

Translating CUDA to OpenCL for Hardware
Generation using Neural Machine Translation

Yonghae Kim
School of Computer Science

Georgia Institute of Technology
Atlanta, GA USA

yonghae@gatech.edu

Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
Atlanta, GA USA

hyesoon@cc.gatech.edu

Abstract— Hardware generation from high-level languages like
C/C++ has been one of the dreams of software and hardware engi-
neers for decades. Several high-level synthesis (HLS) or domain-
specific languages (DSLs) have been developed to reduce the gap
between high-level languages and hardware descriptive languages.
However, each language tends to target some specific applications
or there is a big learning curve in learning DSLs, which ends up
having many program languages and tool chains.

To address these challenges, we propose the use of a source-to-
source translation to pick and choose which framework to use so
that the hardware designer chooses the best target HLS/DSL that
can be synthesized to the best performing hardware. In this work,
we present source-to-source translation between CUDA to
OpenCL using NMT, which we call PLNMT. The contribution of
our work is that it develops techniques to generate training inputs.
To generate a training dataset, we extract CUDA API usages from
CUDA examples and write corresponding OpenCL API usages.
With a pair of API usages acquired, we construct API usage trees
that helps users find unseen usages from new samples and easily
add them to a training input. Our initial results show that we can
translate many applications from benchmarks such as CUDA SDK,
polybench-gpu, and Rodinia. Furthermore, we show that trans-
lated kernel code from CUDA applications can be run in the
OpenCL FPGA framework, which implies a new direction of HLS.

Index Terms—High-level Synthesis, Program Translator,
Neural Machine Translation

I. INTRODUCTION
Due to increasing design complexity and the need of higher

productivity, generating hardware design from high-level lan-
guages has been motivated by software and hardware engineers
for decades. To reduce the gap between high-level languages and
hardware descriptive languages, several high-level synthesis
(HLS), including OpenCL or domain-specific languages (DSLs)
like Chisel, Bluespec, and SystemC, have been developed. How-
ever, a number of program languages and tool chains still have
a big learning curve, and each infrastructure requires a huge
amount of man power to develop and maintain it.

Source-to-source translation is one way of addressing the
challenges, commonly used to translate one legacy code to target
code in another language, such as Fortran to C. However, devel-
oping a new translator usually demands expertise in a compiler

and language, and requires enormous engineering efforts, which
defeats the purpose of reducing the efforts of infrastructure
maintenance.

To reduce the challenge for the development and mainte-
nance of a source code translator, we propose using natural lan-
guage translation. Several recent works have exploited neural
machine translation (NMT) techniques to translate program. A
recent work [1] proposes a novel tree-to-tree neural network and
demonstrates higher accuracy for program translation, but it has
limited set of variables and restricts the vocabulary size. The
other work [2] utilizes NMT techniques to deal with cross-archi-
tecture code similarity comparison. However, it does not handle
high-level language translation.

In this work, we present source-to-source translation be-
tween CUDA to OpenCL using NMT, which we call PLNMT.
We chose these languages for two reasons: (1) CUDA and
OpenCL share many similarities, so they provide a good plat-
form to develop the techniques of PLNMT. Based on the
knowledge/techniques from this translation, we will expand our
work to other program languages. (2) OpenCL is one of the HLS
frameworks.

While the existing works translate CUDA to OpenCL at an
AST level [3] or uses wrapper functions to generate binary exe-
cutable [4], we perform actual source-to-source translation using

 (a) training phase (b) inference phase

Fig. 1. Overview of workflows

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Student Research Competition

285

NMT. The summary of our contributions is as follows. We de-
velop techniques to generate training inputs. Both CUDA and
OpenCL require host and kernel code, and most APIs have a
one-to-one correspondence with each other. We first extract
CUDA API usages from CUDA samples and write correspond-
ing OpenCL API sages. Then, we construct API usage trees
which make it easier to find unseen usages from new samples
and add them to a training dataset. Lastly, we train the NMT
model that learns the API mapping and structural similarity be-
tween CUDA and OpenCL. Fig. 1 shows the overview of train-
ing and inference workflows. To handle the differences between
natural languages and program languages, we use a pre/post-pro-
cessor. The pre-processor performs lexical analysis to tokenize
code and identify types of tokens. Then, it renames tokens to ab-
stract symbols to enable arbitrary variable names to be translated.
In an inference phase, the NMT system takes as input pre-pro-
cessed CUDA code and generates OpenCL code which retains
abstract symbols. Finally, with the symbol table acquired from
pre-processing, the post-processor replaces abstract symbols
with initial names and restructure tokens following syntactic
rules. Fig. 2 presents a translation example.

