Hardware-based Always-On
Heap Memory Safety

| Yonghae Kim, Georgia Tech
Jaekyu Lee, Arm Research

Hyesoon Kim, Georgia Tech

arm <€eg2ia 7 comparch




Heap Memory Bugs

int *ptr, idx, val;
ptr = malloc(sizeof(int)*8);

scanf(“%d”, &idx);
// Vulnerable read

+ val = ptr[idx];

# free (ptr)' Controlled by a user
// Use-after-free

# val = ptr[1];

idx

=
e

e Qut-of-bounds access
e Buffer overflow

Heap Region

—b

Spatial safety violation

ptr[7] ptr[6]
ptr[5] ptr[4]
ptr[3] ptr[2]
ptr[1] ptr[0]

arm  microzo

Georgia
Tech

# comparch




= N
s e A

How to Prevent Such Violations?

» Bounds checking.

Associate bounds metadata with a pointer to protect.

Perform bounds checking upon pointer dereferencing.

Can detect any out-of-bounds (OOB) access.

Pointer

1

Upper Bound E

Lower Bound

How to efficiently maintain bounds?

How to efficiently access bounds?

arm

MICRO 2020

Upper Bound

Heap Region

Lower Bound

)|

Heap Memory
Chunk

Gegroia 7~ comparch



e HEE &
Our Approach: Always-On IVIemory Safety (AOS) |,

» ldea: Use the unused upper bits of pointers!
Under typical VA schemes, 11 to 32 bits are available.

» However, not enough to store bounds metadata (16B). Hashed Bounds
» Solution: place a key in a pointer and use the key as a Table (HBT)
hash to index a hashed bounds table, where bounds
are stored.
63 VA_SIZE-1 0 HBT(KeyB) Mem Chunk B

Pointer A | Key, | Pointer Addr

HBT(Key,)

Pointer B | Ke Pointer Addr
! Ye I Mem Chunk A

Aarm  wicro2o0 Gegraia 7 comparch



Background: Arm Pointer Authentlcatlon (PA)

» To ensure pointer integrity,

[Signing]: Place pointer authentication code (PAC) into upper bits.
[Authentication]: Check the integrity of PAC before use.

» However, it does not provide spatial and temporal safety.

We extend Arm PA to ensure heap memory safety.

Using extended Arm PA ISAs, sign data pointers.

, ) Perform bounds checking for signed data pointers.
PAC is authenticate

Use PACs to index a hashed bounds table.

Furthermore, we propose effective iterative bounds search.

Aarm  wicro2o0 Gegraia 7 comparch



AQOS Overview

6
» ISA extensions. Load/store bndstr/bndclr
_____ L |
Arm PA extensions: AOS pointer signing (pacma, xpacm, ...). l P!
New instructions: Bounds store/clear (bndstr/bndclr). Lond-Store Memory
. . Check Unit
» Hardware Extension. Unit (LSU) (MCU)
Memory Check Unit (MCU). | v
Bounds store/clear. L1 Cache

Selective bounds checking. < Memory Check Unit (MCU) >

Support for new AOS pointer signing.

Way 0 Way T-1
» Hashed Bounds Table (HBT). — BNyD !
A multi-way bounds table with gradual resizing. BND | BND
Allocated in the memory by OS when a process is initiated. |BND [ BND | .. | BND | BND | .. | BND | BND
BND BND

< Hashed Bounds Table (HBT) >

Aarm  wicro2o0 Gegraia 7 comparch



Pointer Sighing & Bounds Store

» Which pointer to check?

» Sign data pointers and store bounds. otr = malloc (size);
pacma <pointer>, <modifier>, <size>. pacma ptr, sp, size; // sign data pointer
] Compute PAC and AHC (Address Hashing Code) and bndstr ptr, size; // store bounds

insert into a pointer. : : : —
Blue instructions are inserted at the compile time.

bndstr <pointer>, <size>.
1 Compress bounds to 8 bytes.

1 Store bounds in HBT. Nonzero AHC indicates a signed pointer.
63 ‘ VA_SIZE-1 0

PAC AHC Pointer Addr

< AOS data pointer signing >

Arm  wicro2020 Gegrgia 7 comparch



Bounds Checking

» Validate memory access.

If the pointer has been signed, perform bounds
checking.
1 Bounds checking requires no explicit instructions.

1 Metadata such as PAC and AHC are propagated
without any overhead.

» Iterative bounds searching in HBT.

lterate until bounds are found, which the
pointer address belongs to.

If it cannot find the bounds, it fails!

