
Design Space Exploration of Memory Model
for Heterogeneous Computing

Jieun Lim
School of Electrical and
Computer Engineering

Seoul National University
Email: Jelim@dsp.snu.ack.kr

Hyesoon Kim
School of Computer Sciencne

Georgia Institute of Technology
Email: hyesoon@cc.gatech.edu

Abstract—Heterogeneous computing that combines a tradi-
tional CPU architecture with an accelerator has become a pop-
ular architecture. Memory modeling design decisions affect not
only architecture designs but also programming models. Hence,
comparing them is very challenging and not all design spaces
have been explored. Although a unified memory address space
that is fully coherent and strongly consistent across the entire
memory system would be the ideal case, because of scalability
and complexity, less ideal designs have been proposed.

In this paper, we explore various design options quantitatively
and qualitatively. Our results suggest that maintaining a separate
memory model for each architecture and having a partially
shared memory space provide the most design options in both
programming models and architecture designs.

I. INTRODUCTION

Heterogeneous computing has become one of the major archi-
tecture design trends. In particular, combining CPUs and GPUs is a
popular option as demonstrated by AMD’s Fusion [3], Intel’s Sandy
Bridge [17], IBM Cell processors [16], and NVIDIA’s Denver [28].
Although these heterogeneous computing models have different ISAs
and different execution cores, they share some levels of memory
systems to reduce the communication cost.

In a heterogeneous system, there are several ways to design
memory systems, from completely disjoint memory systems (e.g.,
connections through PCI-E) to fully shared unified memory systems.
Although a unified memory address, fully coherent and strongly
consistent memory system can provide the most convenient program-
ming environment, because of hardware cost and complexity, various
options have been proposed. Furthermore, separate memory systems
for each architecture could also reduce design and verification time.

A memory model is strongly coupled with architecture design
and programming models, which makes it more difficult to compare
models among different design options. Furthermore, these memory
model design options must be studied together in the early architec-
ture and ISA design stage.

Hence, the goal of this paper is to understand the trade-offs in
memory system design decisions. We aim to evaluate the overhead
of programming model decisions and the hardware design options
separately. communication mechanisms as the major memory sys-
tem design parameters. We also introduce several hybrid locality
management schemes that allow the system to maintain its own
locality management scheme in the shared address space. Among
these parameters, we quantitatively evaluate memory address space
options and hardware communication methods.

Our results suggest that maintaining a separate memory model
for each architecture and having a partially shared memory space
provide various hardware and programming model design options.

For example, the architecture can have an explicit or implicit locality
management scheme to accelerate its specialized applications. A
partially shared address space provides opportunities to optimize
private address spaces independently.

In summary our work makes the following contributions:

1) We explore the design options of memory systems in het-
erogeneous computing by considering both programming
models and hardware designs.

2) We propose several hybrid locality management schemes
in programming models for heterogeneous computing and
also the corresponding hardware mechanisms.

3) Finally, our results show that a partially shared address
space scheme provides the most versatile design options
in locality management and communication methods. This
allows for various architecture and programming model
design options.

II. MEMORY DESIGN OPTIONS FOR HETEROGENEOUS
COMPUTING

Heterogeneous computing is typically a combination of different
accelerators and general purpose processors. Here, we choose CPUs
to represent general purpose processors and GPUs for accelerators.
However, all the discussions and studies can be applied to other
accelerators such as DSPs or other ISAs. We use the term processing
unit (PU) to refer to either CPUs or GPUs.

Since our focus is not discussing memory design options for the
private memory space in each PU, we assume that each PU has its
own memory model.

A. Memory Address Space Design Options

The design options of a memory address space are unified,
partially shared, disjoint, and asymmetric distributed shared (ADSM),
as illustrated in Figure 1. The disjoint memory space has been the
most widely used in heterogeneous computing until now because each
PU simply has its own private memory space without the need to
maintain coherence and consistency between memory space. Please
note that here we are only discussing memory address space.

1) Unified Memory Address Space: A unified memory address
space means that there is no separation between CPU address space
and GPU address space. Any tasks can be run on any PU without
explicit data transfer commands. Programmers can easily execute
libraries and existing program paradigms that are developed for
homogeneous computing systems.

Unified Memory Space 6= Coherence Support: As can be seen
in an example from CUDA 4.0 [29], a unified memory space can
have non-coherent memory space between CPUs and GPUs.

(a) (b) (c)

Unified

CPU GPU

cache cache

memory

CPU GPU

Shared

CPU GPU

cache cache

memory

CPU GPU

CPU GPU

cache cache

memory

(d)

CPU

CPU GPU

cache cache

memory

CPU/
GPU

Fig. 1. Memory address space design options: (a) unified memory address space, (b) disjoint memory address space, (c) partially shared memory address space,
(d) asymmetric distributed shared memory (ADSM) address space.

Implementation: A unified memory address space can be im-
plemented as a virtually unified memory address space (like CUDA
4.0) [29], [6] or as a physically unified memory. When it shares
only virtual addresses, one memory address space maps to different
physical addresses on each PU, so it can work in both discrete and
integrated memory systems. This provides different page size options
to each PU (e.g., GPUs can have large page size to accommodate high
stream locality.) and also a different page table format to optimize for
its own PU. However, having different page table formats complicates
TLB designs and memory management units [31], [34]. If only a
virtual address space is shared between PUs, software support such
as using libraries or runtime is required to hide latency.

