A Case Study: Exploiting Neural Machine
Translation to Translate CUDA to OpenCL

Yonghae Kim
School of Computer Science
Georgia Institute of Technology
Atlanta, USA
yonghae @gatech.edu

Abstract—As hardware complexity increases, the need of
hardware generation from high-level languages has arisen. To
describe the behavior of hardware using high-level languages,
high-level synthesis (HLS) and domain-specific languages (DSLs)
have been developed. However, due to the nature of domain
specific languages, there are many number of programming
languages and tool chains, which all require a big learning curve
in learning them and writing code.

To tackle the challenge, we propose source-to-source trans-
lation using neural machine translation (NMT) techniques to
allow software/hardware engineers to easily interchange different
frames. The main benefit of NMT is that if it can successfully
translate one program language (PL) to another program lan-
guage, it can do the same for other program languages. To test
out whether NMT can learn source-to-source PL translation,
we evaluate it with CUDA to OpenCL, which both have very
similar programming styles. Our work shows (i) a training
input set generation method, (ii) pre/post processing, and (iii) a
case study using Polybench-gpu-1.0, NVIDIA SDK, and Rodinia
benchmarks.

Index Terms—CUDA, OpenCL, Program Translator, Neural
Machine Translation

I. INTRODUCTION

For decades, software and hardware engineers have desired
hardware generation using high-level languages. This is be-
cause hardware-descriptive languages (HDLs) require a big
learning curve for engineers who are not familiar with those
languages. Considering increasing design complexity and the
high productivity required in the rapidly changing market,
enabling the development of hardware design using high-level
languages is essential since it enables reduced engineering
effort and higher productivity.

To reduce the development effort, several high-level syn-
thesis (HLS) and domain-specific languages (DSLs) such as
Chisel [2], Bluespec [11], and SystemC [13] have been devel-
oped. However, they tend to target some specific applications,
and a number of languages and tool chains still require a huge
amount effort to learn and write code. In addition, developing
and maintaining those infrastructures demands lots of man-
power.

To address the challenge, we propose source-to-source
translation using neural machine translation (NMT). With the
recent development, NMT becomes an attractive option for
program language translation [3], [5], [6], [16]. Especially,

Hyesoon Kim
School of Computer Science
Georgia Institute of Technology
Atlanta, USA
hyesoon@cc.gatech.edu

Input Code (cupa)
— Ao
Training Dataset
Pre-processor
<+ g
Pre-processor NMT System
gt -
Post-processor
NMT System
hS
Translated Code
(OpenCL)

(a) training phase (b) inference phase

Fig. 1: Overview of workflow [8].

the language agnostic neural network design in sequence-to-
sequence (seq2seq) models [9] is a promising method, as it is
currently used in Google. The seq2Seq model can be trained
using only a pair of in/output without considering the language
grammar difference, which makes the same network applicable
for different natural language translation.

In this work, we present a case study of source-to-source
translation using NMT techniques by translating CUDA to
OpenCL. CUDA and OpenCL are both parallel computing
programming languages for accelerators. We chose these lan-
guages for two reasons; (1) CUDA and OpenCL share many
similarities, so they provide a good platform to develop the
techniques of PLNMT. Based on the knowledge/techniques
from this translation, we will expand our work to other
program language translation. (2) OpenCL is one of the HLS
frameworks.

Please note that our contribution is not proposing CUDA
to OpenCL translation. There have already been several tools
that do that such as SnuCL [7], CU2CL [10], and HIP in
AMD [1]. Instead, our contribution is to explore the possibility
of whether NMT can be used for program source-to-source
translation by just learning from end-to-end training examples.
Especially, we are focusing on PL that can be used for
hardware design.



