
Unofficial Author’s Copy

SLAM Performance on Embedded Robots
Undergraduate Student Research: Individual Project

Nima Shoghi Ghalehshahi
Georgia Tech

nimash@gatech.edu

Ramyad Hadidi
Georgia Tech

rhadidi@gatech.edu

Hyesoon Kim
Georgia Tech

hyesoon@gatech.edu

ABSTRACT
We explore whether it is possible to run the popular ORB-
SLAM2 algorithm (simultaneous localization and mapping)
in real-time on the Raspberry Pi 3B+ for use in embedded
robots. We use a modified version of ORB-SLAM2 on the
Pi and a laptop to measure the performance and accuracy of
the algorithm on the EuRoC MAV dataset. We see similar
accuracy between the two machines, but the Pi is about 10
times slower. Finally, we explore optimizations that can be
applied to speed up execution on the Pi. We conclude that with
our optimizations, we can speed up ORB-SLAM2 by about
5 times with minor impact on accuracy, allowing us to run
ORB-SLAM2 in real-time.

INTRODUCTION
Simultaneous localization and mapping (SLAM) is the prob-
lem of, given an unknown world, mapping the world and
localizing within that map. It is used by self-driving cars,
uncrewed aerial vehicles (UAVs), autonomous underwater ve-
hicles (AUVs), and vacuum cleaning robots, to name a few.
In most of these use cases, the SLAM algorithm needs to run
on embedded devices, such as the Pi. Our goal is to find the
optimal conditions for running ORB-SLAM2 [5], a popular
algorithm used for real-time SLAM with mono, stereo, and
RGB-D camera inputs, on the Pi.

MEASUREMENT
In this paper, we use "performance" to refer to the time it takes
to run the algorithm and "accuracy" to refer to the correctness
of the output.

We use the following accuracy metrics:

1. Absolute Trajectory Error (ATE): ATE measures the holis-
tic accuracy of the algorithm by comparing ground truth
trajectories1 to the predicted trajectories [6].

1The EuRoC MAV datasets provide ground truth pose captured using
the Vicon motion capture system and the Leica MS50 laser tracker
and scanner

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Table 1: Raspberry Pi Data.
Stereo Camera Mono Camera

Dataset ATE RPE ∑ t (s) ATE RPE ∑ t (s)
MH01 0.038 4.76 1581.8 3.318 4.55 996.4
MH02 0.046 4.86 1300.6 0.365 5.07 777.0
MH03 0.044 4.09 1150.4 2.951 4.39 636.2
MH04 0.143 8.19 805.3 5.427 7.99 442.1
V1 01 0.087 2.34 1075.5 1.179 2.20 732.4
V1 02 0.064 2.44 635.0 1.262 2.06 360.4
V1 03 0.135 2.12 818.1 1.017 1.85 471.8

Table 2: Laptop Data.
Stereo Camera Mono Camera

Dataset ATE RPE ∑ t (s) ATE RPE ∑ t (s)
MH01 0.037 4.83 202.0 0.538 5.40 92.9
MH02 0.049 4.86 145.4 2.822 4.44 76.5
MH03 0.042 4.08 138.2 3.445 4.68 65.4
MH04 0.064 8.20 85.6 6.185 8.26 40.7
V1 01 0.088 2.34 115.8 1.211 2.23 75.4
V1 02 0.066 2.44 68.8 0.905 2.06 35.8
V1 03 0.071 2.12 85.1 1.195 1.74 43.2

2. Relative Pose Error (RPE): RPE measures the amount of
drift in the system by comparing relative transformations
between successive poses for the actual and ground truth
datasets1 [6].

And the following performance metric, the total tracking time
– ∑ t (seconds): ∑ t is the total number of seconds it takes to
process all images, excluding any file loading or parsing time.

TESTING ENVIRONMENTS
The software is built, packaged, distributed, and executed
using Docker. We use the following two test machines:

1. Raspberry Pi 3 B+ (4x Cortex-A53; 1 GB RAM; Raspbian)

2. OVERPOWERED Laptop 15+ (Intel i7-8750H; 32 GB
RAM; Windows 10 Education)2

DATA AND ANALYSIS
The data collected follows below trends:
• Stereo camera inputs provide much better accuracy while

taking 2× longer to process (see figures 1 and 2).

• The laptop is 8.8× faster with stereo camera inputs and
10.3× faster with mono camera inputs.

• Both machines show similar RPEs, indicating that there’s
not much difference in the drift.

• The Pi had a higher ATE on average. However, this can be
attributed to a few outliers.

2Docker Desktop for Windows uses the Hyper-V hypervisor to set
up a Linux virtual machine to run Docker. This process incurs some
performance overhead.

10.1145/1235


Figure 1: ∑ t difference between our machines (higher is better).

