low-level

thrust controller [15, 16, 23, 32]. Based on Table 2, no higher update
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Figure 5: Hardware-software stack abstraction of a drone.

663



ASPLOS ’21, April 19ś23, 2021, Virtual, USA Hadidi, Asgari, Jijina, Amyette, Shoghi, and Kim.

Drone

Thrust 

Contoller

Attitude

Controller
Trajectory

Controller

Velocity

Controller
Low-LevelMid-Level

High-Level
In

n
e

r 
L

o
o

p

O
u

te
r 

L
o

o
p

Position,

Velocity,

Attitude*

Targets

State

Report

*If the application requires attitude control by the outer-loop; otherwise, the control happens entirely 

in the inner-loop. ** This feedback loop is usually implemented through attitude control because of 

its slow response time

**

Figure 6: Inner- and outer-loop controls in drones. The inner-

loop control manipulates the drone actuators to reach the

target set points dictated by the outer-loop control.

Table 2: (a) Common data frequencies of on-board sensors.

(b) Update frequency and response time of each controller.

1KHz 

200Hz 

40Hz 

Thrust

Attitude

Position

50ms

100ms

1s

Update Frequency Response TimeControllerSensor Data Frequency

(b) Controllers Update Frequency

Accelometer

Gyroscope

Magnetometer

Barometer

GPS

100–200Hz

100–200Hz

10Hz

10—20Hz

1—40Hz

(a) Sensors Data Frequency

Inner-Loop 50—500Hz N/A

and response frequency than 1 KHz is necessary, both for reading the

sensors and updating the controllers.

D. Inner-Loop Control Computations:We summarized the

inner-loop control computation as two groups: (i) filter compu-

tations such as EKF for data fusion and updating PIDs, and (ii)

algebraic functions for state estimation such as air drag and tra-

jectory. The filter computations consist of keeping a history and

accumulated versions of previously observed measurements, their

derivative, and their integral. The state estimation includes 3x3

matrix operations based on the measurable state of the drone that

includes 𝑥 =

(

®𝜁 ,
¤®𝜁 , ®Ω, 𝑅

)

, in which ®𝜁 ∈ IR3 is the position (using data

from the IMU, GPS, and barometer),
¤®𝜁 is the velocity (using IMU),

®Ω ∈ IR3 is the angular velocity (using IMU), and 𝑅 ∈ 𝑆𝑂 (3) is the

attitude (using IMU) of the drone [17, 32]. All control computations

are effectively performed by a STM32F 32-bit Arm Cortex-M, a

single-core processor with a frequency on the order of 100MHz,

in even high-speed racing drones. Although some research pro-

posals suggest replacing control-theory-based with learning-based

algorithms that require higher computation capabilities [27], the

consensus is that unless a new electromechanical part introduces

a drastically new response time, higher computation capabilities

are not required. For instance, the inner-loop update frequency in

high-end commercial products [33, 34] ranges from 50Hz to 500Hz.

Even for highly specialized sensor-based control techniques with

incremental nonlinear dynamic inversion (INDI) that can stabilize

a drone under powerful wind gusts [22], the update frequency is

still 500Hz. Thus, the update frequency of the inner-loop control is

50ś500 Hz, which is limited by the physical response time and inertia

of the control and electromechanical components in drones and is not

limited by the computation power.

2Hierarchical controllers are non-linear controllers that yield stability and en-
hanced robustness, especially for highly nonlinear dynamics (e.g., air drag). Other
linear and non-linear controllers for drones [16] also have a similar update frequencies.

2.2 Autonomy in Drones

Autonomy in drones is realized by intelligently providing target

states (i.e., position, velocity, and sometimes attitude) with the

computation that occurs in the outer-loop control, as explained

in ğ2.1.3. Although autonomy is a defined term in self-driving

vehicles, meaning to safely navigating from point A to B, such a

definition is not set in drones. For instance, mapping drones are

autonomous in the sense that they fly within a predefined airspace

while covering the entire area for mapping [3, 5, 10, 35]. Or, active-

filming drones use vision cameras and recognition technologies to

follow a predefined target and optimize the filming angles while

avoiding obstacles [1, 11, 33]. As a result, autonomy in drones is

still an active area of research and commercial products.

The outer-loop computations always occur in isolation, and the

hardware dedicated for such computations varies from quad-core

and Intel i7 CPUs in research-oriented studies [5, 21] to custom-

built computers based on NVidia Jetson TX2 [33, 36] or custom

Intel boards (e.g., Intel Aero compute board [37]) in commercial

products. From a computation perspective, to ensure that the inner-

loop control is in real time, the computations for autonomous tasks

in the outer-loop are not co-located on the same computation core or

even the same unit as for the inner-loop control.

We find a wide variety of high-level algorithms in autonomous

drones are dependent on a core family of algorithms, namely, si-

multaneous localization and mapping (SLAM) and visual odometry

(VO) [38ś42]. These algorithms are the fundamental building blocks

for many autonomous technologies [19, 39, 43] and are used in vari-

ous tasks such as navigation, obstacle avoidance, and path planning.

