
Late Breaking Results:

LODESTAR: Creating Locally-Dense CNNs for Efficient
Inference on Systolic Arrays∗

Bahar Asgari

Georgia Tech

Ramyad Hadidi

Georgia Tech

Hyesoon Kim

Georgia Tech

Sudhakar Yalamanchili

Georgia Tech

ABSTRACT
The performance of sparse problems suffers from lack of spatial

locality and lowmemory bandwidth utilization. However, the distri-

bution of non-zero values in the data structures of a class of sparse

problems, such as matrix operations in neural networks, is modifi-

able so that it can be matched with an efficient underlying hardware,

such as systolic arrays. Such modification helps addressing the chal-

lenges coupled with sparsity. To efficiently execute sparse neural

network inference on systolic arrays, we propose a structured prun-

ing algorithm that increases the spatial locality in neural network

models, while maintaining the accuracy of inference.

ACM Reference Format:
Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili.

2019. Late Breaking Results: LODESTAR: Creating Locally-Dense CNNs for

Efficient Inference on Systolic Arrays. In The 56th Annual Design Automation
Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New

York, NY, USA, 2 pages. https://doi.org/10.1145/3316781.3322472

1 INTRODUCTION AND MOTIVATION
Systolic arrays [7] have seen a resurgence for implementing in con-

volutional neural networks (CNNs) inference, a practical example

of which is in Google’s TPU [6]. Systolic arrays eliminate the need

for irregular intermediate accesses to the memory hierarchy, and

capture data reuse patterns. This approach works particularly well

for computing linear recurrences and dense linear algebra compu-

tations. However, inference using CNNs is a sparse problem, which

presents significant efficiency challenges such as underutilization of

memory bandwidth due to storing data in sparse formats, indirect

memory accesses and transferring of extra meta data.

CNN inference is sparse because, during training, several of

weights are assigned close-to-zero values. Thus, to reduce the

amount of computation as well as the memory footprint, the close-

to-zero values are usually pruned. Since pruning the individual

values of a model [5, 9] results irregular models with consequences

of resource underutilization and high storage overhead, structured
pruning techniques have been proposed, which prune the weights

at the granularity of a vector [1, 9], kernel [1, 9], filter [8–11], chan-

nel [1, 11], or entire layer [11], all of which are optimizations for

∗
Supported by NSF CCF 1533767. All correspondence to bahar.asgari@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3322472

CPUs and GPUs and help in reducing the number of operations,

memory footprint, and computation complexity.

The main challenge is that the preceding optimizations are in-

sufficient to exploit the data reuse in systolic arrays, and the highly

concurrent, synchronous, and rhythmic flow of data from memory.

In fact, the storage adjacency of data resulting from algorithm-

defined pruning (e.g., kernel, filter) is not necessarily matched with

data organizations necessary to directly stream to the interacting

data flows in the systolic array. Hence, our goal is to propose a prun-

ing, the output of which is compatible with a streaming memory

interface to eliminate external buffering/caching for compute.

2 PROPOSED APPROACH
We propose creating locally-dense CNNs for efficient inference on

systolic arrays (LODESTAR), to enable streaming of sparse data

from memory to exploit the distinctive data reuse patterns and
fine-grained concurrency of systolic arrays. LODESTAR produces a

weight matrix such that the non-zero values are clustered spatially

into locally-dense regions, which are compactly stored and effi-

ciently streamed. We examine the correlation among all the filters,

which differs from pruning the individual filters of a CNN [8–11].

To sustain accuracy, we may keep more number of non-zeros com-

pared to common pruning algorithms. However, in achieving higher

performance and efficiency, the distribution of non-zeros is more

influential than their quantity, when optimized for streaming data.

Efficiently using systolic arrays for matrix multiplication is ap-

plicable to CNNs by converting their convolutional operations

to general matrix-matrix multiplication (GEMM), and flattening

4D weight matrices to 2D ones. Besides the known benefits of

using GEMM for CNNs [3, 4], it offers the opportunity for creat-

ing a locally-dense data by considering correlated filters together.

We prune the flattened weight matrix (i.e., WKxF 2C , K :#filters,
C:#channels, F :filter size) to extract non-zero blocks, the width

of which are selected to match with the width of the target systolic

array, ω. The matched widths of the non-zero blocks and that of

the systolic array guarantees the correctness of multiplications.

