
Performance Characterisation and Simulation of
Intel’s Integrated GPU Architecture

PrasunGera, HyojongKim, HyesoonKim (Georgia Tech)
SunpyoHong , Vinod George, Chi-Keung Luk(Intel)

Background 2

| GPUs are widely used in HPC and machine learning
| Studied extensively in the context of discrete GPUs

NVIDIA GPUs
} Key characteristics:

} Connected to the CPU externally (for eg., over PCI-E)
} Separate host and device memory
} SIMT execution model

| New low power solutions for client systems: Integrated GPUs (iGPU)
Intel HD 530
} Key characteristics:

} On the same chip as CPU
} Cache coherent memory hierarchy. Shared DRAM
} SIMD + SMT
} Predicated execution, 2D register addressing

Motivation 3

| iGPU application/research domains:
} Media and gaming
} Mobile and IoT devices
} CPU+GPU heterogeneous workloads.

} OpenCL unified memory. Zero copy memory objects
} GPU virtualization
} Many more

Motivation 4

Need tools to model and simulate iGPUs

| External simulators for NVIDIA and AMD GPUs are available

0

5

10

15

20

25

30

35

40

2009 2010 2011 2012 2013 2014 2015 2016

of

 p
pa

er
s i

n
m

aj
or

 a
rc

hi
te

ct
ur

e
co

nf
er

en
ce

s

Nvidia AMD Other

Contributions 5

| Characterise the performance of Intel’s Skylake and Kabylake
iGPUs
| Develop an instruction level trace generator for Intel iGPUs built

upon GT-Pin, a binary instrumentation framework
| Develop the iGPU module in MacSim, an open source

heterogeneous architecture simulator.

Outline 6

| Intel iGPU architecture
|Microbenchmark analysis:

} Thread scheduling and floating point performance
} Memory hierarchy latency and CPU-GPU cache sharing effects
} Memory bandwidth and coalescing
} Memory level parallelism (MLP)

| GT-Pin and Trace generation
| Simulation evaluation
| Conclusion

Measure real
hardware

Intel GEN9 IGPU Architecture 7

| Execution units (EUs) that perform
SIMD computation.

| Collection of 8 EUs form a subslice.

| The subslice also contains a
common I-cache, L1 and L2 sampler
caches, and a memory load/store
unit called the data port.

| 3 subslices aggregated into 1 slice.
The slice additionally consists of the
L3 data cache, and a highly banked
shared local memory (SLM).

| L3 cache coherent with CPU.

| LLC , optionally eDRAM cache, and
system DRAM shared with CPU

Intel Core
Processor

Intel Processor Graphics

CPU core CPU
L1$

CPU
L2$

Slice: 24 EUs

L1$ L2$

Sample
r L1

$
L2
$

Sampl
er

Subslice: 8 EUs

L1$ L2$

Sampler

Shared Local Memory
(64KB/subslice)

Shared
LLC

(Optional)
On-

Package
EDRAM

System
DRAM

Non-coherent Coherent

Slice: 24 EUs

L1$ L2$

Sample
r L1

$
L2
$

Sampl
er

Subslice: 8 EUs

L1$ L2$

Sampler

Shared Local Memory
(64KB/subslice)

L3 Data Cache
(512 KB/slice)

L3 Data Cache
(512 KB/slice)

L
3 Fabric

Hardware Specifications 8

| One Skylake (SKL) and one Kabylake (KBL) system used in our experiments.

| The SKL configuration is a desktop processor whereas the KBL configuration is
an NUC processor.
| KBL configuration relative to SKL:

} Half the CPU cores

} Lower CPU frequency
} Twice the number of execution units (EUs) in the iGPU
} Additional eDRAM cache

OpenCL 9

| Collection of microbenchmarks written in OpenCL to characterise the

hardware.

| OpenCL:

} Popular parallel programming framework with wide device support.

} OpenCL ó CUDA equivalence:

} Work Groups (WG) ó Thread Blocks

} Work Item (WI) ó Thread

| Thread scheduling differences:

} NVIDIA GPU:

} A warp is a collection of scalar CUDA threads. The scheduler can schedule a ready

warp from any of the thread blocks assigned to a Streaming Multiprocessor (SM).

} Intel iGPU:

} Each execution unit (EU) can run multiple hardware threads in Simultaneous

Multithreading (SMT) fashion.

} The compiler creates a stream of instructions from OpenCL work groups and work

items, and the scheduler maps it to hardware threads.

OpenCL Thread Mapping 10

__kernel void
compute_gflops_single(...){
...
for(unsigned i =0 ; i < 512; i++){

FUSE(x, y);
FUSE(x, y);
...