Designing drone systems that provide accurate localization in real-

time on platforms with limited computational and energy resources

is an active area of research [18, 19, 24]. Therefore, to date, various

implementations of SLAM with the focus on algorithmic-level opti-

mizations [38, 40ś42, 44] or hardware acceleration [43, 45ś50] have

been proposed. We explore such hardware optimizations in ğ5.

2.3 Drone Design Metrics

Table 3 presents the the definition of metrics used in drones. Most

of the metrics are not standalone and are dependent on each other

based on the design choices covered in ğ3.

3 QUANTIFYING DESIGN-SPACE TRADEOFFS

To understand the computational profile in autonomous drones,

we must quantify the design-space tradeoffs that define several

important features such as flight time. This section quantifies each

tradeoff correlation with weight, which defines the order of power

consumption in a drone. Then, we derive how the computation

affects this design space.

3.1 Important Tradoffs

Battery Stored Energy & Weight. Drones predominantly use LiPo

batteries (ğ2.1.2), which constitutes a large fraction of a drone’s

weight. Although a higher capacity battery has more charge, the

additional weight may result in a shorter flight time (not to mention

the additional weight of sensors and computation units). Hence,

it is crucial to understand the relationship between the capacity

(mAh) and the weight of the batteries. Although the range of energy
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Table 3: Definition of important metrics.

Metric Definition

T
h
ru

st
-t
o
-

W
e
ig
h
t
R
a
ti
o

(T
W

R
)

The maximum total thrust produced by the motors (g) divided by
the drone’s weight (g). Common ratios are from 2:1 to 7:1. A higher
ratio enables drone to perform elaborate aerobatics. Higher ratios
mean heavier motors, larger batteries, and ESCs with a higher
consumption. To find the highest possible contribution boundary
of computation power consumption, we use a TWR of 2:1.

T
h
ru

st
P
e
r
M
o
to
r

Thrust that is produced by a motor depends on the propeller di-
ameter and pitch, supply voltage, 𝐾𝑣 rating, and motor design.
𝐾𝑣 rating is used to calculate the rotation speed (RPM), 𝜔 , of
the motor per supply voltage,𝜔 = 𝐾𝑣 ×𝑉 . So, for a fixed volt-
age, a lower 𝐾𝑣 rating produces more torque and turns larger
propellers. A propeller with a larger diameter and pitch moves
a larger volume of air per rotor revolution and provides larger
thrust. The maximum propeller size is determined by the frame
size, or wheelbase.

D
is
ch

a
rg
e

R
a
te

The battery discharge rate or C rating is a measurement of the
maximum continuous current a battery can safely supply. The
maximum continuous current from C rating is calculated as
Capacity(Ah) ×𝐶 = I.

B
a
tt
e
ry

(x
S
y
P
)

A LiPo battery has a nominal voltage of 3.7V/cell. To supply more
voltage, cells are packed together in series. The convention is to
write the configuration as xPyS, which means x pack of y cells in
series. To provide a high thrust-to-weight ratio, we need motors
with a lower 𝐾𝑣 rating for higher torque, which means a higher
voltage is required to achieve good RPMs for lifting.

E
S
C

M
a
x
.

C
u
rr
e
n
t ESCs must be able to supply constant current to the motors while

the drone is flying. Themaximum continuous current value shows
how much current an ESC can handle, which directly depends on
the type of motor and propeller.

F
ra
m
e

W
h
e
e
lb
a
se

The frame size or wheelbase is the distance between two diago-
nal arms of a quadcopter. The wheelbase defines the maximum
propeller diameter a drone can use. Indoor drones have a wheel-
base under 100mm, while outdoor drones have wheelbases up to
1000mm.

densities of LiPo batteries are known, these values are insufficient

for accurate estimations for two reasons. First, we are interested in

the end product, which also includes casings, wires, and protection

circuits. Second, as the manufacturing process is not ideal with

various discharge rates, estimation based on energy density is not

precise. To address this knowledge gap, we study 250 commercial

batteries. By grouping the batteries based on their configuration in

number of cells (see ğ2.3), we derived a linear relationship between

the capacity and the weight of the batteries, shown in Figure 7.

Generally, for batteries with higher voltages (for motors with higher

torque), we observe a higher overhead. However, these batteries are

necessary to lift the drone. The figure also includes discharge rates,

which result in heavier batteries, but the resulting weight does not

deviate from the extracted formulas per battery configuration.

ESCs Current &Weight. ESCs provide high continuous current with

a high switching frequency (i.e., 6 × RPMrotor), both of which are

determined by the motor and TWR ratio. ESCs have large MOS-

FETs with high source-to-drain voltage and very high continuous

current. Therefore, the weight of ESCs are highly correlated with

the maximum continuous current they can handle. We extract this

correlation by studying 40 commercial ESCs, shown in Figure 8a.

We divide the ESCs into two groups: Short-flight (under 5 minutes)
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Figure 7: LiPo battery capacity and weight per configuration

(ğ2.3), extracted from 250 commercial batteries.

ESCs, targeting racing drones; and long-flight ESCs, targeting all

other use cases. In racing, ESCs are designed with lighter MOSFETs

and capacitors that overheat in longer flights.

Frames. A larger drone frame size leads to more choices in the

components, ability to house new sensors, and larger propellers.

However, evenwith carbon and glass fiber technology, the weight of

a frame is not negligible. Thus, we study 25 commercially available

frames in Figure 8b and extract the correlation between their weight

and wheelbase.