TABLE I: Comparison between natural languages and programming languages.

l I

Natural Language

[ Programming Language |

Token Punctuation marks Punctuation marks, operators, variables
Scope in sentence Vague Explicit
Operator precedence None Exist
Ambiguous Allowed Not allowed
Naming Scope weak Explicit
Rigid syntax Exist but flexible in context Exist
Number of names Huge but finite Arbitrary

The summary of our contribution is as follows. We develop
a dataset generation flow for translating CUDA to OpenCL
using NMT. To do so, we first write a pair of API usages
for CUDA and OpenCL. With the API usages written, we
construct usage symbol trees to extract sentences from the
CUDA samples and find uncovered API usages. Using the
dataset we generated, we train the NMT system, which learns
the structural similarity between CUDA and OpenCL, and
translate CUDA code to OpenCL code. Finally, we present
translation examples and discuss the limitations and feasibility
of our current approach.

II. BACKGROUND
A. Neural Machine Translation (NMT)

Neural networks have demonstrated outstanding perfor-
mance in natural language processing (NLP). For example, the
sequence-to-sequence (seq2seq) model [15] presents a large,
deep Long Short-Term Memory (LSTM), outperforming a
mature SMT system by a sizable margin. It also shows the
capability of translating very long sentences.

Motivated by the meaningful success and the similarities
between natural and programming languages, we exploit the
seq2seq model to translate programming languages. We take
a statement (or statements) as a sentence and translate it to
another statement written in the target language. Since we
translate CUDA to OpenCL, in a training dataset, CUDA code
becomes source sentences, and OpenCL code becomes target
sentences. During an inference phase, we take as input CUDA
code and infer OpenCL code.

B. CUDA vs. OpenCL

Both CUDA and OpenCL have host and kernel code. In
the host code case, most host API functions have one-to-
one correspondence between CUDA and OpenCL. Consider
an example of cudaMalloc and clCreateBuffer that
have the same meaning between CUDA and OpenCL. Since
a function call of cudaMalloc contains all the necessary
information to be translated, such as arguments, we can write
a function call of clCreateBuffer with a given source
code.

Kernel code also has similarities between CUDA and
OpenCL. Kernel qualifiers and built-in functions have equiv-
alents, and therefore we replace one program language’s
keyword with an equivalent one in the other language. Program
translation rules between CUDA and OpenCL have already
been studied [10], [7], and we use these rules to train our
NMT system.

TABLE II: Mapping tokens to abstract symbols.

[ Symbol ] Token |
_id identifiers, string literals, numeric constants
_op operators
_tp data types

III. OVERVIEW OF WORKFLOW

In this section, we describe the overview of the NMT
workflow. As can be seen in Fig. 1, in addition to an
NMT system, we use a pre-processor during the training
phase and a pre-/post-processor during the inference phase.
Compared to natural languages in which a large, but finite,
set of vocabulary exists, programmers use numerous arbitrary
variable names such as alphabet characters or abbreviations
of variables/functions. By having a pre-/post-processor, we
enable arbitrary variable names in programming languages to
be translated. This also contributes to minimizing the size of
vocabulary. Both pre-/post-processors are developed as Python
scripts.

A. Pre-processor

A pre-processor performs lexical analyses and variable
renaming. First, it reads and tokenizes a given program code.
While tokenizing the code, it merges tokens that comprise one
statement as a sentence—i.e., even when a statement is written
in multiple lines, it puts the tokens together as a sentence.
In this way, the pre-processor generates a set of sentences,
each of which consists of tokens. Next, we map tokens (from
tokenized sentences) to three types of symbols depending on
their variable type. This is because we try to reduce the cases
in which different sentences are renamed to one sentence. As
can be seen in Table II, we map identifier, string literals, and
numeric constants to _id, and each symbol is tagged as a
number in ascending order starting from zero—i.e., the first
token mapped to _id becomes _id0, and the next one becomes
_idI. And, we map operators to _op and data types to _tp with
a tagged number in ascending order starting from zero. The
numbering for each type has its own order.