MICRO 2020

arm

o a =
= ST oo
e

ptr = malloc (size);
pacma ptr, sp, size; // sign data pointer
bndstr ptr, size; // store bounds

/] ...
val = *ptr; // Trigger bounds checking
ptr2 =ptr+1; // Pointer arithmetic
*ptr2 = 0; // Trigger bounds checking
63 55 VA_SIZE-1 0
PAC AHC Pointer Addr

\ 4
= 9°? —I::Q Perform bounds checking.
@ No bounds checking.

< AOS bounds checking >

Georgia 7+
Tech i

comparch



= N
s e A

Hashed Bounds Table Access

» Indexed by PACs.

_ _ Multiple iteration rarely occurs.
Simple bounds address calculation.

» Parallel bounds searching. > With a 16-bit PAC size,

Store 8 bounds (8 x 8B) in one way. 1-way HBT can cover up to 512K (= 216 x 8) bounds.

Load 8 bounds at a time.

» Bounds Way Buffer (BWB)

Keep track of recent bounds locations (ways).

No empty space! |

Go to next way

BWB can give a
correct location.

. | BND | BND | .. )
Iterate until
" A : r— BndAddr BND | BND | ...
n empty space is found.
nastr bty 5P 2PACSIZE rowws < | BND | BND | ... | BND | BND | .. | BND | BND
[OE[VA{eJ(=l | Bounds checking succeeds. Bounds BND | .. | BND
bndclr Bounds to clear are found.

< Hashed Bounds Table (HBT) >

Aarm  wicro2o0 Gegraia 7 comparch



Ensuring Temporal Safety ’

» When a pointer is freed, clear bounds.

bndclr <pointer>. bndclr ptr // clear bounds

1 Clear the corresponding bounds in HBT. xpacm ptr // strip data pointer
Xpacm <pointer>. free (ptr);

=1 Temporarily strip both PAC and AHC from a pointer. pacma ptr, sp, xzr // re-sign data pointer

pacma <pointer>, <modifier>, <size>.
1 Re-sign a pointer to prevent further use.

Bounds-checking failure occurs

63 VA_SIZE-1 0

- Its bounds do not exist anymore!
— Detect temporal errors

PAC AHC Pointer Addr

< Pointer to free >

Al vicro2020 Gegraia 7 comparch



Optimizations

» Bounds compression.
Compress bounds information to 8 bytes.
» Bounds table access during resizing.
Mitigate the cost of HBT resizing.
» Bounds cache (L1-B cache).

An optional L1-B cache reduces cache pollution.

» Bounds store-to-load forwarding.

Reduce memory accesses.

Please refer to the paper for the details.

Aarm  wicro2o0 Gegraia 7 comparch



Methodology ' o

» Implemented using the gem5 simulator.
» Added new passes in LLVM.
» SPEC CPU 2006 workloads with reference input sets.

» Evaluated four system configurations,
Watchdog?: Prior work that features user-after-free and bounds checking.
PA2: Arm PA-based pointer integrity solution.
AOS: AOS bounds-checking mechanism.
PA+AOS: AOS integrated with PA.

1 “Watchdog: Hardware for safe and secure manual memory management and full memory safety,” S. Nagarakatte et al., ISCA (2012).
2 “PAC it up: Towards pointer integrity using ARM pointer authentication,” H. Liljestrand et al., USENIX Security (2019).

Aarm  wicro2o0 Gegraia 7 comparch



Performance Evaluation

» AOS shows an 8.4% overhead on average.
» Watchdog incurs 19.4% overhead on average.

» PA shows negligible overhead (

Cache pollution caused by WAL Delayed instruction retirement EH  Instruction overhead from

TN due to bounds checking.
Hl Watchdog

frequent heap de-/allocations.

1 AOS F.RA+AOS %—

bounds metadata.
.0

o U1 O Ul

oo =HE

KR
‘0/1’

Normalized exec. ti

Aarm  wicro2o0 7 comparch



14

Conclusion

» We proposed AOS, a defense mechanism for heap spatial and temporal safety.

» In AOS, we introduced:

A data pointer signing scheme for selective bounds checking.
A micro-architectural unit (MCU) for efficient bounds operations.
A multi-way bounds table with gradual resizing for an efficient bounds metadata management.

» AOS achieved marginal performance overhead (8.4%) while providing strong
security guarantees.

» We believe that AOS can serve as an effective runtime safety solution.

Aarm  wicro2o0 Gegraia 7 comparch



r L s

15

Thank you!

All questions are welcome.

Arm wicrozo0 —

# comparch



= lEE

16

Contact information:

"This presentation and recording belong to
the authors. No distribution is allowed
without the authors' permission.”

Aarm  wicro2o0 Gegraia 7 comparch


mailto:yonghae@gatech.edu

