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Abstract— Hardware generation from high-level languages like 
C/C++ has been one of the dreams of software and hardware engi-
neers for decades. Several high-level synthesis (HLS) or domain-
specific languages (DSLs) have been developed to reduce the gap 
between high-level languages and hardware descriptive languages. 
However, each language tends to target some specific applications 
or there is a big learning curve in learning DSLs, which ends up 
having many program languages and tool chains. 

To address these challenges, we propose the use of a source-to-
source translation to pick and choose which framework to use so 
that the hardware designer chooses the best target HLS/DSL that 
can be synthesized to the best performing hardware. In this work, 
we present source-to-source translation between CUDA to 
OpenCL using NMT, which we call PLNMT. The contribution of 
our work is that it develops techniques to generate training inputs. 
To generate a training dataset, we extract CUDA API usages from 
CUDA examples and write corresponding OpenCL API usages. 
With a pair of API usages acquired, we construct API usage trees 
that helps users find unseen usages from new samples and easily 
add them to a training input. Our initial results show that we can 
translate many applications from benchmarks such as CUDA SDK, 
polybench-gpu, and Rodinia. Furthermore, we show that trans-
lated kernel code from CUDA applications can be run in the 
OpenCL FPGA framework, which implies a new direction of HLS. 

Index Terms—High-level Synthesis, Program Translator, 
Neural Machine Translation 

I. INTRODUCTION 
Due to increasing design complexity and the need of higher 

productivity, generating hardware design from high-level lan-
guages has been motivated by software and hardware engineers 
for decades. To reduce the gap between high-level languages and 
hardware descriptive languages, several high-level synthesis 
(HLS), including OpenCL or domain-specific languages (DSLs) 
like Chisel, Bluespec, and SystemC, have been developed. How-
ever, a number of program languages and tool chains still have 
a big learning curve, and each infrastructure requires a huge 
amount of man power to develop and maintain it. 

Source-to-source translation is one way of addressing the 
challenges, commonly used to translate one legacy code to target 
code in another language, such as Fortran to C. However, devel-
oping a new translator usually demands expertise in a compiler 

and language, and requires enormous engineering efforts, which 
defeats the purpose of reducing the efforts of infrastructure 
maintenance. 

To reduce the challenge for the development and mainte-
nance of a source code translator, we propose using natural lan-
guage translation. Several recent works have exploited neural 
machine translation (NMT) techniques to translate program. A 
recent work [1] proposes a novel tree-to-tree neural network and 
demonstrates higher accuracy for program translation, but it has 
limited set of variables and restricts the vocabulary size. The 
other work [2] utilizes NMT techniques to deal with cross-archi-
tecture code similarity comparison. However, it does not handle 
high-level language translation.  

In this work, we present source-to-source translation be-
tween CUDA to OpenCL using NMT, which we call PLNMT. 
We chose these languages for two reasons: (1) CUDA and 
OpenCL share many similarities, so they provide a good plat-
form to develop the techniques of PLNMT. Based on the 
knowledge/techniques from this translation, we will expand our 
work to other program languages. (2) OpenCL is one of the HLS 
frameworks. 

While the existing works translate CUDA to OpenCL at an 
AST level [3] or uses wrapper functions to generate binary exe-
cutable [4], we perform actual source-to-source translation using 

           
     (a) training phase           (b) inference phase     

Fig. 1.  Overview of workflows 

 

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Student Research Competition

285



 

 

NMT. The summary of our contributions is as follows. We de-
velop techniques to generate training inputs. Both CUDA and 
OpenCL require host and kernel code, and most APIs have a 
one-to-one correspondence with each other. We first extract 
CUDA API usages from CUDA samples and write correspond-
ing OpenCL API sages. Then, we construct API usage trees 
which make it easier to find unseen usages from new samples 
and add them to a training dataset. Lastly, we train the NMT 
model that learns the API mapping and structural similarity be-
tween CUDA and OpenCL. Fig. 1 shows the overview of train-
ing and inference workflows. To handle the differences between 
natural languages and program languages, we use a pre/post-pro-
cessor. The pre-processor performs lexical analysis to tokenize 
code and identify types of tokens. Then, it renames tokens to ab-
stract symbols to enable arbitrary variable names to be translated. 
In an inference phase, the NMT system takes as input pre-pro-
cessed CUDA code and generates OpenCL code which retains 
abstract symbols. Finally, with the symbol table acquired from 
pre-processing, the post-processor replaces abstract symbols 
with initial names and restructure tokens following syntactic 
rules. Fig. 2 presents a translation example. 