Propulsion System. The motors and propellers of drones have a

wide variety of configurations; thus, the tradeoffs of the propulsion

system are multifaceted and complex. The main deciding factor in

the process is the target TWR. Since we are interested in under-

standing the computational profile in the most efficient designs, we

set the target TWR to 2, the minimum required value for flying.

Thus, the derived values specify the highest percentage of possible

contribution of computation power. Figure 9 shows an extrapolated

relationship between the max current draw of the appropriate mo-

tors and the corresponding drone’s basic weight (i.e., not including

battery, ESCs, and motor weight) grouped by the supply voltage

(i.e., the cells of the LiPo battery). For each frame, we first set the

maximum propeller diameter in inches dictated by the wheelbase

(written in the legend). Then, we extract the thrust and 𝐾𝑣 rating

of the motors from data released by 150 manufacturers. Then, by

varying the weight and supply voltage, we calculate the minimum

required max current draw per motor.
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Figure 9: Relationship between the max per-motor current draw and the basic weight, grouped by supply voltage and wheelbase

sizes from 50mmś800mm. TWR is 2 and data is extracted from 150 manufacturers.

Table 4: Specifications of commonflight controllers, compute

boards, and external sensors for drones.

Name Weight (g) Power

Flight Controllers & Computation

B
a
si
c

iFlight SucceX-E F4 [56] 7.6 <100mA@5V
DJI NAZA-M Lite [57] 66.3 300mA@5V
DJI NAZA-M V2 [58] 82 300mA@5V
Pixhawk 4 [59] 15.8 400mA@5V
MateksysF405 [60] 17 200mA@5V

Im
p
ro
v
e
d Intel Aero [37] 30 2A@5V

Navio2 [61] 23 150mA@5V
Raspberry Pi 4 [62] 50 1A@5V
Nvidia Jetson TX2 [63] 85 2A@5V
DJI Manifold [36] 200 20W

External Sensors

F
P
V Eachine Bat 19S 800TVL 8 50mA@5V

RunCam Night Eagle 2 [64] 14.5 200mA@5V

L
iD

A
R HoverMap [65] 1800 50W, Self-Powered

YellowScan Surveyor [66] 1600 15W, Self-Powered
Ultra Puck [67] 925 10W, Self-Powered

In Figure 9, we see that heavier drones have motors with higher

𝐾𝑣 ratings for higher rotation speeds. Moreover, in larger wheel-

bases, larger propellers are needed to lift the drones. This is be-

cause it is physically impossible to use smaller propellers with high

RPMs. These large propellers require higher torque from the motors.

Thus, these motors have a lower 𝐾𝑣 rating (compare 𝐾𝑣 ratings in

Figure 9a vs. b). However, because of their larger size (to create

the necessary torque, the motors have a greater number of poles

and larger diameters), these motors are much heavier (e.g., from

5 g/motor in 100mm drones to 100 g/motor in 1000mm drones).

Flight Controllers, On-Board Computation, & Sensors. Table 4 lists

common open-source and commercial flight controllers, additional

computation boards, and external sensors. All of the flight con-

trollers have an integrated STM32F Arm Cortex-M processor se-

ries as the main inner-loop controller (ğ2.1.3). We divide the flight

controllers into two groups: basic, which provides only necessary

inner-loop functions with limited outer-loop capabilities; and im-

proved, which provides customizable inner-loop functions and a

few outer-loop functions. In commercial markets [33, 36, 37], the

Nvidia Jetson TX2 embedded board is considered a high-end solu-

tion with a price of $300. The power consumption of these compute

boards ranges from 0.5ś20W. Therefore, in the following section,

we assumed two levels of power consumption: a 3W and a 20W

chip, representing basic and advanced flight controllers, respec-

tively. For external sensors, we list the first-person view (FPV)

cameras with a maximum of 1W consumption. High-definition

(HD) cameras are self-powered with weights around 100 g. Specific

LiDAR solutions optimized for drone technologies are also listed in

the table for completeness. All options are stand-alone and weigh

around 1 kg. To make integration easier, state-of-the-art LiDAR

solutions have their own battery and compute boards. We study

how the addition of these sensors due to their weight, reduces the

contribution boundary of main computation power in large drones.

3.2 Computation Footprint

Procedure: To understand the computational profile, we derived

the total power consumption of a wide range of drones from small

indoor drones (100mm wheelbase) to large military and filming

drones (800mm wheelbase). We use ğ3.1 extracted data while ac-

counting for the additional weight and power consumption of each

module. In detail, per each frame (Figure 8b), we choose the pro-

peller with the maximum size, find the required RPM for the motors,

and choose the best matching motor depending on the number of

cells in the LiPo battery, while sweeping the range in the capacity

of the batteries from 1000mAh to 8000mAh (Figure 7, Equation 4).

Then, from the maximummotor current draw (Figure 9, Equation 2),

we choose ESCs (Figure 8a). In this step, if the additional weights

necessitate a new motor, we redo the previous steps (Equation 1).

By assuming a low-load hovering condition (FlyingLoad, 20ś30% of

the maximum current draw) with 85% LiPo battery capacity limit

(LiPoDrainLimit), we calculated the power consumption (Equation 7),

shown in Figures 10a,b, and c for 100, 450, and 800mm wheelbases.