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

Stereo Camera Mono Camera

Raspberry Pi Laptop

Figure 2: ATE and RPE difference between our machines (lower is better).

0.00

0.50

1.00

1.50

2.00

2.50

Stereo Camera Mono Camera

Absolute Trajectory Error

Raspberry Pi Laptop

3.60

3.70

3.80

3.90

4.00

4.10

4.20

Stereo Camera Mono Camera

Relative Pose Error

Raspberry Pi Laptop

These trends indicate the Pi’s hardware limitations degrade our
performance but not our accuracy. The next section includes
optimizations that increase our performance.

OPTIMIZATIONS
The following optimizations are applied to decrease the total
tracking time ∑ t:

• We tune ORB-SLAM2’s ORB Extractor configuration:
– Decreasing the number of features (ORBextrac-

tor.nFeatures) increases our performance with minor
impacts on the accuracy. We witness a 1.75× increase
in performance with negligable impact on accuracy.

– Decreasing the depth of the orb extraction tree (OR-
Bextractor.nLevels) has a 1.25× increase in perfor-
mance. We increase the ORB scale factor (ORBextrac-
tor.scaleFactor) to make up for the lowered depth.

• If the input video contains high definition frames, we rec-
ommend downscaling to lower dimensions. Our research
showed that resolutions around 640x480 provide a good
balance of performance and accuracy.3

• Using lower FPS for the input image sequence is recom-
mended for seamless live SLAM. We found 10 and 20 FPS
to be sufficient for seamless live SLAM on stereo and mono
camera inputs, respectively.

The following optimizations do not have an impact on ∑ t, but
have an impact on the total time it takes to run the algorithm:

• ORB_SLAM2 employs a bag of words place recognition
system built on the DBoW2 library for loop detection and
relocalization [4, 2]. The library’s initial vocabulary load-
ing takes a considerable amount of time on the Pi, as it
parses the text file line-by-line to create the vocabulary tree.
We solve this by creating the vocabulary tree once before

3The EuRoC dataset that was used in our research provides stereo
input images of size 752x480.

any test runs and reusing the same object for all of our

tests. Other possible solutions include storing the vocabu-
lary tree’s in-memory representation to the disk, removing
the need for a decoding stage — the Cap’n Proto protocol
uses this method [7].

• Streaming the dataset over a local area network (LAN)
HTTP server, as opposed to loading the images from the
SD card, drastically decreases the time it takes to read each
frame on the Pi.4 This optimization has no impact on the
laptop’s performance, which uses an NVMe SSD.

Our poster and presentation show the specific performance
and accuracy information for each optimization.

CONCLUSION AND FUTURE RESEARCH
Our suggested optimizations increase the base performance of
the ORB-SLAM2 algorithm by a factor of roughly 5×. With
these optimizations, as well as proper calibration parameters
[1], we can achieve real-time online localization and mapping.
Our poster and presentation show our real-time online SLAM
setup on the Pi running on live camera input, including details
about camera calibration, optimizations and performance met-
rics, and accuracy. As potential further research, we will do
the following:

• Prior research indicates that the performance overhead of
running Docker containers on the Pi is negligible [3]. How-
ever, some Docker features, such as AUFS, incur additional
overhead which will be measured.5 We will also attempt
running this algorithm without Docker.

• We will provide custom specialized DBoW2 vocabulary
input [2] for specific environments that the robot operate in.

• We will use faster general purpose chips, such as the Pi 4.

REFERENCES
[1] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools (2000).

[2] Dorian Gálvez-López and J. D. Tardós. 2012. Bags of Binary Words for
Fast Place Recognition in Image Sequences. IEEE Transactions on
Robotics 28, 5 (October 2012), 1188–1197. DOI:
http://dx.doi.org/10.1109/TRO.2012.2197158

[3] Roberto Morabito. 2016. A performance evaluation of container
technologies on Internet of Things devices. In 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 999–1000.

[4] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015.
ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE
transactions on robotics 31, 5 (2015), 1147–1163.

[5] Raul Mur-Artal and Juan D Tardós. 2017. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE
Transactions on Robotics 33, 5 (2017), 1255–1262.

[6] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and
Daniel Cremers. 2012. A benchmark for the evaluation of RGB-D
SLAM systems. In IROS’12s. IEEE, 573–580.

[7] Kenton Varda. 2015. Cap‘n Proto. (2015).

4This optimization is not necessary when perfoming real-time on-
line SLAM. In the case of real-time online SLAM, we can use
OpenCV’s cv::VideoCapture to read from the Linux camera device
(e.g. /dev/video0) directly.
5Our testing environment controlled these parameters to minimize
the overhead incurred by Docker.

http://dx.doi.org/10.1109/TRO.2012.2197158

	Introduction
	Measurement
	Testing Environments
	Data and Analysis
	Optimizations
	Conclusion and Future Research
	References 