2) Disjoint Memory Space: In a disjoint memory address
space, there should be explicit communication between two address
spaces in order to access data allocated in the other space. This
minimizes the cost of designing/building heterogeneous computing
systems and also provides scalability but it increases the burden on
programmers.

Implementation: Again, address space and physical memories
are orthogonal. Physical memories can be implemented using any
network fabric such as PCI-E, DMA, and interconnection network.
Disjoint memory systems can have either the same or different page
table formats between address spaces. Explicit communication is
always required.

Disjoint Memory Space 6= Non-shared Cache: Even though
memory spaces are not shared, they can still share the cache. Intel’s
Sandy Bridge is an example [17]. CPUs and GPUs have discrete
memory spaces, but they share the last-level cache for better resource
management.

3) Partially Shared Memory Space: Finally, in a partially
shared space, a part of the memory space is shared to get benefits
from both the convenience of using shared memory and to reduce
the hardware design cost. This scheme requires additional overhead
if managing between shared space and non-shared space.

This partially shared memory space introduces several different
design options such as the concept of ownership and different locality
management.

Ownership Control: In this scheme, even though a subset of
address space is shared, each PU has ownership. This prevents
the address space from being updated by both PUs concurrently.
Hence, the shared memory address space does not need to maintain
coherence. This ownership is introduced in Intel’s heterogeneous
architecture programming model [31]. We refer to this mechanism
as the LRB programming model. Ownership is for performance
optimizations and is not essential for partially shared memory space
design.

The downside of having this ownership is that either programmers
or compilers have to insert acquire and release ownership

commands. It also needs to specify whether or not data objects
are allocated in the shared memory space. UPC[2] and LRB used
the shared type qualifier to handle this issue. Unfortunately, it
is the programmer’s responsibility to tag all data shared between
the CPUs and GPUs with the shared keyword. Globalization and
privatization can also be performed during program execution to
indicate ownership changes.

Figure 2 shows reduction examples from two different program-
ming models: unified and partially shared address spaces.1 These
examples illustrate the differences of using different malloc and
ownership changes for objects in the shared space. The initial data
is loaded from the CPU and sent to the GPU. The final sum is also
calculated inside the CPU.

Implementation: Although a partially shared address space can
be implemented with one unified physical memory system, to get the
benefits of discrete memory space (non-shared space), architectures
often employ different physical memory systems. However, imple-
menting a partially shared memory address space requires maintaining
page table mapping in both CPUs and GPUs, which could generate
high overhead. Note that the unified memory address space also
has the same problem if both CPUs and GPUs have a virtually
unified memory address space with discrete memories. To reduce
this overhead, using a PCI aperture2 was proposed [34], [31], [6].
Allocating a portion of the PCI aperture space to the user space of
an application provides a common buffer between CPUs and GPUs.
The PCI aperture already supports asynchronous copy between CPU
memories and GPU memories. This method enables very low-cost
communication between CPUs and GPUs. However, this method is
intended to support only small portions of memory space between
CPUs and GPUs although in principle the address space can grow
dynamically.

4) Asymmetric Distribute Shared Memory Space: Another
form of a partially shared memory space is an asymmetric shared
memory space. While one PU can access the entire memory address
space, the other PU can only access its private memory address
space. Gelado et al. proposed an asymmetric distributed shared
memory (ADSM) system [10]. In their proposal, CPUs can access
the entire memory space but GPUs can only access their private
address space. The major benefit of this mechanism is that only
the CPU needs to maintain coherence and consistency while GPUs
still have a simple memory system. Similar to the unified memory
space, coherent data can be maintained by hardware coherence or

1This example is based on the programming model from the LRB architec-
ture [31].

2PCI aperture is a virtual memory space where a graphics driver will initiate
access to the graphics memory. It originates from the AGP aperture, which
allows graphics drivers to access part of the system memory directly to copy
texture and polygon meshes, and other data can be loaded directly from the
CPU’s physical memory to utilize direct memory access. [18].

int addTwoVectors(int *a, int *b, int *c)
{
for (i = 1 to 64) {
c[i] = a[i]+b[i];

}
}

int kernel(...)
{

int *a = malloc(...); int *b = malloc(...);
int *c = malloc(...); int *d = malloc(...);
int *e = malloc(...); int *f = malloc(...);

for (i=1; i< 64; i++) // initialize
{
// initialize a, b, d, e
}
addTwoVectors (a, b, c); // c = a+b
addTwoVectors (d, e, f); // f = d+e
addTwoVectors (c, f, f); // f = c+f
....

}
(a)

attribute(GPU)
int addGPUTwoVectors(shared int *a,

shared int *b, shread int *c)
{
acquireOwnership(a,b,c);
for (i=1 to 64) {
c[i] = a[i] + b[i];
}
releaseOwnership(a,b,c);

}

int kernel(...)
{
// allocate in shared region
int *a = sharedmalloc(...);
int *b = sharedmalloc(...);
int *c = sharedmalloc(...);

int *d = malloc(...);
int *e = malloc(...);
int *f = malloc(...);

for (i=1; i< 64; i++) // initialize
{
// initialize a, b, d, e
}
releaseOwnership(a, b, c);
addGPUTwoVectors(a,b,c); // c = a+b in GPU
addTwoVectors(d,e,f); // f = d+e in CPU
acquireOnwership(c);
addTwoVectors(c,f,f); // f = c+f in CPU
...