WeightTotal = F(4𝑊Motor,𝑊ESC,𝑊Battery,𝑊Frame,

𝑊Propellers,𝑊Compute,𝑊Sensors,𝑊Wires) (1)

MotorCurrent = G(WeightTotal, TWR) (2)

PowerAvg = H(MotorCurrent .BattV,%FlyingLoad,

PowerCompute, PowerSensors) (3)

BattCapacity = M(LiPoCapacity,%PowerEff,%LiPoDrainLimit) (4)

FlightTime = N(BattCapacity, PowerAvg) (5)

%PowerComputation = X(PowerAvg, PowerCompute) (6)

+FlightTimeCompute = Z(%PowerComputation, FlightTime) (7)
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Figure 10: Top Row (a,b,c): The total power consumption of drones with various wheelbases extracted by relationships in

Equation 3.2 and verified with data from commercial drones shown as additional data points [33, 51ś55]. Bottom Row (d,e,f):

The computation footprint considering 3W and 20W chips shown with 3/20W computation @ hovering/maneuvering lines.

Validation: We validate our data by adding commercial drone

data points using the released flight times and battery configura-

tions [33, 51ś55], shown as additional diamond-shaped data points

in Figure 10. No data skewing or pre-selection is used for extracting

tradeoffs (i.e., all data points are shown). Additionally, we verify

the average power consumption by calculating the total flight time

to match with current state-of-the-art commercial drones, resulting

in 23, 19, and 21 minutes of flight time for 100, 450, and 800mm

wheelbases, respectively.

Interpretation: Figures 10d,e, and f illustrate the percentage of

computation power from the total power of a drone in two groups

with hovering and maneuvering (20ś30% and 60ś70% of the maxi-

mum current draw, respectively). The first group with a 3W com-

pute power represents a commercial ultra-low-power flight con-

troller. The second group with a 20W compute power represents

a GPU-CPU system with much higher capabilities. First, we see

that the 3W chips have less than 5% contribution in total power

consumption. Second, even for the 20W system, when the drone

moves, the contribution drops to an average of 10%. Moreover, we

see jumps that occur because heavier drones need batteries with

more cells to provide higher voltage for higher KV motors. How-

ever, initially, those batteries are less efficient than the batteries

used for lighter drones. Also note that these drones have a target

TWR of two; hence, the contribution shown is at its highest. To

quantify, we can convert this power savings to extra gained flight

time (see Equation 7. In large- to medium-sized drones, the average

computation power is 10% of the total power and the maximum gain

of computation power savings is with +2 minutes in total flight time

and possibly less considering maneuvering and higher TWR values.
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Figure 11: Commercial small-sized drones’ heavy computa-

tion power contribution and their flight time.

For small-sized drones, the tradeoff between the computation

and flight power is more critical. In addition to Figures 10a and d, we

also study the power consumption of nano and micro commercial

drones’ power consumption, outlined in Figure 11 [33, 51, 53, 55, 68,

69]. For these drones, when hovering, the power consumption is

from 2ś7%. Nevertheless, when hovering with heavy computations

(e.g., face recognition, HD video recording), the contribution of

computations in total power consumption reaches 10ś20% (shown

with a yellow line in Figure 11). Thus, in small drones, by optimizing

heavy computations such as SLAM and deep learning workloads, we

can potentially increase the flight time by up to 20%, or around +5

minutes in total flight time.

How to Use This Data: Figure 12 illustrates the procedure for

how to obtain the total and compute power consumption of a drone

depending on its size and battery capacity. Thus, we can understand

how power savings or special chips affects the flight times and

weights for all drones. We showcase SLAM in ğ5 as an example.

667



ASPLOS ’21, April 19ś23, 2021, Virtual, USA Hadidi, Asgari, Jijina, Amyette, Shoghi, and Kim.

Calculate Flight Time
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Total Power (Fig10,11)

Compare with Commercial Drones (Fig10,11)

Targeting Drone Applications

How to Accurately Quantify the Benefits?

Does drone need:

Extra sensors? (Table4)

Extra compute? (Table4)
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Start with a small frame

       Drone weight is ~4x of 

       its frame weight (Fig9)
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Motor Draw (Fig8)

Estimate Lift Power
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Add Motor Weight
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% Compute Power
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Figure 12: Procedure of quantifying total/compute power

consumption in drones.

4 OUR OPEN-SOURCE DRONE

Figure 13: Our Drone.

To address the lack of

publicly available end-to-

end experimental and re-

producible frameworks for

drones, we develop and fly

test a fully open-source ex-

perimental drone that is

fully customizable across

its hardware-software stack.

We integrate several widely-

used hardware/software components. This platform reduces the

barriers to entry to drone research3, shown in Figure 13, and has a

total cost of $500 with the ability to carry 200g additional payloads.

The components, as far as they are compatible (e.g., voltage, con-

nections), can be easily switched/added to the drone. The current

available alternatives do not provide full access to the hardware-

software stack and have no extra-weight capacity.