Moreover, pre-processing sentences creates a mapping table
that contains mapping information between variable names and
abstract symbols. This is used later by a post-processor when
it replaces the renamed tokens with their original names. Note
that we do not rename CUDA/OpenCL APIs since they decide
the context of a sentence and which rule to be used to translate
it. Finally, the pre-processor is also capable of generating a



oo s
< L

Uncovered

1 cudaDeviceProp deviceProp;
2 cudaSetDevice(_expr0);

CUDA API Usages

1 error_id = cuDeviceGetCount(...

3 cudaGetDevice(_expr0);
4 checkCudaErrors(cudaSetDevice(...
5 cudaGetDeviceProperties(_expr0, ...
6 heckCudaErrors(cudaGetDevicePro...

CUDA API Usages

1 cIDeviceProp deviceProp;

2 diSetDevice(_expr0);

3 clGetDevice(_expr0);

4 checkCudaErrors(clSetDevice(_expr...
5 cGetDeviceProperties(_expr, ...

6 CheckCudaErrors(clGetDevicePro.

¢ CUDA API Usage Symbol Tree

$ Pre-processor $

2 emror_id = cuDeviceComputeCapa.
3 error_id = cuDeviceGetName (...
4 error_id = cuDeviceTotalMem( ...

Write Corresponding

1 error_id = clDeviceGetCount(...
2 error_id = cIDeviceComputeCapa...

3 error_id = cIDeviceGetName ( ...
4 error_id = clDeviceTotalMem ( ...

[T1) eoe
OpenCL API Usage Symbol Tree

Corresponding
OpenCL API Usages

¢

OpenCL API Usages

____________ 'd
Update API Usages

e ———

@"/. ------

Training Dataset

NP ——— S p——

]
1
1
1
1
1
1
1
1
: API Usages
1
1
1
1
1
1
\

Fig. 2: Overview of the proposed dataset generation flow.

training dataset. The details of how we generate a dataset are
covered in Section IV.

B. NMT System

In an NMT system, we exploit a seq2seq model as it
has demonstrated outstanding performance in translating long
sentences. The NMT system is a component where actual
translation occurs. During a training phase, a training dataset,
which consists of source sentences for CUDA and target
sentences for OpenCL, is pre-processed and fed into the NMT
system. During an inference phase, input CUDA code is pre-
processed and fed into the NMT system. Then, the NMT
system outputs renamed OpenCL code.

C. Post-processor

A post-processor performs initial name replacement and
code restructure. As we train the NMT system with renamed
sentences, the output sentences generated from the NMT
system also have abstract symbols. Based on the mapping table
created by a pre-processor, a post-processor replaces them with
their original names. Since the initial variable names from the
input code remain in the output code, the translation provides
a high-quality code. Finally, based on syntactic rules, it puts
appropriate indents between tokens for better readability and
generates the final outcome.

IV. DATASET GENERATION

Since there is no publicly available dataset for translating
CUDA to OpenCL using NMT, we develop a dataset genera-
tion flow and generate a dataset from CUDA samples. Fig. 2
shows the overview of our proposed dataset generation flow,
and we explain the steps of dataset generation as below.

A. Steps of Dataset Generation

We first summarize how we generate a dataset and describe
additional details in the following subsections.
1) Write API usages

o Write a pair of API usages for CUDA and OpenCL.
2) Build usage symbol trees

« Read API usages written.

o Tokenize each sentence and rename tokens as abstract
symbols.

« Build usage symbol trees that consist of renamed tokens.
3) Gather expressions and find uncovered API usages

from CUDA samples

« Tokenize each sentence in CUDA samples.

o If a sentence includes CUDA APIs, see if the sentence is
found in the CUDA usage symbol tree.

« If found, and the API usage has expression nodes, add each
expression to a corresponding expression node.

o If not found, write the sentence to a separate file that
contains uncovered API usages.
4) Generate a dataset

« Read again API usages written.

o If an API usage has expression keywords, permutate the
expression nodes and add multiple sentences to a dataset.

« If not, add sentences to a dataset without permutation.