}
(b)

Fig. 2. Reduction code examples in (a) unified memory space and (b) partially
shared memory space using ownership optimization.

purely by software coherence support. The greatest benefit of this
option is that it still provides a shared address space with discrete
memories. The code examples in Figure 3 illustrate the differences
between disjoint memory address space and ADSM. The difference
over the unified memory address space is that ADSM uses a special
memory allocation function, adsmAlloc, to allocate data into the
shared memory space. Unlike the disjoint memory address space,
there is no need to transfer data back to the host memory space.

Implementation: The basic mechanism is that the shared memory
address space should be allocated in both memory systems over the
same range of virtual memory addresses. In ADSM, two identical
memory address ranges have been allocated to each PU. Only one
PU is responsible for maintaining coherent data states using either
cache coherence or a runtime system. ADSM was proposed only
for software solutions using APIs. Four fundamental APIs, shared-
data allocation, shared-data release, kernel invocation, and return

int kernel(...)
{

// initialize a, b, c, d, e, f in CPU
int *a = malloc(...); int *b = malloc(...);
int *c = malloc(...); int *d = malloc(...);
int *e = malloc(...); int *f = malloc(...);

// duplicated pointer for a, b, c
int *gpu_a, *gpu_b, *gpu_c;

// allocate mem space in the GPU
int gpu_a = GPUmemallocate (gpu_a, gpu_b, gpu_c);

// send data from CPU to GPU
Memcpy(gpu_a, a, MemcpyHosttoDevice);
Memcpy(gpu_b, b, MemcpyHosttoDevice);

addGPUTwoVectors (a, b, c); // c = a+b;
addTwoVectors (d, e, f); // f = d+e

// send data from GPU to CPU
Memcpy(gpu_a, a, MemcpyDevicetoHost);

addTwoVectors (c, f, f); // f = c+f

// free space in both CPU and GPU
....

}
(a)

int kernel(...)
{

// initialize a, b, c, d, e, f
int *a = malloc(...); int *b = malloc(...);
int *c = malloc(...); int *d = malloc(...);
int *e = malloc(...); int *f = malloc(...);

// no duplicated GPU pointers
a = adsmAlloc (64B); // allocate mem space in the GPU
b = adsmAlloc (64B); // allocate mem space in the GPU
c = adsmAlloc (64B); // allocate mem space in the GPU

copyfromCPUtoGPU(a,b,c); // send data from CPU to GPU
addGPUTwoVectors (a, b, c); // c = a+b;

addTwoVectors (d, e, f); // f = d+e

addTwoVectors (c, f, f); // f = c+f
accfree(a); accfree(b); accfree(c);
....

}
(b)

Fig. 3. Reduction code examples in (a) disjoint memory space and (b) ADSM.

synchronization are essential. Typically ADSM is ideal for the relaxed
consistency model so that the deadline of the data synchronization
point is at the end of the kernel execution.

ADSM is very similar to the partially shared memory address
space. It also has the concept of ownership. The main benefit over
the partially shared memory address space is that ADSM can simplify
a memory system of one PU (mainly the accelerator). However,
consequently, only one PU can use the entire memory space. This
design space is the ideal for asymmetric computing power(e.g.,
powerful CPU + low-cost accelerators).

B. Locality Management

Locality management in caches is another important memory
system design parameter. Although it can be applied to all levels
of the storage, we focus our discussion on the shared memory space
specifically in the second-level caches.3 For private memory space,

3We assume that at least 2-level cache hierarchy for this study.

each PU can have its own memory model. Hence, we exclude the
disjoint memory address option in this section because naturally it
has only private caches.

push (a, CPU.P); // private-CPU
push (b, CPU.P); // private-CPU
push (d, GPU.P); // private-GPU
push (e, GPU.P); // private-GPU
addGPUTwoVectors(a,b,c); // c = a+b in GPU
addTwoVectors(d,e,f); // f = d+e in CPU
push (c, S); // second-level
push (f, S); // second-level
addTwoVectors(c,f,f); // f = c+f in CPU

(a)

push (CPU.a, CPU.P); // private-CPU
push (CPU.b, CPU.P); // private-CPU
push (GPU.d, GPU.P); // private-GPU
push (GPU.e, GPU.P); // private-GPU
addGPUTwoVectors(CPU.a,CPU.b,Shared.c);
addTwoVectors(GPU.d,GPU.e,Shared.f);
push (Shared.c, S); // second-level
push (Shared.f, S); // second-level
addTwoVectors(Shared.c, Shared.f, Shared.f);

(b)

// transfer d, e into the GPU space
addGPUTwoVectors(CPU.a,CPU.b,Shared.c);
addTwoVectors(GPU.d,GPU.e,Shared.f);
push (Shared.c, S); // second-level
push (Shared.f, S); // second-level
addTwoVectors(Shared.c, Shared.f, Shared.f);

(c)

Fig. 4. Reduction code examples of managing localities in (a) unified memory
space, explicit-private-explicit-shared, (b) partially shared memory space,
explicit-private-explicit-shared, (c) partially shared memory space, implicit-
private-explicit-shared. This example assumes that the second-level caches are
either physically shared between PUs or maintained by cache coherence.

We classify locality management in the shared memory space
as the following three options: all implicit, all explicit, and im-
plicit+explicit hybrid. Implicit management can be done by hardware
caching, a compiler or a runtime system. Explicit management
requires programmers (although this can be done by compilers as
well) to explicitly control locality. Interestingly, several combinations
are possible depending on the locality management scheme of the pri-
vate cache: implicit-private-implicit-Second, explicit-private-explicit-
Second, implicit-private-explicit-Second, etc. Although one PU can
also have two locality management schemes such as in CUDA 4.0
(it has hardware caches and software managed caches), we consider
one locality management scheme for each PU.

