4 e
% s

Design Space Exploration
Memory Model

for Heterogeneous Computing
Jieun Lim*, Hyesoon Kim+

» *Seoul National University, South Korea
| + Georgia Tech, USA

ia /7%
S°%%h 7 comparch

_ @ HE W
Introduction

| Hetedrogeneous computing has become a major architecture
tren

] CPU+GPU, Near data processing systems (NDP)

| How to design memory system
] Strongly coupled with architecture design and programming model
) Difficult to compare models

| Goal
) Understand a trade-off in memory system design decisions
] Evaluate the overhead of design options

AMD Fusion™ APUs Fill the Need

x86 CPU owns GPU Ophmized for
the Software World kloads

— 3 -’ S8 i RNy ! 7;:4. ‘l-‘..';'.‘ Hi s =
New architecture with shared cache delivering more performance and
energy efficiency

Sandy Bridge Georgia Fu?bn compaI‘Ch

1———--

[
Study Objective

| Evaluate various memory system design options

| Decouple hardware architecture issues and programming
models issues

| Evaluation categories
n) Memory space
7] Locality management

n71 Communication overhead

Gegqrala 7 comparch |

- = R
Memory Address Space Design Options

.

CPU| | GPU CPU| | GPU CPU| | GPU CPU| | GPU
cache cache cache cache cache cache ca<|:he cac|he
| | | | | |
memory | memory memory | memory
Shared ' CPU/
Unified CPU | GPU cPU | GPU CPU E GPU
(Unified) (Disjoint) (Partially Shared) (ADSM)

Georgia /77 comparch

_ NE mE -
Unified Memory Address Space

int addTwoVectors (int »a, int »b, int =»c)

{

for (1 = 1 to 64) |
CPU GPU cli] = alil+b[il;
}
}
CaThe CaThe int kernel(...)
{
int *a = mallecc(...); int *b = malloc(...);
memory | int *c = mallecc(...); int »d = malloc(...);
int *e = mallecc(...); int *»f = malloc(...);
Unified for (i=ly i< G4y i+4) 7/ initialize
{
/f initialize a, b, 4, e
}
addTwoVecteors (a, b, c); c = a+b
b d addTwoVectors (d, e, £); £f = d+e
addTwoVecteors (c, £, £); " £ = c+f

a
O

C
cru @

f
| Unified space: identical address space both for CPU and GPU

| Fully coherent memory space or virtually unified memory space (CUDA 4.0)
7 No explicit data transfer, but complicated TLB/MMU designs

e
®
f

ceg# 7 comparch

El j»

Disjoint Address Space

CPU

GPU

cache

cache

memory

CPU

GPU

@

b

d

int kernel(...)

{

e
®cu

C f
cru @

/f initialize a, b, ¢, d, e, £ in CPU
int #a = malloc(...); int *b = malloc(...
int »c = malloc(...); int »d = malloc(...
int #»e = malloc(...); int *f = malloc(...

/¢ duplicated pointer for a, b, c
int =*gpu_a, =*gpu_b, *gpu_c;

/7 allocate mem space in the GPU

Vi
Vi
Vi

int gpu_a = GPUmemallocate (gpu_a, gpu_b, gpu_c);

-
// =send data from CPU to GPU
Memcpy (gpu_a, a, MemcpyHosttoDevice);

N\

Memcpy (gpu_b, b, MemcpyHosttoDevice);
S J

addGPUTwoVectors (a, b, c);

addTwoVectors (d, e, f); ff £ = d+e

p
// send data from GPU to CPU

Memcpy (gpu_a, a, MemcpyDevicetcHost);
\

addTwoVectors (c, £, £f); ff £ = c+f

// free spaces in both CPU and GPU

Disjoint memory space

Explicit data
transfer: C2G

/Ff e = a+b;

Explicit data
transfer: G2C

| Scalable and easy to implement, but need explicit data transfer
| c.f.) physically shared cache can be used as disjoint address space (e.g.

Intel’s Sandia)

Georgia
Tech

-

comparch _

_ nE EE W
Partially-shared Address Space

attribute (GPU)
int addGPUTwoVectors (shared int =a,
shared int «b, shread int ac)

h_ [acquireOwnership {a,b,c) ;]
CPU| | GPU Ownership o o T o,

control

[releaseOwnership (a,b,c);]

Ca(|:he Cac|he int kernel(...)
{
'/ oall e i hared regio i
I L ineimtiee | Special
memory int «b = sharedmalloc(...); ma”OC
int ~c = sharedmalloc(...); .
Shared function

int »d = mallcocc(...);
int *e = mallcc(...);
CPU GPU int «f = malloc(...);
for (i=1l; i< 64; i++) // initialize
{

/4 initialize a, b, 4, e
a b d e ’ .
. releaseOwnershipia, b, c)
Ownership 7% e = a+b in GPU
O ' CPU control "s7 £ = dte in cPU

if £ = c+f in CPU

¢ Partlally shared memory space
cru @

f
| Partially-shared: only part of the space is shared

| Introduced at Intel’'s LRB programming model
7] Ownership is maintained by programmers
7] Convenience of using shared memory, but overhead of managing between spaces

Gegrgia 7 comparch

vy o
ﬁ .I 7
"
i
7
- »

Asymmetric Distributed Shared Memory

int kernel(...)
{

|
(ADSM)

o f
cru @

|Gelado et al.

