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Background 2

| GPUs are widely used in HPC and machine learning
| Studied extensively in the context of discrete GPUs 

NVIDIA GPUs
} Key characteristics:

} Connected to the CPU externally (for eg., over PCI-E)
} Separate host and device memory
} SIMT execution model

| New low power solutions for client systems: Integrated GPUs (iGPU)
Intel HD 530
} Key characteristics:

} On the same chip as CPU
} Cache coherent memory hierarchy. Shared DRAM
} SIMD + SMT
} Predicated execution, 2D register addressing



Motivation 3

| iGPU application/research domains:
} Media and gaming
} Mobile and IoT devices
} CPU+GPU heterogeneous workloads.

} OpenCL unified memory. Zero copy memory objects
} GPU virtualization
} Many more



Motivation 4

Need tools to model and simulate iGPUs

| External simulators for NVIDIA and AMD GPUs are available
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Contributions 5

| Characterise the performance of Intel’s Skylake and Kabylake
iGPUs
| Develop an instruction level trace generator for Intel iGPUs built 

upon GT-Pin, a binary instrumentation framework
| Develop the iGPU module in MacSim, an open source 

heterogeneous architecture simulator.



Outline 6

| Intel iGPU architecture
|Microbenchmark analysis:

} Thread scheduling and floating point performance
} Memory hierarchy latency and CPU-GPU cache sharing effects
} Memory bandwidth and coalescing
} Memory level parallelism (MLP)

| GT-Pin and Trace generation 
| Simulation evaluation
| Conclusion

Measure real 
hardware



Intel GEN9 IGPU Architecture 7

| Execution units (EUs) that perform 
SIMD computation.

| Collection of 8 EUs form a subslice. 

| The subslice also contains a 
common I-cache, L1 and L2 sampler 
caches, and a memory load/store 
unit called the data port. 

| 3 subslices aggregated into 1 slice. 
The slice additionally consists of the 
L3 data cache, and a highly banked 
shared local memory (SLM).

| L3 cache coherent with CPU.

| LLC , optionally eDRAM cache, and 
system DRAM shared with CPU
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Hardware Specifications 8

| One Skylake (SKL) and one Kabylake (KBL) system used in our experiments.

| The SKL configuration is a desktop processor whereas the KBL configuration is 
an NUC processor.
| KBL configuration relative to SKL: 

} Half the CPU cores

} Lower CPU frequency
} Twice the number of execution units (EUs) in the iGPU
} Additional eDRAM cache



OpenCL 9

| Collection of microbenchmarks written in OpenCL to characterise the 

hardware. 

| OpenCL:

} Popular parallel programming framework with wide device support.

} OpenCL ó CUDA equivalence:

} Work Groups (WG) ó Thread Blocks

} Work Item (WI) ó Thread

| Thread scheduling differences:

} NVIDIA GPU: 

} A warp is a collection of scalar CUDA threads. The scheduler can schedule a ready 

warp from any of the thread blocks assigned to a Streaming Multiprocessor (SM).

} Intel iGPU: 

} Each execution unit (EU) can run multiple hardware threads in Simultaneous 

Multithreading (SMT) fashion. 

} The compiler creates a stream of instructions from OpenCL work groups and work 

items, and the scheduler maps it to hardware threads.



OpenCL Thread Mapping 10

__kernel void 
compute_gflops_single(...){ 
...
for(unsigned i =0 ; i < 512; i++){

FUSE(x, y);
FUSE(x, y);
...

}
...
} 

EU 0

k k k k k k k

Compile

mov
mad
mad
mad
…
…
cmp
jmpi

k

EU 0

k k k k k k k

k

(a) WGs <= hardware threads 

(b) WGs > hardware threads

| OpenCL Work Groups (WGs):
} Map to a new hardware thread, up to max hardware threads
} Can be split and mapped to multiple hardware threads (subject to barrier and 

shared memory constraints)
} If WGs > max hardware threads, the kernel invocations for the remaining WGs 

are stacked at the end of existing hardware threads

Each ins is variable 
width SIMD



Floating Point (FP) Characteristics 11

| Use Fused Multiply and ADD (MAD) instructions for peak floating 
point throughput.