}
...
}

EU 0

k k k k k k k

Compile

mov
mad
mad
mad
…
…
cmp
jmpi

k

EU 0

k k k k k k k

k

(a) WGs <= hardware threads

(b) WGs > hardware threads

| OpenCL Work Groups (WGs):
} Map to a new hardware thread, up to max hardware threads
} Can be split and mapped to multiple hardware threads (subject to barrier and

shared memory constraints)
} If WGs > max hardware threads, the kernel invocations for the remaining WGs

are stacked at the end of existing hardware threads

Each ins is variable
width SIMD

Floating Point (FP) Characteristics 11

| Use Fused Multiply and ADD (MAD) instructions for peak floating
point throughput.

| Each SIMD unit is 4-wide and pipelined with a peak issue rate of 1
MAD instruction per cycle.

!"#$ %&'(!) = +,- ∗
/012 34567

89
∗
:;<=7 =>? @A@;>

/012 3456
∗ &B"C %DE

= 24 ∗ 2 ∗ 8 ∗ 1.15

= 441.6)MNOP" !B"Q %&'(!) (SKL)

| The KBL throughput is 2R due to twice the number of +,-

| The double precision throughput is
S

T
R single precision throughput.

Floating Point (FP) Characteristics 12

| 4 hardware threads per !" sufficient to hide the FP latency of 4
cycles.
| At 96 and 192 WGs, for SKL and KBL resp., the !" occupancy is 4

threads, which is sufficient for peak throughput.
| Cyclical dips caused by workload imbalance when certain

hardware threads are on the critical path

0

200

400

600

800

1000

1 24 48 72 96
120 144 168 192 216 240 264 288 312 336

GF
LO

PS

Work Groups

iGPU Floating Point Characteristics

HD 530 SP (SKL) HD 530 DP (SKL)
Iris Plus 650 SP (KBL) Iris Plus 650 DP (KBL)

| Each WG comprised of 32
WIs
| SP = Single Precision
| DP = Double Precision

Memory Hierarchy Latency 13

| CPU Mem Hierarchy:
} L1D -> L2 -> LLC -> eDRAM (KBL only) -> DRAM

| GPU Mem Hierarchy:
} L3 -> LLC -> eDRAM (KBL only) -> DRAM

} L1 and L2 are special sampler caches which we don’t use in this
experiment

| Use a single threaded pointer chasing kernel to measure latency

Memory Hierarchy Latency 14

| GPU’s latencies are generally higher than CPU’s, even for the same (shared)
levels.
} GPU’s clocks are lower (peak 1.1 GHz for GPU v/s 4 GHz for CPU). The difference in raw

cycles is lower compared to ns
} High Latency could be an indication of interconnection network’s delays

| GPU’s access times increases even in the LLC regions
} Theory: The GPU is not able to make full use of the LLC capacity

0

10

20

30

40

50

60

70

80

90

64B
32K

B

256
KB

4 M
B
8M

B
64M

B
1GB

A
ve

ra
ge

 A
cc

es
s

Ti
m

e
(n

s)

Working Set Size (log scale)

CPU Latency Characteristics

i7-6700K (SKL)

i7-7567U (KBL)

L1-D

L2

LLC(SKL)

LLC(KBL) eDRAM(KBL)

0

50

100

150

200

250

300

350

400

450

64B
512

B
1KB 8KB

64K
B

512
KB

1M
B

4 M
B
8M

B
64M

B

256
M

B
1GB

A
ve

ra
ge

 A
cc

es
s

Ti
m

e
(n

s)

Working Set Size (log scale)

iGPU Latency Characteristics

HD 530 (SKL)

Iris Plus 650 (KBL)

eDRAM(KBL)

LLC(SKL)

L3(SKL) L3(KBL)

LLC(KBL)

Cache (LLC) Sharing Effects 15

| Shared LLC accesses show different characteristics for the CPU
and the GPU.
| Understand the effects of potential interference b/w CPU and

GPU
|Measure the latency from one, while varying the interference

from the other. Four cases:
} Single Threaded (ST) interference from CPU; measure GPU’s latency
} Streaming Interference (STRM) from CPU; measure GPU’s latency
} Single Threaded (ST) interference from GPU; measure CPU’s latency
} Streaming Interference (STRM) from GPU; measure CPU’s latency

CPU Interference Measure GPU 16

| The GPU’s access time in the LLC region is relatively unaffected by the type of
CPU interference
} CPU’s interference is not on the critical path.

| The GPU’s access time increases dramatically when there is streaming
interference from the CPU due to contention at DRAM