Hardware-Software Ecosystem. With the backing of the Navio2 [61]

for crucial flight inner-loop control, our drone uses a Raspberry

Pi[62] (RPi) with a maximum power of 5W. We integrate high-

level autonomous flying firmware [70] to run advanced waypoint

navigation algorithms and autonomously execute certain actions

based on the results of the SLAM algorithm [71]. The following

sections overview the four layers of the drone’s ecosystem.

(1) High-Level Functions: The high-level functions layer consists

of high-level and low-level APIs which are used to write custom

code and firmware. The custom firmware is converted to a Linux

service and run on the Pi in the background. We also utilized the

DroneKit [72] C++ and Python APIs, which were modified to al-

low the drone to be reconfigured mid-flight. DroneKit allows us

to connect to the drone, issue flight commands, and monitor the

3The ACM artifact link on the first page or doi.org/10.5281/zenodo.4546174 for
the most recent version. This open-source repository includes guide to build the drone,
data sources of ğ3, and software stack of the drone.

drone. Apart from being open-source, DroneKit is easily extensible

and provides the flexibility to be used on on-board computers as

well as ground-station applications by abstracting away physical

MAVLink [31] protocols.

(2) Autopilot: ArduCopter[70] is an open-source autopilot code-base

for drones with great versatility. ArduCopter, written in C++, allows

for manual flying/autonomous control. Our modified Linux kernel

allows ArduCopter to utilize loop-back ports to listen to commands

being issued by external applications executing on other computers

(e.g., RPi). The ArduCopter binary, once compiled with WAF [73],

runs several Linux daemons[74] with distributed roles.

(3) Modified Linux Kernel: The Linux kernel is modified to support

the Preempt_RT patch, which enables the Linux operating system

to become suitable for drones. Using this, we can completely shut

down an instance of a drone mission and spool up a new mission

while the drone is in mid-flight, safely and securely using WAF [73].

The Linux kernel is also modified to support continuous loop-back

and server instances so the drone can be controlled using multiple

devices such as through 915Mhz telemetry or a laptop through

Secure Shell (SSH).
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Figure 14: Our drone weight

breakdown.

(4) Flight Controller: We

use the Navio2 controller

with a Cortex-M3 co-

processor, GPS, and 2x

IMUs. Navio2 has generic

GPIO pins for any com-

pute board and provides

connection to our RPi.

During flight, the RPi

sends signals to the board

that are decoded by the

controller.

(5) Hardware Control Sur-

faces: The controllable

hardware consists of sen-

sors, four motors, and

ESCs. The weight break-

down of our drone is

shown in Figure 14, which

shows similar trends as shown in ğ3.1. The frame, battery, motors,

and ESCs are the major components contributing to the weight.

A New Platform Different From Current Platforms. Several popular

commercial drones such as the CrazyFlie [75] or the PlutoX [76]

have drastic tradeoffs between performance and flight time while

limiting user access to flight code or being unable to carry addi-

tional payloads. Moreover, they can be configured only for limited

purposes. With our drone, our goal is to minimize that tradeoff

and give users the power to import both high- and low-level (i.e.,

inner- and outer-loop) functions. Our drone can be configured for

a variety of research purposes because the hardware stack is con-

figurable. Moreover, we use Linux with the RT-Preempt patch to

allow for a wide range of applications while enabling the control of

the drone and parameters in real time. We choose the Navio2 flight

controller because it is easily configurable for different applications

and grants complete access to all control systems.
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5 SHOWCASING OPTIMIZATIONS

This section exhibits the impacts of design optimizations on per-

formance and power consumption and concludes with the impact

of optimization on flight time. To study this, we explore offloading

ORB SLAM onto various hardware platforms.

Experimental Setup & Platforms. Our baseline platform to execute

autopilot and SLAM (ORB SLAM [71]) is a RPi4 [62]. We measure

the power consumption of the RPi using a USB digital multimeter

that records measurements once every half second (± 10mW). The

power consumption of the entire drone is measured with a digital

oscilloscope by measuring both current and voltage every 20ms

(± 0.5mW) of the battery while controlling the drone. To measure

performance at the instruction level, we used Linux perf and carried

out analysis while the entire software-hardware stack is in loop.

Our hardware platforms for implementing SLAM include a separate

RPi4 [62], Nvidia Jetson TX2 [63, 71, 77], and a ZYNQ XC7Z020

FPGA on a PYNQ-Z1 embedded board. All the SLAM experiments

run with the relevant EuRoCmicro aerial vehicle dataset [78], while

confirming SLAM key metrics.

For FPGA implementation, we use Xilinx Vivado HLS and de-

scribe our tailored microarchitecture in C++ by using relevant #pra-

grma. We use the post-implementation resource utilization, power

consumption, and latency reported by Vivado. Inputs and outputs

of the accelerator are transferred through the AXI stream interface.

The clock frequency is set to 100MHz. Similarly, we use the Eu-

RoC dataset. For ASIC comparisons, we use the 20mm2 Suleiman

et al. implementation on ASIC, in 65nm CMOS [19]. Navion is a

visual-inertial odometry (VIO) accelerator that does not include

the full-loop feedback of SLAM; nevertheless, it offers the order of

power consumption in ASIC implementations. Navion processes

the EuRoC dataset in real-time at 20 frames per second (FPS) while

consuming a maximum of 24mW.