The non-zero blocks of the produced matrix are streamed into the

systolic array. The blocks are created by splitting large weight ma-

trices into F 2C/ω chunks, and extracting the non-zero blocks in

Without
Pruning

Structured
Pruning

(LODESTAR)

Conv1/75x64 Conv2/1600x64 Local3/2304x384 Local4/384x192
Zero (%) 77% 79% 80% 79%

Layer/Size

Figure 1: Applying Algorithm 1 with l ,ω = 8 on CifarNet.
The accuracy after pruning 79.8% of model is 93.6%.

0%

20%

40%

60%

80%

100%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20

No
n-

ze
ro

 b
lo

ck
s

Ac
cu

ra
cy

(n

or
m

al
ize

d
to

un

pr
un

ed
 m

od
el

)

0%
20%

40%

60%

80%
100%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20

No
n-

ze
ro

 b
lo

ck
s

Ac
cu

ra
cy

(n

or
m

al
ize

d
to

un

pr
un

ed
 m

od
el

)

(b) Training steps x10000(a) Training steps x10000

Figure 2: Accuracy and the percentage of zero blocks: a) Ci-
farNet (pruning between step 20k and 100k), and b) VGG16
(pruning between steps 1 and 10k).

each chuck. The adjacent blocks of the pruned models are concate-

nated and stored by assigning them a single index (i.e., the column

index of the first block) and a single length.

Unlike common pruning algorithms, Algorithm 1 (i) incurs some

increase in sparsity while producing locally-dense data, and (ii)

applies pruning to GEMM flattened operand and not individual

weights. The input parameters of the pruning algorithm are the

weight matrixW , threshold θ , length of the window l , and width of

the systolic array ω. The width of the window is fixed and is equal

toω. The weight matrix is either the flattened version of the weight

matrix in a convolution layer, or the 2D weight matrix itself in a

fully-connected layer. During pruning, a window of size ωxl slides
overW . The size l is a hyperparameter. We choose l=8, which offers

the best trade-off between sparsity of blocks and storage overhead.

Algorithm 1 Pruning method of LODESTAR

1: function Prune(Whxw , θ, l, ω)

Whxw : Weight matrix, θ : Threshold,
ω : Systolic array width l : Window length

2: ih := 0, iw := 0, avд := 0

3: while iw < w do
4: avg = BlockAvg([iw , ih], [iw + ω − 1, ih + l − 1])
5: if avд < θ then
6: W [iw : iw + ω − 1, ih : ih + l − 1] = 0

7: ih = ih + l
8: else
9: ih = ih + 1
10: if ih > h − l then
11: ih = 0 , iw = iw + ω

During retraining, by increasing θ in later epochs, the algorithm

maintains the accuracy and convergence. The windows are non-

overlapping in x- and y-axes. Non-overlapping windows in x-axes

is necessary to match with systolic-array width, and in y-axes for

reducing the complexity of the problem from a global to local opti-

mization. Figure 1 illustrates an example of applying the algorithm

on CifarNet. Algorithm 1 does not change the size of the common

axis of the operands of GEMM (i.e., F 2C), which leads to following

benefits: (i) no need to change the dimensions of the input matrix

(image), and (ii) both the pruned matrix (weights) and the dense

matrix (inputs) can be either streamed through the systolic array or

be the stationary operand during the multiplication. Thus, based on

the size of the matrices at each layer of a CNN, we can dynamically

swap the role of the two matrices to be streamed or stationary.

3 SIGNIFICANT FINDINGS
Methodology: For iteratively pruning and training three CNNmod-

els, VGG16, CifarNet, and LeNet on ImageNet, Cifar10, and MNIST

datasets, we use Tensorflow
TM

. To compare the inference perfor-

mance of structured models with that of baselines, all executed on

systolic arrays, we model a 64 × 64 systolic array (3 cycles latency

@2GHz for multipliers and adder trees, similar to [2]) connected

to high-bandwidth memory (HBM), using an in-house cycle-level

simulator. The model estimates the power consumption by using

(a) (b) (c)
0

0.2

0.4

0.6

0.8

1

LeNet CifarNet VGG16

M
em

or
y

Ba
nd

w
id

th

U
itl

iza
tio

n

0

8

16

24

32

LeNet CifarNet VGG16

Th
ro

ug
hp

ut
 (T

FO
Ps

/S
ec

)

Unpruned Irregular LODESTAR

0

50

100

150

LeNet CifarNet VGG16

Po
w

er
 E

ffi
ci

en
cy

(G

FL
O

PS
/W

)

Figure 3: (a) Memory bandwidth utilization, (b) Throughput,
and (c) Power efficiency of LODESTAR and the baselines.
Kitfox1.1 library at 16nm technology and McPAT model for com-

pute units. We assume access energy of 6 pJ/bit for HBM.