/f initialize a, b, <, d, e, £
int #*a = malloc(...); int b nallo)
CPU int »c = malloc(...); int «d nallo)
GPU int »e = malloc(...); int «f mallo)
// no duplicated GPU pointers
a = adsmAlloc (£4B); allocate mem spac n the GPU
CaChe CaChe b = adsmAlloc (€4B); allocate mem spac n the GPU
| | c = adsmAlloc (£4B); allocate mem spac n the GPU
[copyfromCPUtoGPU(a,b,c); /f send data from CPU to GPU]
memory addGPUTwoVectors (a, b, c); fi e = b; E | . d t
xplicit data
1 C U a b d addTwoVectors (d, e, £f); f = d+e i
| P e transfer: C2G
CPU I GPU O ' addTwoVectors (<, £, £); ff £ = c+f
accfree (a); accfree(b); accfree(c)
X CPU .
}
ADSM CPUZS> GPU

ASPLOS10 (GMAC)

f
| ADSM: one PU can access the entire memory, but the other

cannot
] Provide a shared space with discrete memories

ADSM uses a special memory allocation function, adsmaAlloc, to

allocate data into the shared memory space

Unlike the disjoint memory address space, there is
transfer data back to the host memory space

Georgia
Tech

no need to

comparch _

Locality Management

| Implicit vs. Explicit management
7 Implicit: hardware manages locality (hardware cache)

] Explicit: programmer manages locality (software managed cache)

| Shared memory space: all implicit, all explicit cru| | epu
| Various options in partially shared space =1 o
) Implicit-private-explicit-shared memw' | |
) Explicit-private-Implicit-shared Shared
7} Hybrid mechanisms CPU | GPU

Implicit-private-explicit-private-explicit-shared (CPU and GPU have different

management)

Implicit-private-explicit-private-implicit-shared (CPU and GPU have different

management)

| Partially shared space provides the most number of options

Gegqrala 7 comparch

Hardware Implementation of Hybid i
Mechanisms

| If CPU and GPU share a
cache
| Tag bit to indicate Explicit
Explicit management

| Explicit cache size should be
[, g1 % smaller than shared cache

| cache replacement policy:

memary L Implicit cache block cannot

CPU | GPU evict an explicit cache block

Imolici
mplicit CPU PU

Gegqrala 7 comparch

Communication Options (1)

CPU GPU

cache cache

CPU GPU

cache cache AN
L
twork
Shared cache neawvor

Memory controllers

Physically shared cache

g I = I D I D o D

Shared object can be directly updated 2|2] 2] [2][2][2
inside the shared cache Cache coherence
CPU GPU
s, || tub| "€ | cus |
== ==
=||= 1/0 = (|2

System BUS such as PCI-E, or a processor NP
BUS Gegraia 7 comparch

Communication Options (2)

CPU GPU

cache cache

On-chip
work

N 1
Memory controllers

=

=

== |1=]I=] =

SRR

Memory controllers

XBOX360 allows direct communication
using the L2 cache for some graphics
data, but they do not fully shared data
using the cache

Does not require any software or
hardware coherence support

CPU GPU

cache cache

Memory Memory

===l [=]I=][=
=|2| 2] 2][2][2

Interconnection network + DMA
Uses an interconnection network
system to directly communicate
without necessarily going through
memory controllers

e.g.)IBM cell

ce# # comparch

= il

Heterogeneous Architecture Summary

scheme address Connection coherence how to use consistency synchronization Locality
space shared data

CPU+CUDA* [28] disjoint PCI-E - NA weak consistency - impl-pri-expl-pri

EXOCHI [32] unified Memory controller | can be coherent CHI runtime weak consistency unknown impl-pri
API

CPU+LRB [30] partially | PCI-E coherent only | type qualifier, | weak consistency APIs impl-pri

shared in LRB/CPU ownership

COMIC [21] unified interconnection directory COMIC API | centralized re- | barrier function expl-pri-impl-pri-impl-
functions lease consistency shared