5.1 Running Autopilot and SLAM on RPi

Performance. When running SLAM along with the autopilot on

an RPi, SLAM in not only not fast enough, but also it negatively

impacts the performance of the autopilot. For instance, the presence

of SLAM causes 4.5× as many TLB misses as the autopilot alone
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Figure 15: Performance metrics

for SLAM and autopilot on RPi.

causes. Similarly, we ob-

served that the LLC and

branch-prediction miss

rates of the autopilot

with SLAMare also higher

than those when running

the autopilot solely, as

the primary axis in Fig-

ure 15 shows. Addition-

ally, as the secondary

axis in Figure 15 shows,

the IPC of the autopi-

lot decreases by 1.7×.

These observations indi-

cate that by running a

few additional workloads, specifically heavy ones, the real-time re-

sponse of the autopilot will lag and we will miss several outer-loop

deadlines. Although the outer-loop control is not directly related
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Figure 16: Power consumption graph of (a) RPi executing

SLAM and autopilot code and (b) entire drone during flight.

to the control system, improving the performance of processors

is necessary to handle heavy computations that are introduced by

new workloads.

Power Consumption. Figure 16a shows the power consumption

graph of the RPi during flight. We measure the power consumption

of the RPi while it is executing the autopilot software, SLAM, and

flight script (i.e., pre-set commands for autopilot). The average

power consumption of the RPi when executing the autopilot is

3.39W, which increases to 4.05W when we start SLAM, but the

drone is not flying yet (SLAM is idle). Finally, when the drone

flies and SLAM actively processes input data, up to 5W of power

is consumed and the average power consumption of RPi reaches

4.56W ś we use these numbers to estimate heavy computation

power consumption in Figure 11. Thus, by offloading SLAM onto a

low-power platform such as ASIC/FPGA, we can potentially save

up to 2W, which would have a high impact for small drones (e.g.,

Parrot Mambo [68]). Figure 16b depicts the power consumption

graph of the entire drone, with an average of 130W. In Figure 10, this

130W is only with 30% of the flying load. The power consumption

goes as high as 250W in higher loads (58% flying load) with simple

movements. In maneuvering (Figure 10dśf), the contribution of

computation power consumption reduces significantly.

5.2 Offloading SLAM to Hardware Accelerators

Besides preventing lags in the responses of the autopilot, offloading

SLAM to a hardware accelerator (i) improves the performance of

SLAM and (ii) helps extend the flight time by consuming less power.

This section explores these two aspects by implementing SLAM on

our three hardware platforms.

SLAM performance. Figure 17 shows the time to process each Eu-

RoC dataset while executing ORB SLAM on a RPi4 (with no other

application), TX2, and FPGA. Our FPGA implementation exten-

sively accelerates the local and global bundle adjustments of ORB

SLAM (≈90% of execution time on RPi) by using simple modules

of dense fixed-size matrix algebra in a pipeline. For further accel-

eration, we also integrate eSLAM design [50], which accelerates

feature extraction. Running SLAM on a separate RPi improves its
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Figure 17: ORB SLAM speedup over RPi for TX2 and FPGA

by category: feature extraction and bundle adjustments.

performance by 2.3× (IPC from Figure 15). As Figure 17 illustrates,

the TX2 and FPGA implementations are 2.16× and 30.7× faster than

the implementation of SLAM on the RPi. As a result, all these im-

plementations, including the slowest, meet the rate of sensors (e.g.,

cameras and LiDARs), even those with more than 100 FPS. Although

all design choices satisfy the real-time requirement, they provide a

400x landscape in power consumption. Therefore, the question is,

how should we navigate 400x landscape in power consumption?

Flight time. Offloading SLAM (or any other heavy compute) to a

hardware accelerator reduces power consumption, but adds weight

to the system. This section explores the combined effect on flight

time. The power consumption of our FPGA implantation is 417mW,

compared to ASIC with 24mW [19]; RPi with 5W; and TX2 with

10W. Since, on average, our drone consumes 130W, saving 10W

by moving from TX2 to FPGA gives us +1 minute of flight time

(≈ 10/140 × 15min). For small drones moving from CPU/GPU to

FPGA with 20x in power savings, there is a reduction on the power

consumption of approximately 15-20%, enabling an additional +2ś3

minutes of flight time (≈ 10/50× 15min). But, the lengthy process of

special ASIC chip fabrication to gain an additional 20x power sav-

ings (saving 400mW) earns us only a few seconds. Table 5 combines

the results for the cost of various platforms for executing SLAM

on drones by assuming RPi as the baseline. Since TX2 consumes

more power and is heavier, the gain in flight time is negative. Both

FPGA and ASIC have almost identical impacts on flight time for

large drones and small drones (only 20 seconds in additional flight

time for ASIC in small drones). However, ASIC integration and

fabrication costs are extremely high, which renders FPGA as the

best platform even though it consumes more power.

Table 5: Comparing costs of various platforms for SLAM.