B. API Usage Generation

Our method requires users to manually write a pair of API
usages for CUDA and OpenCL. A CUDA API usage has a
sentence pattern to translate, and any variable names can be
used in the sentence pattern since they will be renamed as
abstract symbols by a pre-processor. An OpenCL API usage
has a sentence pattern that the corresponding CUDA API usage
should be translated to. Each line of API usages has a one-
to-one correspondence with each other—i.e. the i” line in the
set of CUDA API usages corresponds to the i’ line in the set
of OpenCL API usages.

C. Building a Usage Symbol Tree

A pre-processor tokenizes API usages that are manually
written and renames tokens as abstract symbols. Then, it builds
usage symbol trees that consist of renamed tokens for each
CUDA and OpenCL. By traversing the usage symbol trees
with tokens of a sentence, we can easily determine whether a
given sentence is covered by our API usages, and based on the
outcome, we can generate a corresponding OpenCL sentence.



cudaMemcpy

cudaMemcpy cudaMemcpy
HostToDevice DeviceToHost

i i

Fig. 3: Node representation of cudaMemcpy usage.

cudaMemcpy(A_gpu, A, sizeof(double)*NI, cudaMemcpy-
HostToDevice);
cudaMemcpy(B_gpu, B, sizeof(double)*NI*NL, cudaMem-

cpyHostToDevice);
cudaMemcpy(C_gpu, C, sizeof(double)*NI*NJ*NK, cud-
aMemcpyHostToDevice);

(a) Three different cudaMemcpy sentences
cudaMemcpy(_exprO, _exprl, _expr2, cudaMemcpyHost-

ToDevice);

(b) cudaMemcpy usage with expression keywords

Fig. 4: Example of using expression keywords.

If a sentence includes CUDA APIs but is not found in the
usage symbol tree, it is considered an uncovered API usage
and written to a separate file. The usage symbol trees enable us
to maintain sentence patterns to translate and easily generate
a new larger dataset when we get new CUDA samples.

D. Using an Expression Keyword

When we write a pair of API usages, we use an expression
keyword, _expr, to represent function parameters. Each one is
tagged as a number in ascending order starting from zero. Each
expression keyword becomes an expression node in a usage
symbol tree. Fig. 3 shows the example of node expression
using expression keywords. This reduces manual efforts to
write API usages. Consider the example of cudaMemcpy.
It takes four parameters in its function call, of which each
can have various shapes. Fig 4 (a) shows three different
sentences. For these sentences, instead of writing three CUDA
API usages for each sentence, we write one CUDA API usage
with expression keywords, as shown in Fig 4 (b).

E. Expression Node Permutation

Expression node permutation is used to increase the size of
a dataset. As explained in Section IV, when we define a pair of
API usages, we use an expression keyword. Each expression
keyword becomes an expression node in a usage symbol tree.
When we generate sentences from CUDA samples, instead of
simply finding sentences covered by API usages and adding
them to a dataset, we collect expressions for each correspond-
ing expression node. After looking through all samples, we
permutate each expression node and generate the increased

TABLE III: The number of sentences generated from CUDA
benchmarks.

# sentences | # sentences

Benchmark # application found generated
Polybench-gpu 15 169 221
NVIDIA SDK 25 265 583
Rodinia 13 286 538
Total 53 715 1874

TABLE IV: Hyper-parameters of the NMT system [9].

[ [[ Seq2Seq model |

Batch size 128
Number of RNN layers 43
RNN cell LSTM
Initial learning rate 0.005
Dropout rate 0.2
Attention model scaled luong

number of sentences. Consider cudaMemcpy in Fig. 3 and
assume that we collect n expressions for _expr0, m expressions
for _exprl, and k expressions for _expr2. By permutating each
expression node, we produce n X m Xk sentences. Note that
_expr symbols are not present in sentences fed into the NMT
model. It is only used to generate a dataset and is not used as
a vocabulary.