Rigel [18] unified interconnection HW/SW global memory | weak consistency implicit bar- | expl
operation rier/Rigel LPI

GMAC [9] ADSM PCI-E GMAC proto- | global memory | weak consistency sync API expl-private-impl-shared

col operation

Sandy Bridge [14] disjoint Memory controller | - - weak consistency - impl-priv-exp-priv

Fusion [2] disjoint Memory controller - - - - -

IBM Cell [13] disjoint interconnection - - weak consistency - expl-pri-impl-priv-impl-

shared

Xbox 360 [3] disjoint cache/FSB - Lock-set - - impl-priv-exp-shared
cache, copy

CUBA [8] disjoint BUS - direct access to | weak consistency - exp-priv
local storage

CUDA 4.0 unified - - explicit copy weak consistency - exp-priv

OpenCL unified - - explicit copy weak consistency - exp-priv

| None of the heterogeneous

computing system has employed a
unified, fully-coherent, strong-consistent memory system yet

| Most proposed/existing systems have disjoint memory systems

ceq@? 7 comparch

Evaluation

MacSim (GT) cycle-level simulator

Intel’s Sandy Bridge like configuration + NVIDIA's Fermi like
GPU configuration

Benchmarks

Name Il compute pattern | # of instructions (CPU) | (GPU) [# (serial) | #of communications [initial transfer data size (B) |
matrix mul [28] fully parallel, no comm during computation 8585229 8585228 16384 2 524288
merge sort [28] parallel -> merge -> sequential 161233 157233 97668 2 39936
dct [28] fully parallel. no comm. during computation 2359298 2359298 262144 2 262244
reduction parallel -> merge -> sequential 70006 70001 99996 2 320512
convolution [28] parallel -> merge -> parallel 448260 448259 65536 3 65536
k-mean parallel -> merge -> sequential (repeated) 1847765 1844981 36784 6 136192

« Parameters of modeling communication overhead

Name Description System Latency (cycles)
api-pci mem copy using PCI-E | CPU+CUDA, GMAC 33250+data_size/tr*f
api-acq acquire action LRB 1000

api-tr data transfer LRB 7000

lib-pf page fault LRB 42000

Georgia /7~

Tech

comparch

17—

Evaluation of Five Heterogeneous &%
Architecture Configuration

25

20

15

10

Execution time (M cycles)

® communication

m parallel

W sequential

=

_ 2 8 2 £ O 5 SR~ ST~ v g
g 5 &) é 5 o = é 5 &) g 5 &) é 5 &) é 5 &}
2 8 4 5 3 8 2 8 2 5 3 8
= = = = g =
reduction matrix mul convolution dct merge sort k-means
Compare five systems
IDEAL-HETERO : unified and fully coherent
CPU+CUDA : disjoint space + PCI-E
LRB : partially-shared space + PCI aperture
GMAC : ADSM+PCI-E
Fusion : disjoint space + memory controller
G ia /7 h
eqroia 7 comparc

Memory Space Effects

25

m
Q2
(3]
>
(8]
=
=
Q
£
.; . .
g M communication
=]
3 ¥ parallel
(]
&
H sequential

S F S P E S S PSSP E S S P F S S P
S ST > \5 voo 0000 \vbg b° bg \vo‘& 0(\'0@ @QQQ,Z,O RS Q\?“
R \560 QY \QQ & R \-\- ((\ \&0 \0‘0 \\’}0 ,00 ° 06, Q’(., < ; & < ((\Q' 5
qub \Q'b ﬂeb bo(l x& ’é K Q Q (\40 &\} e}% Q’\Qo Q}Qo %Q,‘—) ACANEE \b'((\
<°<°<°<\\ o° 0000(’004 @6‘@(&&
| Not much performance difference
Georgia /7~ h
Tech , comparc

-]

Programmability vs. Memory Address Space

Comp || UNI | PAS | DIS | ADSM
matrix mul 39 0 2 9 6
merge sort 112 0 2 6 4
dct 410 0 2 6 4
reduction 142 0 2 9 6
convolution 75 0 4 9 6
k-mean 332 0 6 6 4

The number of source lines to handle data communication

Different programming options affect how easy/difficult it is to write

programs

Use the number of source lines to indicate programmability

) The number of additional source lines that are required to handle
explicit data communication and data handling operations

Unified < partially-shared <= ADSM < disjoint
v Unified space does not require any special APIs

) Disjoint memory space requires the most addi%ur{? c&@ﬂ’{ﬁsarch

Conclusion

| We exploited the design space of heterogeneous
computing memory systems

| memory space does not affect performance significantly

| Partially shared memory space is the most promising
option

v} provides many hardware design options (locality managements)
and moderately good programmability

ce# # comparch

Thank you!!

Gegraia 7 comparch