Platform RPi TX2 FPGA ASIC

SLAM Speedup 1x 2.16x 30.70x 23.53x

Power Overhead (W) 2 10 0.417 0.024

Weight Overhead (g) ≈50 ≈85 ≈75 ≈20

Integration Cost Low Low Medium High

Fabrication Cost Low Low Medium High

Gained Flight

Time (min) 2

Small Drones 0 ≈-4 ≈2ś3 ≈2.2ś3.2

Large Drones 0 ≈-1.5 ≈1 ≈1

2 Baseline flight time is 15 minutes.

6 RELATED WORK

Prior studies [29, 30] have proposed a closed-loop simulator and

benchmark suite for autonomous tasks in drones, mainly focus-

ing on outer-loop tasks, which is not the main focus of this paper.

The discussions only pertain to high-speed drones. In contrast to

the assumptions made, we argue that, first, the mission planning

computation does not increase hovering time since mission plan-

ning has relaxed deadlines [79]. Even in high-speed, indoor, and

cluttered environments, new algorithms have been proposed to

enable fast planning [21, 28]. Second, collision detection does not

necessarily require heavy computations (e.g., using laser-range, in-

frared, or RGBD sensors, or even microcontroller) [80ś83]. Third,

localization is a highly active research area and does not necessar-

ily limit current drone speeds (e.g., real-time odometry and NASA

JPL’s autonomous racing) [14, 24, 84]. Finally, described conclusions

in [29, 30] are based on maximum drone acceleration, the value of

which is not readily known from the specifications. Authors have

early versions of this work published [85, 86].

7 CONCLUSIONS

This is the first paper that (i) formalized fundamental drone subsys-

tems and quantified how computation power consumption varies

in drones and affects the design-space parameters such as flight

time; (ii) studied required computing for inner-loop control; and

(iii) proposed an open-source drone framework and explored the

acceleration landscape of SLAM, while motivating further research

within the community. We found that although the outer-loop con-

trol is not directly related to real-time control systems due to the

nature of heavy computation, it has to consider deadlines; and

thus improving the performance of processors is important. For

the inner-loop which controls real-time hardware, the amount of

computation is relatively low, so low-end embedded computing

platforms are satisfactory. However, due to the critical nature of

the inner-loop control, all drones have dedicated processors for

it. We found that for small drones, improving power efficiency

is translated into an increase in flight time, but for heavy drones

(>≈2 kg), the improvement in power efficiency does not have an

effect. Therefore, FPGA implementations provide the most cost-

effective solution for small and large drones.

It is worth mentioning that the studied tradeoffs are different for

nano and pico droneswith a total power consumption of 100mW[19,

87ś90]. We did not focus on such drones because these drones are

extremely customized (from physics to material sciences), so it was

not possible to study them within the same framework. Further-

more, we used the minimum TWR of 2. A detailed evaluation for

other TWR values can be done in a similar way, released in our

repository, which results in a lower contribution of computation

power consumption.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact describes our open-source experimental drone frame-

work that is customizable across its hardware-software stack. The

main portion of the artifact focuses on building the drone, which

compliments the beginning sections of the paper. The build guide

consists of two parts: hardware and software. The hardware guide

presents a list of required hardware components (accessible to any-

one) following by a step-by-step assembly guide. The software

component provides the firmware of the drone and enables users

to execute any software that is supported on Linux. We provide

the necessary packages and configuration of the software setup.

Finally, as an example, we provide simple scripts for perf metrics

measurements while describing energy consumptionmeasurements

(requires an oscilloscope with high-frequency data logging and 30A

current probes).

Note: For some artifacts, we provide two links: (1) The original link of

the software by the provider; and (2) our copied version path in the

open-source repository at the time of preparing this artifact. Please

make sure your PDF reader renders hyperlinks.

Note: You can use doi.org/10.5281/zenodo.4546174 to access the most

recent version, if any, after publish date.

A.2 Artifact Check-List
• Algorithm: Drone Firmware

• Program: Scripts in python and C++.

• Compilation: Python ≥ 2.7 and GCC version 6.3.0.

• Transformations:

• Binary: Will be compiled on the target platform.

• Run-time environment:

• Hardware: Raspberry Pi Model 3B+, Emlid Navio2

• Execution: command line, bash shell

• Metrics: Energy and available perf metrics

• Output: User measures energy consumption, perf produces

performance selected performance metric on target platform.

• Experiments: Drone energy consumption and autopilot and

SLAM perf metrics.

• How much disk space required (approximately)?: 16GB SD

card

• How much time is needed to prepare workflow (approxi-

mately)?: Around three hours for building the drone.

• How much time is needed to complete experiments (approxi-

mately)?: Less than an hour.

• Publicly available?: The guide is publicly available with CC

BY 4.0 license.

A.3 Description

A.3.1 How to Access ś Hardware. Hardware components can be ac-

quired from any store. The complete list is provided in the hardware

dependencies section.

A.3.2 How to Access ś Software. The Emlid operating system (OS)

image can be accessed here or /EmlidOS. For DroneKit, we recom-

mend installing Python pip utility and then obtaining DroneKit

from here or /DroneKit. MissionPlanner is available for Windows

and can be accessed using this link or /MissionPlanner.

A.3.3 Hardware Dependencies. The following hardware is required
to build the drone and run the experiments/code:

• Raspberry Pi Model 3B+

• Emlid Navio2 Kit

• 4 x 30 Amps ESC

• 4 x MT2213-935KV motors

• RC Controller with receiver

• 4-axis 450mm Drone Frame

• 4 x 1045 Drone Propellers

• 3000mAh 3S LiPo battery

• 915MHz telemetry kit

• PPM encoder

• GPS receiver mount

• 16 GB MicroSD Card

• USB Power Analyzer

• High frequency data analyzing oscilloscope with 30A capable probes

A.3.4 Software Dependencies. The drone OS and software pack-
ages are defined below.