(a) CUDA host code 

(b) CUDA kernel code 

(c) Pre-processed CUDA host code 

(d) Pre-processed CUDA kernel code 

(e) Host code translated by NMT system 

(f) Kernel code translated by NMT system  

 (g) Post-processed OpenCL host code 

(h) Post-processed OpenCL kernel code 

Fig. 2. Translation example of 2-D matrix multiplication code 
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void mm2Cuda(float* A, float* B, float* C) 
{ 
  float *A_gpu; 
  ... 
  cudaMalloc((void **)&A_gpu, sizeof(float) * NI * NK); 
  cudaMemcpy(A_gpu, A, sizeof(float) * NI * NK,  

cudaMemcpyHostToDevice); 
  ... 

_line_not_to_translate 
_line_not_to_translate 
_tp0 _op0 _id0 ; 
... 
cudaMalloc ( ( _tp0 _op0 ) _op1 _id0 , sizeof ( _tp1 ) _op2  
     _id1 _op2 _id2 ) ; 
cudaMemcpy ( _id0 , _id1 , sizeof ( _tp0 ) _op0 _id2 
                 _op0 _id3 , cudaMemcpyHostToDevice ) ; 
... 
 
 

void mm2Cuda ( float * A , float * B , float * C ) 
{ 
  cl_mem A_gpu ; 
  ... 
  A_gpu=clCreateBuffer(context, CL_MEM_READ_WRITE,  

sizeof(float)*NI*NK, NULL, NULL); 
  clEnqueueWriteBuffer(command_queue, A_gpu, CL_TRUE, 0,  

         sizeof(float)*NI*NK, A, 0, NULL, NULL); 
  ... 
 

_line_not_to_translate 
_line_not_to_translate 
cl_mem _id0 ; 
... 
_id0 = clCreateBuffer ( context , CL_MEM_READ_WRITE ,  

sizeof ( _tp1 ) _op2 _id1 _op2 _id2 , NULL , NULL ) ; 
clEnqueueWriteBuffer ( command_queue , _id0 , CL_TRUE , 0 , 
   sizeof ( _tp0 ) _op0 _id2 _op0 _id3 , _id1 , 0 , NULL , NULL ) ; 
… 

__global__ void mm2_kernel1(float *A, float *B, float *C) 
{ 
  int j = blockIdx.x * blockDim.x + threadIdx.x; 
  ... 
    for (k = 0; k < NK; k++) 
   { 
      C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j]; 
  ... 
 

__global__ _tp0 _id0 ( _tp1 _op0 _id1 , _tp1 _op0 _id2 , 
_tp1 _op0 _id3 ) 

_line_not_to_translate 
_tp0 _id0 _op0 blockIdx.x _op1 blockDim.x _op2 threadIdx.x ; 
... 
_line_not_to_translate 
_line_not_to_translate 
_line_not_to_translate 
... 

__kernel _tp0 _id0 ( __global _tp1 _op0 _id1 , __global _tp1  
_op0 _id2 , __global _tp1 _op0 _id3 )  

_line_not_to_translate 
_tp0 _id0 _op0 get_group_id ( 0 ) _op1 get_group_id ( 0 ) 

_op2 get_local_id ( 0 ) ; 
... 
_line_not_to_translate 
_line_not_to_translate 
_line_not_to_translate 
... 
 

__kernel void mm2_kernel1(__global float*A, __global float* B,  
__global float* C) 

{ 
  int j = get_group_id(0)*get_group_id(0)+get_local_id(0); 
  ... 
  for ( k = 0 ; k < NK ; k ++ ) 
  { 
    C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j] ; 
  ... 
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