(a) 20 intervening
CPU requests b/w
GPU requests

(b) More than 100
intervening CPU requests
b/w GPU requests

GPU
Working Set

(Pointer Chasing Interference) CPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 206.77 207.03 208.34 213.66 216.56 228.67 251.68 217.65 210.73
2 MB 215.01 209.33 210.31 215.04 219.57 236.35 249.27 269.91 278.53 275.69
3 MB 231.21 224.12 226.19 234.33 252.32 267.49 280.07 292.09 293.06 293.18
4 MB 246.6 240.19 247.03 262.01 275.24 290.32 298.37 302.39 302.1 302.45
5 MB 258.73 258.04 271.67 281.84 294.99 301.75 307.4 308.22 308.21 308.26
6 MB 273.68 270.74 290.09 296.31 305.99 309.7 312.04 312.57 311.94 312.21
7 MB 286.89 287.13 301.84 305.76 311.56 315 315.53 315.36 314.85 315.09
8 MB 304.29 303.37 310.58 314.81 315.68 317.36 317.55 317.49 316.79 317.07
9 MB 318.28 312.89 314.9 318.84 318.48 319.44 319.3 319.21 318.53 318.65

GPU
Working Set

(Streaming Interference) CPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 207.64 209.24 209.84 215.48 226.19 234.33 286.03 320.9 339.46
2 MB 215.01 208.24 210.82 217.44 227.23 238.55 257.8 305.11 342.82 355.22
3 MB 231.21 224.43 238.79 244.45 254.61 273.66 288.92 343.72 378.46 384.57
4 MB 246.6 236.95 256.38 263.73 284.87 291.62 304.93 364.87 392.38 393.8
5 MB 258.73 260.2 273.42 285.55 298.02 304.65 312.19 368.42 404.14 412.82
6 MB 273.68 278.19 289.93 299.94 310.77 312.49 316.84 381.05 416.06 411.42
7 MB 286.89 293.29 304.67 312.66 318.3 319 319.83 387.87 417.56 424.25
8 MB 304.29 302.3 316.44 319.69 320.6 321.25 322 389.3 419.35 428.99
9 MB 318.28 312.4 321.94 322.53 322.88 323.53 323.86 324.09 437.51 440.37

GPU Interference Measure CPU 17

| The CPU is unaffected by single threaded GPU interference
| The CPU’s latencies steadily increase along the lower diagonal in

presence of streaming interference from the GPU

CPU
Working Set

(Pointer Chasing Interference) GPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10 9.8 9.75 9.8 10 9.96 9.88 9.76 9.75
2 MB 10.91 10.74 10.45 10.48 10.45 10.76 10.69 9.44 9.21 10.49
3 MB 9.23 10.97 10.71 10.7 10.71 9.51 9.51 9.61 9.24 9.25
4 MB 9.75 10.04 9.88 9.98 9.88 10.04 9.7 9.39 9.12 9.45
5 MB 9.97 11.51 10.39 10.1 10.39 10.66 9.45 9.81 9.94 9.61
6 MB 10.36 10.67 11.61 11.69 11.61 10.5 10.72 9.26 9.49 10.05
7 MB 11.69 21.74 16.83 17.19 16.83 17.15 13.24 12.89 11.25 13.3
8 MB 20.58 35.26 35.27 35.23 35.27 35.51 33.72 34.63 33.61 32.78
9 MB 31.96 45.67 50.19 48.85 50.19 50.01 49.55 51.38 50.29 49.71

CPU
Working Set

(Streaming Interference) GPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10.42 10.22 10.74 12.78 18.5 29.86 42.14 67.07 88.09
2 MB 10.91 10.9 11.92 11.02 18.02 23.95 38.86 58.51 78.91 98.46
3 MB 9.23 9.64 9.78 10.96 25.63 34.37 46.18 64.34 80.9 96.3
4 MB 9.75 10.11 12.16 19.26 27.29 41.39 53.71 68.46 82.62 98.4
5 MB 9.97 10.16 16.69 31.38 39.66 50.23 61.39 72.67 82.22 98.68
6 MB 10.36 12.56 27.17 40.22 49.06 56.91 65.35 75.33 83.11 99.48
7 MB 11.69 18.37 35.44 48.84 55.02 60.58 68.94 77.9 83.91 99.64
8 MB 20.58 35.07 46.75 54.51 58.11 62.9 70.37 78.58 83.37 99.71
9 MB 31.96 46.48 53.45 59.1 60.52 64.61 71.18 79.67 83.97 99.59

(c) 20 intervening
CPU requests b/w
GPU requests

(d) 10 intervening
GPU requests b/w
CPU requests

Memory Coalescing and Bandwidth 18

|Memory coalescing:
Combining multiple memory
accesses into a single
transaction
| Coalesced memory requests

show better performance
(low latency)
| Uncoalesced memory

requests will generate more
memory requests à Higher
raw bandwidth. Wasted
bandwidth in practice.