(a) CUDA host code

(b) CUDA kernel code

(c) Pre-processed CUDA host code

(d) Pre-processed CUDA kernel code

(e) Host code translated by NMT system

(f) Kernel code translated by NMT system

 (g) Post-processed OpenCL host code

(h) Post-processed OpenCL kernel code

Fig. 2. Translation example of 2-D matrix multiplication code

REFERENCES
[1] X. Chen, C. Liu, D. X. Song, “Tree-to-tree Neural Networks for

Program Translation,” NeurIPS, 2018.
[2] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, Q. Zeng, “Neural

Machine Translation Inspired Binary Code Similarity
Comparison beyond Function Pairs,” CoRR, 2018,
abs/1808.04706.

[3] G. Martinez, M. Gardner, and W. chun Feng, “CU2CL: A CUDA-
to-OpenCL Translator for Multi- and Many-Core Architectures,”
Proceedings of the 2011 IEEE 17th International Conference on
Parallel and Distributed Systems (ICPADS), 2011, pages 300–
307.

[4] J. Kim, T. T. Dao, J. Jung, J. Joo, and J. Lee, "Bridging OpenCL
and CUDA: a comparative analysis and translation," SC '15:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
Austin, TX, 2015, pp. 1-12.

void mm2Cuda(float* A, float* B, float* C)
{
 float *A_gpu;
 ...
 cudaMalloc((void **)&A_gpu, sizeof(float) * NI * NK);
 cudaMemcpy(A_gpu, A, sizeof(float) * NI * NK,

cudaMemcpyHostToDevice);
 ...

_line_not_to_translate
_line_not_to_translate
_tp0 _op0 _id0 ;
...
cudaMalloc ((_tp0 _op0) _op1 _id0 , sizeof (_tp1) _op2
 _id1 _op2 _id2) ;
cudaMemcpy (_id0 , _id1 , sizeof (_tp0) _op0 _id2
 _op0 _id3 , cudaMemcpyHostToDevice) ;
...

void mm2Cuda (float * A , float * B , float * C)
{
 cl_mem A_gpu ;
 ...
 A_gpu=clCreateBuffer(context, CL_MEM_READ_WRITE,

sizeof(float)*NI*NK, NULL, NULL);
 clEnqueueWriteBuffer(command_queue, A_gpu, CL_TRUE, 0,

 sizeof(float)*NI*NK, A, 0, NULL, NULL);
 ...

_line_not_to_translate
_line_not_to_translate
cl_mem _id0 ;
...
_id0 = clCreateBuffer (context , CL_MEM_READ_WRITE ,

sizeof (_tp1) _op2 _id1 _op2 _id2 , NULL , NULL) ;
clEnqueueWriteBuffer (command_queue , _id0 , CL_TRUE , 0 ,
 sizeof (_tp0) _op0 _id2 _op0 _id3 , _id1 , 0 , NULL , NULL) ;
…

__global__ void mm2_kernel1(float *A, float *B, float *C)
{
 int j = blockIdx.x * blockDim.x + threadIdx.x;
 ...
 for (k = 0; k < NK; k++)
 {
 C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j];
 ...

__global__ _tp0 _id0 (_tp1 _op0 _id1 , _tp1 _op0 _id2 ,
_tp1 _op0 _id3)

_line_not_to_translate
_tp0 _id0 _op0 blockIdx.x _op1 blockDim.x _op2 threadIdx.x ;
...
_line_not_to_translate
_line_not_to_translate
_line_not_to_translate
...

__kernel _tp0 _id0 (__global _tp1 _op0 _id1 , __global _tp1
_op0 _id2 , __global _tp1 _op0 _id3)

_line_not_to_translate
_tp0 _id0 _op0 get_group_id (0) _op1 get_group_id (0)

_op2 get_local_id (0) ;
...
_line_not_to_translate
_line_not_to_translate
_line_not_to_translate
...

__kernel void mm2_kernel1(__global float*A, __global float* B,
__global float* C)

{
 int j = get_group_id(0)*get_group_id(0)+get_local_id(0);
 ...
 for (k = 0 ; k < NK ; k ++)
 {
 C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j] ;
 ...

286