When both private space and shared space have the same local-
ity management scheme, implementations are fairly straightforward.
However, when private and shared spaces have different management
schemes, additional hardware or software implementation support is
required. So, we discuss only these cases. To simplify the discussion,
we assume that explicit management is done by programmers and im-
plicit management is done by hardware. Figure 4 shows the previously
introduced reduction code with locality control statements. push
explicitly places data into the desired cache hierarchy. Figure 4(c)
does not have explicitly controlled locality for the primary caches.

1) Implicit-Private-Explicit-Shared: In this design option, the
hardware manages the locality implicitly for private caches, but for
the shared memory space, there is an explicit management from
programmers. For the partially shared memory space, each PU has to
explicitly send/copy data to/from the shared memory space. Hence,
it is relatively easy to control the locality together. However, for the
unified memory space, potentially all the memory space can belong
to the shared memory space. Hence, this option is not desirable
since it needs explicit management for shared data structures. The

benefit of this option over the implicit-private-implicit-shared option
is that it provides a locality management option without significantly
increasing the programmer’s burden. It is already a programmer’s
responsibility to decide when and which data have to be located in
the partially shared memory space.

2) Explicit-Private-Implicit-Shared: This option is the oppo-
site case of the previous design option. Although the locality of private
caches is explicitly managed, the locality of the shared memory space
is only implicitly managed. The benefit over the explicit-private-
explicit-shared option is that the size of the shared cache is not
coupled with heterogeneous computing configurations. The cache size
for the shared memory address region can be easily extended by
simply connecting more caches. When CPUs and GPUs are in the
same chip, the shared cache size is fixed for each system from the
fabrication time. Unlike implicit-private-explicit-shared, the unified
shared address space can easily have this option.

3) Implicit-Private-Explicit-Private-Explicit-Shared: In this
option, all private caches have different locality management schemes,
but the shared memory space has the same explicit locality manage-
ment scheme. This is very similar to the implicit-private-explicit-
shared scheme except that CPUs and GPUs can have different
management schemes for their own private memory space.

4) Implicit-Private-Explicit-Private-Implicit-Shared: The
private caches have different locality management schemes just like
those in Section II-B3, but the shared memory space is implicitly
managed. This is also very similar to the explicit-private-implicit-
shared option. For the PU with an explicit-private cache, cache
hits for the shared memory space cannot be guaranteed. So, an
application should immediately copy data to the private space if it
wants to maintain cache hit latency.

5) Hybrid Locality in the Second-Level Cache: In this design
option, all PUs have different locality management schemes and
the shared memory address space itself also supports both implicit
and explicit locality management. Among the possible combinations,
we discuss only the case where the implicit-private PU has an
implicit managed shared address space and the explicit-private scheme
explicitly manages the shared space.

Hardware Implementation: If both CPUs and GPUs share a
cache, the cache replacement policy has to be changed. An implicitly-
managed cache block cannot evict an explicitly-managed cache block.
To support this feature, (1) the tag storage has one bit to indicate the
locality information to be compared in the replacement logic; and (2)
the explicitly managed cache size must be smaller than the total size
of the physically shared cache. This option eliminates the hardware
limitations of shared cache sizes, since extra shared cache sizes can
be simply managed using an implicit locality option and only critical
data needs to be managed explicitly.

6) Summary: The partially shared address space provides the
most options to control the locality of caches. Although several pro-
gramming languages provide various options of locality management
schemes, such as Sequoia, which strictly enforces locality [7], no
programming models specifically design to provide locality control
in heterogeneous programming platforms.

III. SUMMARY OF EXISTING HETEROGENEOUS
COMPUTING MEMORY SYSTEMS

Table I shows a summary of previously proposed heterogeneous
computing systems and their memory systems. Just to compare, we
also include one homogeneous architecture, Rigel. Typically one
architecture has one programming model. However, CUDA 4.0 and
CPU+CUDA* have the same hardware architecture. We also include
CUDA 4.0 and OpenCL, which are programming languages, so some
hardware configurations can be varied.

The summary shows that none of the heterogeneous computing
systems has employed a unified, fully-coherent, strong-consistent
memory system yet. Most proposed/existing systems have disjoint
memory systems so locality management is only for private spaces.
Currently, only CUDA 4.0 provides the unified memory address
space, but it does not provide any locality management for the shared
space.

IV. EVALUATION METHODOLOGY

A. Simulation Infrastructure

We use the MacSim simulator [1], a cycle-level and trace-driven
simulator for our simulations. We generate traces for CPUs and GPUs
separately. Library or operating system effects are modeled with
special instructions. Table II shows the system configuration. Our
baseline processor is similar to Intel’s Sandy Bridge [17], but we
model a GPU core similar to NVIDIA’s Fermi [27]. 4 Note that we
model the cache latency based on CACTI 6.5 [15].

B. Benchmarks

We use six kernels to evaluate key components. The characteris-
tics of the evaluated kernels are explained in Table III.

Ideally, we like to divide the work between CPUs and GPUs
intelligently so that the total execution time can be minimized. Since
determining how to partition the work is beyond the scope of our
work ([25], [11] present sophisticated algorithms to find the optimal
partitioning point), we simply divide the computational work evenly.
The input data is allocated in CPUs initially and after the GPUs finish
the work, data have to be transferred to the CPU.