• Emlid OS

• Python DroneKit (C++ version of DroneKit can also be utilized)

• MissionPlanner

• Microsoft Windows (Dependency for MissionPlanner; if needed)

A.4 Installation

A.4.1 Drone Assembly. The first steps are to assemble the drone.

An overview of the instructions are given below. For a more detailed

build guide with pictures please see /BuildGuide.

• First assemble the PI + NAVIO. Plug in the HAT into the GPIO pins

on the RPI.

• Solder the bullet connectors onto the motor connections.

• Solder the battery connector onto the Power Distribution Board

(PDB).

• Screw in the legs of the frame.

• Screw in the top plate to the frame.

• Attach motors to the frame according to the rotational direction

listed in the motor manual.

• Use double sided tape and attach Raspberry pi + NAVIO to drone

top plate.

• Use double sided tape and attach the PPM encoder to the frame.

• Connect the battery connectors to the PPM encoder.

• Stick the RC receiver onto the frame.

• Connect receiver to the NAVIO.

• Connect PPM outputs to NAVIO.

• Use zip ties and attach ESCs to the bottom of the legs.

• Assemble the GPS mount and zip tie it into the back-right leg (Note

: GPS unit must point North-South).

• Attach GPS on mount and connect GPS to NAVIO.

• Connect ESCs to motors and ESCs pwm to PPM encoder.

• Connect battery to battery connector.

• Finally connect TELEMmodule to HAT and stick module onto frame.

A.4.2 Drone Software Configuration. After building the drone, the
following software steps are needed to download and configure the
software stack on the drone.

• Download the Emlid OS from here or /EmlidOS.

• Flash the downloaded .iso file to the MicroSD card (You can use

Etcher as a tool) and insert it into the Pi.

• Follow the first time setup community guide of Arducopter here or

/ArducopterWiki under łFirst Time Setup.ž

• Next, it is critical to configure and calibrate the sensors and IMU.

Please follow guide, or /ArducopterWiki under łMandatory Hard-

ware Configuration.ž

• Expand the filesystem $sudo raspi-config –expand-rootfs.
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• Install DroneKit $pip install dronekit.

• Configure autopilot to load on boot :

$sudo emlidtool –on_boot=True.

• Review DroneKit docs or /DroneKitDocs to see how to use API.

• To spool up Arducopter, run $sudo systemctl daemon-reload

and then run $sudo systemctl restart arducopter.

• Note: RCIO Worker is a background helper service for Arducopter

and automatically starts when Arducopter is started.

A.4.3 Setting up and Configuring SLAM.

• Begin by installing Docker $curl -sSL https://get.docker.com

| sh.

• Add the correct permissions $sudo usermod -aG docker pi.

• Install Docker Compose $sudo pip3 -v install docker-compose.

• Clone our Github repository or /ParallelML-Drone, and change

directory to slam $cd drone/slam

• Download a sample image data set (here) or /EuroC-MH01Easy.

• Extract the data set in the slam directory.

• Run the command $docker-compose up -d.

• SLAM is now running in the background.

• To stop SLAM run $docker-compose down.

A.5 Experiment Workflow

With a fully working drone, this section describes and provides

simple scripts for measuring performancemetrics (any performance

metric that is available to perf tool).

This repository or /ParallelML-Drone contain all the required

files (and a full backup of our SD card). Specifically, shell scripts

perf_ardu_slam.sh and perf_ardupilot_loop.sh execute sim-

ple experiments for Ardupilot and SLAM, respectively. Directory

boot_pi_backup/ contains a backup of our SD card. To use this

version, copy the files to SD card and rename it to boot.

A.6 Evaluation and Expected Results

Performance Metric Measurements: Execute above scripts by

passing the PIDs of ArduCoptert, RCIO_Worker, and SLAM (in this

order). Then, the scripts print several metrics for branches, cache

operations, and virtual memory management. The exact flags de-

pend on the particular architecture and we have fine-tuned them

for Raspberry Pi 3B+.

Energy Measurements: To perform energy measurements an

oscilloscope with high-frequency data logging and 30A current

probes is required. The current probes are used to measure the

current on the input power wires from the LiPo battery. To measure

energy (or energy/second), another probe measures the voltage of

the battery. By setting the oscilloscope function to multiply these

measurements, we can log energy per second of the entire drone.

To distinguish between Raspberry Pi, additionally, an in-loop USB

powermeter tomeasure Raspberry Pi power consumption is needed.

Non-flight measurements can be done while the drone is not active.

For flight-related measurements, flip the propellers so the drone

pushes down (while consuming a similar amount of energy).

Paper Graphs: You can find the raw data from which the graphs

are constructed at /Drone-CSVs.

A.7 Experiment Customization

Users are free to change any part of firmware or write their own

application for the drone. Additionally, users may add any new

sensors or hardware components that is compatible with Raspberry

Pi or its GPIO protocols (e.g., I2C).

A.8 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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