V. RESULTS

As discussed in Section IV, we extract sentences from
CUDA samples and generate a dataset. Our current dataset
has 126 lines of API usages, and we use Polybench-gpu-
1.0 [14], NVIDIA SDK [12], and Rodinia [4] benchmarks as
target translation. We currently support a subset of API usages
that exist in the evaluated benchmarks. Table III presents
the number of sentences generated. In the table, Column 2
indicates the number of sentences that include CUDA APIs
and are found in our current usage symbol trees, and Column
3 indicates the number of sentences that we generate using the
expression node permutation method. With only 126 lines of
API usages, we generate 1874 sentences from CUDA samples.
We can see that the permutation method increases the number
of sentences by 2.6x.

We use the seq2seq model as our NMT model. Table IV
shows the hyper-parameters of the NMT system used. We use
the same dataset as training, development, and test dataset.
This is because we intend to have the NMT system to produce
a correct sentence and understand the limitation of this NMT-
based translation approach. In contrast to natural languages,
programming languages have a rigid syntax, and therefore
we need to generate correct sentences to make the translated
code executable. Therefore, we intentionally cause overfitting
by using a shared dataset. While we achieve a 99.1 BLEU
score, this does not imply that the NMT system has a better
capability to infer and translate unseen sentences. However,
it can correctly translate most of the sentences covered by
the API usages written by users. For the polybench-gpu-1.0
benchmark, we manually changed about 10 lines out of 200-



350 lines for each application and were able to make it run.
To fully utilize the potential of using machine learning, we
would need a larger dataset and need to split the dataset so
that there is no overlap among the training, development, and
test dataset. We leave this as future work.

Fig 5 shows a translation example of a 2-D matrix multipli-
cation. Fig. 5 (a) and (b) show the CUDA host and kernel code,
respectively. Before being fed into the NMT system, they are
pre-processed by a pre-processor; Fig. 5 (c) and (d) show the
pre-processed code. If a sentence does not have CUDA APIs,
it becomes _line_not_to_translate symbol and is
replaced with the original sentences later by a post-processor.
After translation using the NMT system, the pre-processed
code is translated to OpenCL code that retains the renamed
tokens, which can be seen in Fig. 5 (e) and (f). Finally, a post-
processor replaces the renamed tokens with their initial names
and provides the final OpenCL code. The final output code is
shown in Fig. 5 (g) and (h).

VI. LIMITATION

In this section, we discuss the limitation of our current
approach. Fig 6 presents an example of sentences incorrectly
translated.

Long sentence translation Despite the LSTM’s ability to
learn long-range temporal dependencies, we observe several
sentences in which some last words are truncated. In our
translation, a sentence fed into the NMT system might be
very long as we tokenize sentences in CUDA samples and
each token becomes a word. Since many of the tokens are
from function parameters, we believe a new embedding layer
structure needs to be developed to encode parameter parts in
a different way. We leave this as future work.

Unseen sentence translation Since we manually write API
usages, the dataset generated inevitably has limited function
coverage and does not guarantee the successful translation of
random programs. Although variable renaming and the use of
an expression keyword contribute to increasing its coverage
with the limited number of API usages, it is still non-trivial
to correctly translate a sentence not covered by API usages.

Manual steps for API function mapping We require
manual efforts to write a pair of API usages. Considering
that most host API functions have one-to-one correspondence
between CUDA and OpenCL, most parts of the job in writing
API usages would be changing the function name and the
positions of parameters. However, since there are various
sentence patterns, we still require efforts to write API usages
for those sentences.