| Each SIMD unit is 4-wide and pipelined with a peak issue rate of 1 
MAD instruction per cycle.
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Floating Point (FP) Characteristics 12

| 4 hardware threads per !" sufficient to hide the FP latency of 4 
cycles.
| At 96 and 192 WGs, for SKL and KBL resp., the !" occupancy is 4 

threads, which is sufficient for peak throughput.
| Cyclical dips caused by workload imbalance when certain 

hardware threads are on the critical path
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Memory Hierarchy Latency 13

| CPU Mem Hierarchy:
} L1D -> L2 -> LLC -> eDRAM (KBL only) -> DRAM

| GPU Mem Hierarchy:
} L3 -> LLC -> eDRAM (KBL only) -> DRAM

} L1 and L2 are special sampler caches which we don’t use in this 
experiment

| Use a single threaded pointer chasing kernel to measure latency



Memory Hierarchy Latency 14

| GPU’s latencies are generally higher than CPU’s, even for the same (shared) 
levels.
} GPU’s clocks are lower (peak 1.1 GHz for GPU v/s 4 GHz for CPU). The difference in raw 

cycles is lower compared to ns
} High Latency could be an indication of interconnection network’s delays

| GPU’s access times increases even in the LLC regions
} Theory: The GPU is not able to make full use of the LLC capacity
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Cache (LLC) Sharing Effects 15

| Shared LLC accesses show different characteristics for the CPU 
and the GPU.
| Understand the effects of potential interference b/w CPU and 

GPU
|Measure the latency from one, while varying the interference 

from the other. Four cases:
} Single Threaded (ST) interference from CPU; measure GPU’s latency
} Streaming Interference (STRM) from CPU; measure GPU’s latency
} Single Threaded (ST) interference from GPU; measure CPU’s latency
} Streaming Interference (STRM) from GPU; measure CPU’s latency



CPU Interference Measure GPU 16

| The GPU’s access time in the LLC region is relatively unaffected by the type of 
CPU interference
} CPU’s interference is not on the critical path.

| The GPU’s access time increases dramatically when there is streaming 
interference from the CPU due to contention at DRAM

(a) 20 intervening 
CPU requests b/w 
GPU requests

(b) More than 100 
intervening CPU requests 
b/w GPU requests

GPU
Working Set

(Pointer Chasing Interference) CPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 206.77 207.03 208.34 213.66 216.56 228.67 251.68 217.65 210.73
2 MB 215.01 209.33 210.31 215.04 219.57 236.35 249.27 269.91 278.53 275.69
3 MB 231.21 224.12 226.19 234.33 252.32 267.49 280.07 292.09 293.06 293.18
4 MB 246.6 240.19 247.03 262.01 275.24 290.32 298.37 302.39 302.1 302.45
5 MB 258.73 258.04 271.67 281.84 294.99 301.75 307.4 308.22 308.21 308.26
6 MB 273.68 270.74 290.09 296.31 305.99 309.7 312.04 312.57 311.94 312.21
7 MB 286.89 287.13 301.84 305.76 311.56 315 315.53 315.36 314.85 315.09
8 MB 304.29 303.37 310.58 314.81 315.68 317.36 317.55 317.49 316.79 317.07
9 MB 318.28 312.89 314.9 318.84 318.48 319.44 319.3 319.21 318.53 318.65

GPU
Working Set

(Streaming Interference)  CPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 207.64 209.24 209.84 215.48 226.19 234.33 286.03 320.9 339.46
2 MB 215.01 208.24 210.82 217.44 227.23 238.55 257.8 305.11 342.82 355.22
3 MB 231.21 224.43 238.79 244.45 254.61 273.66 288.92 343.72 378.46 384.57
4 MB 246.6 236.95 256.38 263.73 284.87 291.62 304.93 364.87 392.38 393.8
5 MB 258.73 260.2 273.42 285.55 298.02 304.65 312.19 368.42 404.14 412.82
6 MB 273.68 278.19 289.93 299.94 310.77 312.49 316.84 381.05 416.06 411.42
7 MB 286.89 293.29 304.67 312.66 318.3 319 319.83 387.87 417.56 424.25
8 MB 304.29 302.3 316.44 319.69 320.6 321.25 322 389.3 419.35 428.99
9 MB 318.28 312.4 321.94 322.53 322.88 323.53 323.86 324.09 437.51 440.37



GPU Interference Measure CPU 17

| The CPU is unaffected by single threaded GPU interference
| The CPU’s latencies steadily increase along the lower diagonal in 

presence of streaming interference from the GPU

CPU
Working Set

(Pointer Chasing Interference) GPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10 9.8 9.75 9.8 10 9.96 9.88 9.76 9.75
2 MB 10.91 10.74 10.45 10.48 10.45 10.76 10.69 9.44 9.21 10.49
3 MB 9.23 10.97 10.71 10.7 10.71 9.51 9.51 9.61 9.24 9.25
4 MB 9.75 10.04 9.88 9.98 9.88 10.04 9.7 9.39 9.12 9.45
5 MB 9.97 11.51 10.39 10.1 10.39 10.66 9.45 9.81 9.94 9.61
6 MB 10.36 10.67 11.61 11.69 11.61 10.5 10.72 9.26 9.49 10.05
7 MB 11.69 21.74 16.83 17.19 16.83 17.15 13.24 12.89 11.25 13.3
8 MB 20.58 35.26 35.27 35.23 35.27 35.51 33.72 34.63 33.61 32.78
9 MB 31.96 45.67 50.19 48.85 50.19 50.01 49.55 51.38 50.29 49.71