C. Different Programming Model Effects

To model different programming model effects, we use a series
of special instructions. By varying the latency of these operations,
we also explore the overhead of communication methods. Table IV
shows the name of the parameters and the default execution latency
used in Section V-A. api-pci models APIs using PCI-E for com-
munication. api-acq and api-tr model data transfer functions
in the partially shared address space. lib-pf models the cost of
handling page faults in discrete memory addresses.

V. RESULTS

A. Case Studies

We select five distinct heterogeneous computing systems
to evaluate the performance effects of the memory systems:
CPU+GPU(CUDA) [29] , LRB[31], GMAC[10], and Fusion[3] and
IDEAL-HETERO for a unified, fully coherent system. CPU+GPU
has the disjoint memory space connected with PCI-E. LRB uses the
partially shared address space with the PCI aperture. GMAC has the
ADSM space also connected with PCI-E. Fusion has the disjoint
memory space with a memory controller connection. To isolate any
architecture effects other than the memory systems, all systems have
the same CPUs and GPUs.

We divide the execution time into three categories: sequential,
parallel, and communication. As shown in Figure 5, the majority of
execution time is spent on parallel computation. Reduction (1.3%),
merge sort (12%), and k-mean (7.6%) have relatively high commu-
nication overhead.

For CPU+GPU, once the GPU finishes computation, the final data
has to be transferred to the CPU memory address space, so there are

4Since we are only interested in memory systems, the number of cores in
the CPU and GPU is simplified to one.

0

5

10

15

20

25

re
d

u
ct

io
n

 (
ID

EA
L-

H
ET

ER
O

)

re
d

u
ct

io
n

 (
C

P
U

+G
P

U
)

re
d

u
ct

io
n

 (
LR

B
)

re
d

u
ct

io
n

 (
G

M
A

C
)

re
d

u
ct

io
n

 (
Fu

si
o

n
)

m
at

ri
x

m
u

l (
ID

EA
L-

H
ET

ER
O

)

m
at

ri
x

m
u

l (
C

P
U

+G
P

U
)

m
at

ri
x

m
u

l (
LR

B
)

m
at

ri
x

m
u

l (
G

M
A

C
)

m
at

ri
x

m
u

l (
Fu

si
o

n
)

co
n

vo
lu

ti
o

n
 (

ID
EA

L-
H

ET
ER

O
)

co
n

vo
lu

ti
o

n
 (

C
P

U
+G

P
U

)

co
n

vo
lu

ti
o

n
 (

LR
B

)

co
n

vo
lu

ti
o

n
 (

G
M

A
C

)

co
n

vo
lu

ti
o

n
 (

Fu
si

o
n

)

d
ct

 (
ID

EA
L-

H
ET

ER
O

)

d
ct

 (
C

P
U

+G
P

U
)

d
ct

 (
LR

B
)

d
ct

 (
G

M
A

C
)

d
ct

 (
Fu

si
o

n
)

m
er

ge
 s

o
rt

 (
ID

EA
L-

H
ET

ER
O

)

m
er

ge
 s

o
rt

 (
C

P
U

+G
P

U
)

m
er

ge
 s

o
rt

 (
LR

B
)

m
e

rg
e

so
rt

 (
G

M
A

C
)

m
er

ge
 s

o
rt

 (
Fu

si
o

n
)

k-
m

ea
n

 (
ID

EA
L-

H
ET

ER
O

)

k-
m

e
an

 (
C

P
U

+G
P

U
)

k-
m

e
an

 (
LR

B
)

k-
m

ea
n

 (
G

M
A

C
)

Ex
e

cu
ti

o
n

 t
im

e
 (

M
 c

yc
le

s)

communication

parallel

sequential

Fig. 5. Evaluation of five heterogeneous architecture configurations.

additional data transfer costs. In contrast, for LRB, if data is already
located in the shared address space, transferring is not required. It still
has the overhead of communication when data is initially transferred
from CPUs. It also generates page faults if data in the shared space
is first-time accessed.

For GMAC, asynchronous copies are performed during compu-
tation, so the communication cost can be easily hidden. For fusion,
the communication is through memory controllers, so it generates
memory accesses for all data transfer between CPUs and GPUs.
However, the memory access cost is also very small compared to
that of PCI-e. Hence, CPU+GPU, LRB and GMAC have a longer
execution time than those of IDEAL-HETERO and Fusion. Figure 6
shows only the communication cost.

20000000

25000000

Ex
e

cu
ti

o
n

 t
im

e
 (

cy
cl

e
)

0

500000

1000000

1500000

2000000

2500000

3000000

Ex
e

cu
ti

o
n

 t
im

e
 (

cy
cl

e
s)

Fig. 6. Communication overhead for the evaluated heterogeneous computing.

B. Memory Space Effects

To isolate memory space effects, we assume that all the systems
share the cache in this section. The four memory spaces in Sec-
tion II-A, unified (UNI), disjoint (DIS), partially shared (PAS), and
ADSM, are evaluated. Figure 7 shows the results. As we easily expect,
there is almost no performance difference between options since
additional instructions to transfer data between memory spaces are
very small compared to the amount of computation. The conclusion
of this experiment is that the memory address space design itself
does not affect performance. It is more about programmability. The
performance delta of the previous heterogeneous computing systems
(Section V-A) is mainly caused by the hardware communication
mechanisms.