DRAM

4 x 16 = 64 bytes

0x0
0x40

MEM
ADDR TIME

t=t0
t=t1

0x4000 t=t256WG016 WIs

t=t0
t=t1

t=t256WGN16 WIs

(a) Stride = 1

PA
RA

LLEL

WG0

WG0

t=t0
0x0

0x8000 WG0 t=t256

(b) Stride = 2

0x0

t=t0

t=t2560x40000

(c) Stride = 16

Experimental Setup:
• Vary WGs, WIs and stride
• No reuse, no sharing

Higher stride distance à Less coalescing opportunity

Memory Coalescing and Bandwidth 19

Higher stride -> More requests -> Fewer WGs & WIs to saturate B/W

More WGs -> More parallel requests -> Higher B/W

More WIs ->
More parallel requests ->
Higher B/W

Memory Level Parallelism (MLP) 20

|MLP = Number of in flight memory requests
| Hardware’s ability to handle concurrent memory requests is an

important consideration in modelling and simulation

Mem Request
Start

Mem Request
Return

Mem Hierarchy Latency

M
LP

Waiting to be serviced
Exceeded MLP window

All requests have
similar service

time

Memory Level Parallelism (MLP) 21

| Use work groups with a single work item (Nx1)
} Increase work groups one at a time
} Each work group generates dependent (pointer chasing) requests. No

overlap between requests of different work groups

| Almost no increase in time up to 100 work groups
| Similar behaviour for different working set sizes
| The system has MLP of about 100 at all levels of the hierarchy

0

2

4

6

8

1 24 48 72 96
120 144 168

Ti
m

e
re

la
tiv

e
to

 1
x1

 k
er

ne
l

Work Groups (N)

Access time for Nx1 pointer chasing kernels

64 B per WG 2 KB per WG 1MB per WG 8 MB per WG

LLC to DRAM
DRAM

L3

Trace Generation 22

| We built our trace generation framework by leveraging the GT-Pin
toolkit
| GTPin:

} Binary instrumentation framework for Intel GPUs developed by Intel.
Analogous to Pin for Intel CPUs.

| Trace Generation Goals:
} OS agnostic:

} We tested GT-Pin + tracegen on GNU/Linux and Windows
} Multiple Programming Frameworks

} We use OpenCL kernels in this work. Extension to DirectX, OpenGL etc. in future
plans

} Does not need the source code of apps
} Binary instrumentation at the native ISA layer

} Simulator agnostic
} We use Google Protobuf format for traces to encourage interoperability and reuse

Trace Generation 23

| Trace generation proceeds along two different paths for basic blocks and memory which
are merged in the end
| We additionally do some processing while decoding like flattening 2D register accesses to a

list

Kernel Execution

Callback for
Non-CFG changing
BBLs

Infer CFG-changing BBLs

GED Decoding

Hierarchical Program Trace

Mem Instruction
Callback;

Dump Memops to disk

Read from disk

Memop Decoding

Per-thread Dynamic
Trace

Combined Kernel Trace Sample instruction in the trace

Ke
rn

el

In
vo

ca
tio

n

Ba
sic

Bl

oc
k

In
st

ru
ct

io
n

Th
re

ad

Pr
og

ra
m

Simulator 24

GT-PIN GEN Trace
MacSim

GPU
Applications

Micro-op
generator

Evaluation 25

| We model the compute units, scheduler’s behavior, and workload imbalance
scenarios for FP workload faithfully.
| For the memory hierarchy’s latency, the only deviation is in the LLC region,

where the iGPU’s time increases possibly due to the inability to utilize the full
capacity. We leave this modelling for future work.
| Similar trends of MLP close to 100. We model this with structures such as the

MSHR for caches.

0

100

200

300

400

500

1 24 48 72 96 120 144 168

GF
LO

PS

Work Items

Floating Point Charcteristics

HD 530 SKL
Simulat ion

0
50

100
150
200
250
300
350
400

1KB 4KB
16K

B
64K

B
256

KB 1MB
4MB

16M
B

64M
B

256
MB

1GB
Av

er
ag

e
Ac

ce
ss

 T
im

e
(n

s)

Working Set Size (log scale)

Latency Characteristics

HD 530 SKL
Simulat ion 0.8

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1 14 28 42 56 70 84 98 112126140154168Ti
m

e
re

la
tiv

e
to

 1
x1

 k
er

ne
l

Work Groups (N)

Access time for Nx1 pointer
chasing kernels

HD 530 SKL Simulat ion

Conclusion 26

| 4 threads per EU are sufficient to reach peak GFLOPs.
| The GPU’s memory hierarchy latency is higher than the CPU’s,

even when accessing the same resources like the LLC.
| The GPU is unable to use the LLC’s total capacity.
| The GPU’s accesses to the LLC are relatively unaffected by CPU’s

interference whereas the CPU’s LLC accesses are affected by
streaming interference from the GPU.
| The GPU has an MLP of around 100 memory requests across the

memory hierarchy.
| To the best of our knowledge, this is the first work that takes a

detailed look at the Intel iGPU architecture, and provides a
complete flow of modelling, trace collection and simulation.

Thank You !

27