CPU
Working Set

(Streaming Interference) GPU Working Set
0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10.42 10.22 10.74 12.78 18.5 29.86 42.14 67.07 88.09
2 MB 10.91 10.9 11.92 11.02 18.02 23.95 38.86 58.51 78.91 98.46
3 MB 9.23 9.64 9.78 10.96 25.63 34.37 46.18 64.34 80.9 96.3
4 MB 9.75 10.11 12.16 19.26 27.29 41.39 53.71 68.46 82.62 98.4
5 MB 9.97 10.16 16.69 31.38 39.66 50.23 61.39 72.67 82.22 98.68
6 MB 10.36 12.56 27.17 40.22 49.06 56.91 65.35 75.33 83.11 99.48
7 MB 11.69 18.37 35.44 48.84 55.02 60.58 68.94 77.9 83.91 99.64
8 MB 20.58 35.07 46.75 54.51 58.11 62.9 70.37 78.58 83.37 99.71
9 MB 31.96 46.48 53.45 59.1 60.52 64.61 71.18 79.67 83.97 99.59

(c) 20 intervening 
CPU requests b/w 
GPU requests

(d) 10 intervening 
GPU requests b/w 
CPU requests



Memory Coalescing and Bandwidth 18

|Memory coalescing: 
Combining multiple memory 
accesses into a single 
transaction
| Coalesced memory requests 

show better performance 
(low latency)
| Uncoalesced memory 

requests will generate more 
memory requests à Higher 
raw bandwidth. Wasted 
bandwidth in practice.
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Experimental Setup:
• Vary WGs, WIs and stride
• No reuse, no sharing

Higher stride distance à Less coalescing opportunity 



Memory Coalescing and Bandwidth 19

Higher stride -> More requests -> Fewer WGs & WIs to saturate B/W

More WGs -> More parallel requests -> Higher B/W

More WIs -> 
More parallel requests -> 
Higher B/W



Memory Level Parallelism (MLP) 20

|MLP = Number of in flight memory requests
| Hardware’s ability to handle concurrent memory requests is an 

important consideration in modelling and simulation

Mem Request 
Start

Mem Request 
Return

Mem Hierarchy Latency

M
LP

Waiting to be serviced
Exceeded MLP window

All requests have 
similar service 

time



Memory Level Parallelism (MLP) 21

| Use work groups with a single work item (Nx1)
} Increase work groups one at a time
} Each work group generates dependent (pointer chasing) requests. No 

overlap between requests of different work groups

| Almost no increase in time up to 100 work groups
| Similar behaviour for different working set sizes
| The system has MLP of about 100 at all levels of the hierarchy
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Trace Generation 22

| We built our trace generation framework by leveraging the GT-Pin 
toolkit
| GTPin:

} Binary instrumentation framework for Intel GPUs developed by Intel. 
Analogous to Pin for Intel CPUs.

| Trace Generation Goals:
} OS agnostic:

} We tested GT-Pin + tracegen on GNU/Linux and Windows
} Multiple Programming Frameworks

} We use OpenCL kernels in this work. Extension to DirectX, OpenGL etc. in future 
plans

} Does not need the source code of apps
} Binary instrumentation at the native ISA layer

} Simulator agnostic
} We use Google Protobuf format for traces to encourage interoperability and reuse 



Trace Generation 23

| Trace generation proceeds along two different paths for basic blocks and memory which 
are merged in the end
| We additionally do some processing while decoding like flattening 2D register accesses to a 

list
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Simulator 24
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Evaluation 25

| We model the compute units, scheduler’s behavior, and workload imbalance 
scenarios for FP workload faithfully.
| For the memory hierarchy’s latency, the only deviation is in the LLC region, 

where the iGPU’s time increases possibly due to the inability to utilize the full 
capacity. We leave this modelling for future work.
| Similar trends of MLP close to 100. We model this with structures such as the 

MSHR for caches.
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Conclusion 26

| 4 threads per EU are sufficient to reach peak GFLOPs.
| The GPU’s memory hierarchy latency is higher than the CPU’s, 

even when accessing the same resources like the LLC.
| The GPU is unable to use the LLC’s total capacity.
| The GPU’s accesses to the LLC are relatively unaffected by CPU’s 

interference whereas the CPU’s LLC accesses are affected by 
streaming interference from the GPU.
| The GPU has an MLP of around 100 memory requests across the 

memory hierarchy.
| To the best of our knowledge, this is the first work that takes a 

detailed look at the Intel iGPU architecture, and provides a 
complete flow of modelling, trace collection and simulation.
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