C. Programmability vs. Memory Address Spaces

Different programming options affect how easy/difficult it is to
write programs. Similar to studies in [32], [8], [5], we also use the

scheme address
space

Connection coherence how to use
shared data

consistency synchronization Locality

CPU+CUDA* [29] disjoint PCI-E - NA weak consistency - impl-pri-expl-pri
EXOCHI [34] unified Memory controller can be coherent CHI runtime

API
weak consistency unknown impl-pri

CPU+LRB [31] partially
shared

PCI-E coherent only
in LRB/CPU

type qualifier,
ownership

weak consistency APIs impl-pri

COMIC [21] unified interconnection directory COMIC API
functions

centralized
release
consistency

barrier function expl-pri-impl-pri-impl-
shared

Rigel [19] unified interconnection HW/SW global memory
operation

weak consistency implicit
barrier/Rigel
LPI

expl

GMAC [10] ADSM PCI-E GMAC proto-
col

global memory
operation

weak consistency sync API expl-private-impl-shared

Sandy Bridge [17] disjoint Memory controller - - weak consistency - impl-priv-exp-priv
Fusion [3] disjoint Memory controller - - - - -
IBM Cell [16] disjoint interconnection - - weak consistency - expl-pri-impl-priv-impl-

shared
Xbox 360 [4] disjoint cache/FSB - Lock-set

cache, copy
- - impl-priv-exp-shared

CUBA [9] disjoint BUS - direct access to
local storage

weak consistency - exp-priv

CUDA 4.0 unified - - explicit copy weak consistency - exp-priv
OpenCL unified - - explicit copy weak consistency - exp-priv

TABLE I. HETEROGENEOUS ARCHITECTURE SUMMARY. (CUDA* MEANS CUDA BEFORE CUDA 4.0), COMIC ASSUMES THE IBM CELL
ARCHITECTURE. THE IBM CELL INDICATES THE CELL SDK.

CPU GPU

Execution core
cores 1 1
Execution engine 3.5GHz, out-of-order 1.5GHz, in-order, 8-wide SIMD
Branch predictor gshare N/A (stall on branch)

Memory
L1

8-way 32KB L1 Dcache (2-cycle) 8-way 32KB L1 Dcache (2-cycle)
8-way 32KB L1 Icache (2-cycle) 4-way 4KB L1 Icache (1-cycle)

16KB s/w managed cache
L2 8-way 256KB L2 Cache (8-cycle) N/A
L3 32-way 8MB L3 Cache (4 tiles, 20-cycle)

Interconnection Ring-bus network
DRAM Model DDR3-1333. 4 controllers, 41.6GB/s Bandwidth, FR-FCFS

TABLE II. BASELINE SYSTEM CONFIGURATION.

Name compute pattern # of instructions # of communications initial transfer data size (B)CPU GPU serial

reduction parallel → merge → sequential 70006 70001 99996 2 320512
matrix mul [29] fully parallel, no comm during computation 8585229 8585228 16384 2 524288
convolution [29] parallel → merge → parallel 448260 448259 65536 3 65536
dct [29] fully parallel, no comm. during computation 2359298 2359298 262144 2 262244
merge sort [29] parallel → merge → sequential 161233 157233 97668 2 39936
k-mean parallel → merge → sequential (repeated) 1847765 1844981 36784 6 136192

TABLE III. BENCHMARK CHARACTERISTICS.

Name Description System Latency
api-pci mem copy using PCI-E CPU+GPU, GMAC 33250+trans rate
api-acq acquire action LRB 1000
api-tr data transfer LRB 7000
lib-pf page fault LRB 42000

TABLE IV. PARAMETERS OF MODELING COMMUNICATION OVERHEAD
(TRANS RATE IS 16GB/S IN PCI-E 2.0)

number of source lines to indicate programmability.5 We show the
number of additional source lines required to handle explicit data
communication and data handling operations in Table V. The result
shows that the overhead increases in the following order: Unified
< partially shared ≤ ADSM < disjoint memory space. Naturally,
the unified memory space does not require any special APIs and the
disjoint memory space requires the most additional source code lines.

5We all know that the number of source lines does not necessarily mean
programmability, but it is one of the few measurable metrics.

Comp UNI PAS DIS ADSM

matrix mul 39 0 2 9 6
merge sort 112 0 2 6 4

dct 410 0 2 6 4
reduction 142 0 2 9 6

convolution 75 0 4 9 6
k-mean 332 0 6 6 4

TABLE V. THE NUMBER OF SOURCE LINES TO HANDLE DATA
COMMUNICATION. COMP SHOWS THE NUMBER OF SOURCE LINES FOR

COMPUTATIONS AND INITIAL DATA ALLOCATIONS.

Since ADSM is also one type of the partially shared memory space,
the overhead is somewhat similar. Although the number of source
lines does not exactly indicate programmability, it still shows the trend
that we expected. This result also verifies that the programmability
of the partially shared memory space is between unified and disjoint
memory spaces.