Accuracy: Figure 2 illustrates the test accuracy (normalized to un-

pruned) and the percentage of zero blocks of CifarNet and VGG16

models, during training steps. For VGG16, we use a pre-trained

model so we start pruning from the beginning. During pruning,

as the percentage of zero blocks increases, the distribution of zero

blocks and/or their densities keep changing, and the accuracy os-

cillates. After stoping pruning, training continues to maximize the

accuracy. For LeNet, CifarNet, and VGG16, we prune 75%, 79.8%,

and 40% of models and respectively achieve 99%, 93.6%, and 70%

top-1 accuracy on validation set. The top-1 accuracy of unpruned

models are 99% for LeNet, 94% for CifarNet, and 71.5% for VGG-16.

Performance:We compare the performance of LODESTAR against

irregular sparse CNNs and unpruned models from three perspec-

tives: (i) Memory bandwidth utilization: as Figure 3a illustrates,

similar to the unpruned models, LODESTAR utilizes memory band-

width better than irregular models. The reasons are streaming data,

less number of memory references, and less meta-data for storing

the sparse models; (ii) Throughput: in addition to bandwidth uti-

lization, compute utilizations impacts the throughput. Figure 3b

illustrates the effect of both on throughput. Although the number

of operations in a structured model could be more than those in

an irregular sparse model, the locality of them in leads lower la-

tency. As a result, the combination of fast computation and high

bandwidth utilization leads LODESTAR to work closer to the peak

throughput of the engine, which is 32.78TFLOPs/Sec (i.e., 512GB/s

× 64FLOP/B); (iii) Power efficiency: LODESTAR impacts the power

consumption by reducing the number of memory accesses and by

modifying the number of operations. In terms of the contribution of

memory accesses, LODESTAR works better than irregular pruning.

However, the contribution of computations in power consump-

tion is the opposite, because the structured pruning may increase

the number of operations, and the systolic array executes spatial

operations much faster than sparse operation. Thus, the ratio of

memory-access reduction to increase in compute density is a key

factor. As Figure 3c shows, the reduction inmemory accesses carries

more weight and helps achieving better power efficiency.

REFERENCES
[1] Anwar, S., et al. Structured pruning of deep cnns. JETC 13, 3 (2017), 32.
[2] Asgari, B., et al. Memory slices: A modular building block for scalable, intelli-

gent memory systems. arXiv preprint arXiv:1803.06068 (2018).
[3] Chetlur, S., et al. cudnn: Efficient primitives for deep learning. arXiv:1410.0759.
[4] Hadjis, S., et al. Caffe con troll: Shallow ideas to speed up deep learning. In

Proceedings of the Fourth Workshop on Data analytics in the Cloud (2015), ACM.

[5] Han, S., et al. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. arXiv:1510.00149 (2015).
[6] Jouppi, N. P., et al. In-datacenter performance analysis of a tensor processing

unit. In ISCA (2017), IEEE, pp. 1–12.

[7] Kung, H.-T. Why systolic architectures? IEEE computer 15, 1 (1982), 37–46.
[8] Li, H., et al. Pruning filters for efficient convnets. arXiv:1608.08710 (2016).
[9] Mao, H., et al. Exploring the regularity of sparse structure in cnns.

arXiv:1705.08922.
[10] Molchanov, P., et al. Pruning convolutional neural networks for resource

efficient inference. arXiv:1611.06440.
[11] Wen, W., et al. Learning structured sparsity in dnns. In NIPS (2016).

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 25.20 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 883
 366
 Fixed
 Down
 25.2000
 0.0000

 Both
 2
 CurrentPage
 5

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1
 2
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryList_V1
 qi2base