VII. RELATED WORK

Using NMT for program translation Chen et al. [5]
propose a novel tree-to-tree neural network and demonstrates
higher accuracy for program translation, but it has a limited set
of variables and restricts the vocabulary size. Zuo et al. [16]
utilize NMT techniques to deal with a cross-architecture code
similarity comparison. However, it does not handle high-level
language translation.

void mm2Cuda(float* A, float* B, float* C) {
float *A_gpu;

cudaMalloc((void **)&A_gpu, sizeof(float) * NI * NK);
cudaMemcpy(A_gpu, A, sizeof(float) * NI * NK, cudaMem-
cpyHostToDevice);

(a) CUDA host code

__global__ void mm2_kernelI(float *A, float *B, float *C) {
int j = blockldx.x * blockDim.x + threadldx.x;

for (k = 0; k | NK; k++) {
C[i * NJ + j] += A[i * NK + k] * B[k * NJ + j];

(b) CUDA kernel code

_line_not_to_translate
_line_not_to_translate
_tp0 _op0 _idO0 ;

cudaMalloc ( ( _tpO _op0 ) _opl _id0 , sizeof ( _tpl ) _op2
_id1l _op2 _id2 ) ;

cudaMemcpy ( _id0 , _id1 , sizeof ( _tp0O ) _op0 _id2 _op0
_id3 , cudaMemcpyHostToDevice ) ;

(c) Pre-processed CUDA host code

__global__ _tp0 _idO ( _tpl _opO _id1, _tpl _op0 _id2 , _tpl
_op0 _id3)

_line_not_to_translate

_tp0 _id0 _opO0 blockIdx.x _opl blockDim.x _op2 threadldx.x

>

_line_not_to_translate
_line_not_to_translate
_line_not_to_translate

(d) Pre-processed CUDA kernel code

_line_not_to_translate
_line_not_to_translate
cl_mem _idO ;

_1d0 = clCreateBuffer ( context , CL_MEM_READ_WRITE ,
sizeof ( _tpl ) _op2 _idl _op2 _id2 , NULL , NULL ) ;
clEnqueueWriteBuffer ( command_queue , _id0 , CL_TRUE
, 0, sizeof ( _tp0 ) _opO _id2 _op0O _id3, _idl1 , 0, NULL ,
NULL ) ;

(e) Host code translated by NMT system

__kernel _tp0 _idO ( __global _tpl _op0 _id1, __global _tpl
_op0 _id2 , __global _tpl _opO _id3)
_line_not_to_translate

_tp0 _id0 _opO get_group_id ( 0 ) _opl get_group_id ( 0 )

_line_not_to_translate
_line_not_to_translate
_line_not_to_translate

(f) Kernel code translated by NMT system




void mm2Cuda ( float * A , float * B, float * C ) {
cl_mem A_gpu ;

A_gpu=clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(float)*NI*NK, NULL, NULL);
clEnqueueWriteBuffer(command_queue, A_gpu, CL_TRUE,
0, sizeof(float)*NI*NK, A, 0, NULL, NULL);

(g) Post-processed OpenCL host code

__kernel void mm2_kernell(__global float*A, __global float*
B, __global float* C) {
int j = get_group_id(0)*get_group_id(0)+get_local_id(0);

for (k=0;k;NK;k++) {
Cli * NJ + j] += Ali * NK + k] * B[k * NJ + j] :

(h) Post-processed OpenCL kernel code

Fig. 5: Translation example of 2-D matrix multiplication code

[8].

Source float* A_gpu; _br cudaMalloc((void **) &
A_gpu, _expr0);

_expr0 = clCreateBuffer(context,

Translated CL_MEM_READ_WRITE, sizeof (DATA
_TYPE)*_id8*_id6, NULL, NULL);

Expected cl_mem A_gpu;

Source cudaMalloc((void ** ) &data_gpu, sizeof(
DATA_TYPE)*(M+1)*(N+1));
data_gpu=clCreateBuffer(context,

Translated CL_MEM _READ_WRITE, sizeof(DATA
_TYPE)*_id7*_id6*_id0, NULL, NULL);
data_gpu=clCreateBuffer(context,

Expected CL_MEM_READ_WRITE, sizeof (DATA
_TYPE)*(M+1)*(N+1), NULL, NULL);

Source Convolution2D_kernel <<<grid,  block
>>>(A_gpu, B_gpu);
_clSetKernelArg(”Convolution2D_kernel”

N 0, A_gpu); _clSetKernelAr,

Translated (”ConvolutionZD:lggmel”, 1, B _gpu)g;
_clEnqueueNDRangeKernel(grid,
_clSetKernelArg(”Convolution2D_kernel”, 0,
A_gpu); _clSetKernelArg(”Convolution2D

Expected _ke%ﬂel”, 1, B_gpu); _clénqueueNDRange
Kernel(grid, block, "Convolution2D_kernel”);

Source cudaFree(A_gpu);

Translated clGetDevice(A_gpu);

Expected clReleaseMemObject(A_gpu);

Fig. 6: Example of sentences incorrectly translated.