0

5

10

15

20

25

re
d

u
ct

io
n

 (
U

N
I)

re
d

u
ct

io
n

 (
D

IS
)

re
d

u
ct

io
n

 (
P

A
S)

re
d

u
ct

io
n

 (
A

D
SM

)

m
at

ri
x

m
u

l (
U

N
I)

m
at

ri
x

m
u

l (
D

IS
)

m
at

ri
x

m
u

l (
P

A
S)

m
at

ri
x

m
u

l (
A

D
SM

)

co
n

vo
lu

ti
o

n
 (

U
N

I)

co
n

vo
lu

ti
o

n
 (

D
IS

)

co
n

vo
lu

ti
o

n
 (

P
A

S)

co
n

vo
lu

ti
o

n
 (

A
D

SM
)

d
ct

 (
U

N
I)

d
ct

 (
D

IS
)

d
ct

 (
P

A
S)

d
ct

 (
A

D
SM

)

m
er

ge
 s

o
rt

 (
U

N
I)

m
er

ge
 s

o
rt

 (
D

IS
)

m
er

ge
 s

o
rt

 (
P

A
S)

m
er

ge
 s

o
rt

 (
A

D
SM

)

k-
m

ea
n

 (
U

N
I)

k-
m

ea
n

 (
D

IS
)

k-
m

ea
n

 (
P

A
S)

k-
m

ea
n

 (
A

D
SM

Ex
e

cu
ti

o
n

 t
im

e
 (

M
 c

yc
le

s)

communication

parallel

sequential

Fig. 7. Evaluation of memory address space design options with the ideal
communication overhead.

D. Limitations of Our Evaluations

Although we discuss the locality management options, we could
not evaluate the performance differences. The locality management
option itself does not affect performance except for the additional
instructions of push in the explicit management schemes. The
overhead of software library implementations is roughly estimated
since they are strongly dependent on actual implementations.

VI. RELATED WORK

In this section, we discuss design space exploration work, espe-
cially work that targets heterogeneous computing.

A. Programming Model Comparisons

Several previous works on programming models for heteroge-
neous multiprocessors investigate the relationship between models
and performance. They particularly target the IBM Cell architecture
for this study. Schneider et al. evaluate three programming models
for multiprocessors with explicitly managed memory hierarchies and
analyze how the models manage parallelism and locality [32]. They
develop benchmarks using each programming model and compare
the codes themselves to show how implicit or explicit management
of parallelism and locality affect programmer productivity. They also
evaluate performance on the actual machines.

Ferrer et al. extend Schneider’s work by considering memory
bandwidth and more benchmarks [8]. They also classify programming
models for the IBM Cell processors. Like Schneider’s work, they
show changes in the program in terms of lines, programs and tasks
when the applications are parallelized. Since their work is only
limited to the Cell architecture, they are able to only differentiate
programming models. In contrast, we vary both programming models
and hardware designs together.

B. Memory Models

Recently, several mechanisms have been proposed to reduce the
cost of supporting coherence space [14], [33] and also the cost of
consistency on GPUs [13], [12]. These approaches make a fully
coherent and unified memory model more viable but they still have
some constrains.

Kelm et al. propose the Rigel Architecture for a 1000-core
accelerator [19]. Rigel targets accelerators not heterogeneous com-
puting. However, the authors provide a detailed qualitative discussion
on how they chose memory models for the architecture. Kelm et
al. propose a hybrid memory model that uses both software and

hardware coherence schemes [20]. Although the main focus of
this work is on proposing a new cache coherence protocol, they
analyze in great detail the trade-offs between hardware-managed and
software-managed cache coherence. In our work, we explore various
communication methods, address space design options, and locality
control management schemes.

Leverich et al. compare coherent caches and a streaming memory
model mainly for performance and power consumption [23]. Although
their work has similarities to our work, they only evaluate two
memory models: CPU and the streaming model. Furthermore, they
have not considered design options of the shared memory space.

Patel and Hwu generalize accelerator architectures [30]. They
show different hardware communication methods (i.e., integration
methods) that are similar to what we have discussed in this paper.
However, they only introduce these options to generalize accelerator
architectures.

C. Heterogeneous Architecture Design Exploration

Lee et al. evaluate data-parallel accelerators and propose a new
vector-thread architecture [22]. They explore microarchitectural de-
sign patterns to evaluate the trade-offs between programmability and
implementation efficiency. Unlike our work, their work focuses only
on core design configurations.

Mohanty et al. explore design spaces in heterogeneous embedded
systems [26]. This study explores frequency, voltage, and memory
sizes. The main focus of their work is on developing a fast design
space exploration technique.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we exploited the design space of heterogeneous
computing memory systems. Although unified and coherent memory
space is the ideal option for programmability, our study shows the
trade-offs among different design options. The major conclusions
from our comparisons are as follows:

1) The programmability of the partially shared memory spaces
is between unified and disjoint memory spaces.

2) The design options of memory spaces and communication
methods are mostly decoupled.

3) The partially shared address space allows the most number
locality management options.

Our study indicates that the partially shared memory address
space provides the most design options for architecture designs
that can provide opportunities to optimize hardware and save
power/energy. Especially, it provides various locality management
options. Furthermore, it does not significantly increase the difficulty
of programmability compared to the unified memory space as shown
in Section 4.3. Our results also show that different memory space
does not affect performance significantly. Hence, we conclude that
partially shared memory space is the most promising design space
option because of its many hardware design options and moderately
good programmability.

In future work, we will develop metrics to measure the efficiency
of design options to provide guidelines for future programming
languages and future hardware system development.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments
on our manuscript. This research was supported in part by the Na-
tional Science Foundation under grant CCF 1054830. Jieun Lim was

partially supported by Brain Korea 21 Project. Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect of NSF.

REFERENCES

[1] “MacSim,” http://code.google.com/p/macsim/.
[2] “UPC language specifications,” Lawrence Berkeley National Lab, Tech.

Rep. LBNL-59208, 2005.
[3] AMD, “Fusion,” http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.
[4] J. Andrews and N. Baker, “Xbox 360 system architecture,” IEEE Micro,

vol. 26, pp. 25–37, 2006.
[5] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela,

M. J. Garzarán, D. Padua, and C. von Praun, “Programming for
parallelism and locality with hierarchically tiled arrays,” in Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, 2006, pp. 48–57. [Online]. Available:
http://doi.acm.org/10.1145/1122971.1122981

[6] H. Chen, Y. Gao, Z. Xiaocheng, S. Yan, P. Zhang, M. Rajagopalan,
J. Fang, A. Mendelson, and B. Saha, “Unifed memory architecture (e.g.,
uma),” U.S. Patent application Number 20100118041, 2010.

[7] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan,
“Sequoia: programming the memory hierarchy,” in Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, 2006. [Online].
Available: http://doi.acm.org/10.1145/1188455.1188543

[8] R. Ferrer, P. Bellens, V. Beltran, M. Gonzalez, X. Martorell, R. M.
Badia, E. Ayguade, J.-S. Yeom, S. Schneider, K. Koukos, M. Alvanos,
D. S. Nikolopoulos, and A. Bilas, “Parallel programming models for
heterogeneous multicore architectures,” IEEE Micro, vol. 30, pp. 42–53,
2010.

[9] I. Gelado, J. H. Kelm, S. Ryoo, S. S. Lumetta, N. Navarro, and
W.-m. W. Hwu, “CUBA: an architecture for efficient cpu/co-processor
data communication,” in Proceedings of the 22nd annual international
conference on Supercomputing, 2008, pp. 299–308. [Online]. Available:
http://doi.acm.org/10.1145/1375527.1375571

[10] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-
m. W. Hwu, “An asymmetric distributed shared memory model for
heterogeneous parallel systems,” in Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and
operating systems, ser. ASPLOS ’10, 2010, pp. 347–358.

[11] D. Grewe and M. O’Boyle, “A static task partitioning approach for
heterogeneous systems using opencl,” in Compiler Construction, ser.
Lecture Notes in Computer Science, J. Knoop, Ed. Springer Berlin /
Heidelberg, 2011, vol. 6601, pp. 286–305.

[12] B. Hechtman, S. Che, D. Hower, Y. Tian, B. Beckmann, M. Hill,
S. Reinhardt, and D. Wood, “Quickrelease: A throughput-oriented ap-
proach to release consistency on gpus,” in High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on, Feb
2014, pp. 189–200.

[13] B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for
massively-threaded throughput-oriented processors,” SIGARCH Com-
put. Archit. News, vol. 41, no. 3, Jun. 2013.

[14] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
memory models,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14, 2014.

[15] HP Labs, “CACTI: An integrated cache and memory access
time, cycle time, area, leakage, and dynamic power model,”
http://www.hpl.hp.com/research/cacti/.

[16] IBM Corporation, “The Cell project at IBM Research,” http://www.
research.ibm.com/cell/, IBM.

[17] Intel, “Intel R©Microarchitecture Sandy Bridge,”
http://www.intel.com/technology/architecture-
silicon/2ndgen/index.htm.

[18] INTEL Corporation, “Intel R©910gml/915g/915gm/915gms/915gv and
910gl express chipsets intel R©dynamic video memory technology
(dvmt) 3.0,” http://www.intel.com/design/chipsets/applnots/30263.htm,
INTEL Corporation, 2005.

[19] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel:
an architecture and scalable programming interface for a 1000-core
accelerator,” in Proceedings of the 36th annual international symposium
on Computer architecture, 2009, pp. 140–151.

[20] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: a hybrid memory model for accelerators,” in Proceedings
of the 37th annual international symposium on Computer architecture,
2010.

[21] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, and S. Han,
“Comic: a coherent shared memory interface for cell be,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques, 2008, pp. 303–314.

[22] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten,
and K. Asanovic, “Exploring the tradeoffs between programmability
and efficiency in data-parallel accelerators,” in Proceedings of the 38th
annual international symposium on Computer architecture, 2011.

[23] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing memory systems for
chip multiprocessors,” in Proceedings of the 34th annual international
symposium on Computer architecture, 2007.

[24] J. Lim and H. Kim, “Design space exploration of memory model for
heterogeneous computing,” in Proceedings of the 2012 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness, ser.
MSPC ’12, 2012.

[25] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, 2009.

[26] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation,” in Proceedings of the joint
conference on Languages, compilers and tools for embedded systems:
software and compilers for embedded systems, 2002.

[27] NVIDIA, “Fermi: Nvidia’s next generation cuda compute architecture,”
http://www.nvidia.com/fermi.

[28] ——, “Project denver,”
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-
new-era-of-computing/.

[29] CUDA Programming Guide, V4.0, NVIDIA Corporation.
[30] S. Patel and W.-m. W. Hwu, “Accelerator architectures,” Micro, IEEE,

vol. 28, no. 4, pp. 4 –12, july-aug. 2008.
[31] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan, J. Fang,

P. Zhang, R. Ronen, and A. Mendelson, “Programming model for
a heterogeneous x86 platform,” in Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2009, pp. 431–440.

[32] S. Schneider, J.-S. Yeom, B. Rose, J. C. Linford, A. Sandu, and D. S.
Nikolopoulos, “A comparison of programming models for multipro-
cessors with explicitly managed memory hierarchies,” in Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2009.

[33] I. Singh, A. Shriraman, W. Fung, M. O’Connor, and T. Aamodt, “Cache
coherence for gpu architectures,” Micro, IEEE, 2014.

[34] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang, “Exochi: architecture and
programming environment for a heterogeneous multi-core multithreaded
system,” in Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, 2007.