CUDA to OpenCL translation Martinez et al. [10] trans-
late CUDA to OpenCL at an AST level, and Kim et al. [7] use
wrapper functions to translate between CUDA and OpenCL.
Compared to those works, we use source-to-source transla-
tion and exploit NMT techniques to translate programming
langauges.

VIII. CONCLUSION

In this work, we exploited NMT techniques to translate
CUDA to OpenCL. To do so, we developed a dataset genera-

tion flow and generated a dataset from CUDA benchmarks.
Moreover, for training and inference phases, the pre-/post-
processor were developed to enable arbitrary variable names to
be translated. While our current approach correctly translates
most of the sentences covered by the API usages that are
manually written, we discover several challenges of using
NMT for program translation, especially for unseen or long
sentences. We also note that the efforts of developing a training
input set generator is not necessarily less than developing a
source to source translator. In this work, the NMT itself has
not been changed at all. It is our future work to improve the
NMT to make it more program language translation friendly.

REFERENCES

[1] AMD. Hip Convert cuda to portable code.
https://github.com/ROCm-Developer-Tools/HIP, 2013.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviienis,
J. Wawrzynek, and K. Asanovi. Chisel: Constructing hardware in a
scala embedded language. In DAC Design Automation Conference 2012,
pages 1212-1221, June 2012.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. CoRR,
abs/1409.0473, 2015.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In 2009 IEEE International Symposium on Workload Characterization
(IISWC), pages 44-54, Oct 2009.

[5] Xinyun Chen, Chang Liu, and Dawn Xiaodong Song. Tree-to-tree neural
networks for program translation. In NeurIPS, 2018.

[6] Kyunghyun Cho, Bart van Merrienboer, aglar Giilehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. In EMNLP, 2014.

[7] J. Kim, T. T. Dao, J. Jung, J. Joo, and J. Lee. Bridging opencl and cuda:
a comparative analysis and translation. In SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-12, Nov 2015.

[8] Yonghae Kim and Hyesoon Kim. Translating cuda to opencl for
hardware generation using neural machine translation. In Proceedings
of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2019, pages 285-286, Piscataway, NJ, USA,
2019. IEEE Press.

[9] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine
translation (seq2seq) tutorial. https://github.com/tensorflow/nmt, 2017.

[10] G. Martinez, M. Gardner, and W. Feng. Cu2cl: A cuda-to-opencl
translator for multi- and many-core architectures. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pages
300-307, Dec 2011.

[11] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level
specifications. In Proceedings. Second ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04., pages 69-70, June 2004.

[12] NVIDIA. Nvidia. In CUDA Samples Reference Manual, Sept 2017.

[13] Preeti Ranjan Panda. Systemc: A modeling platform supporting multiple
design abstractions. In Proceedings of the 14th International Symposium
on Systems Synthesis, ISSS *01, pages 75-80, New York, NY, USA,
2001. ACM.

[14] Robert Searles Sudhee Ayalasomayajula Scott Grauer-Gray, Lifan Xu
and John Cavazos. Auto-tuning a high-level language targeted to gpu
codes. In Proceedings of Innovative Parallel Computing (InPar ’12),
Mar 2012.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, pages 3104-3112, Cambridge, MA, USA, 2014. MIT Press.

[16] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo, and
Qiang Zeng. Neural machine translation inspired binary code similarity
comparison beyond function pairs. CoRR, abs/1808.04706, 2018.

c+t



