
Understanding the Software and Hardware Stacks
of a General-Purpose Cognitive Drone

Sam Jijina, Adriana Amyette, Nima Shoghi, Ramyad Hadidi, Hyesoon Kim
Georgia Institute of Technology, Atlanta, GA

{sam.jijina, adriana.amyette, nimash, rhadidi, hyesoon.kim}@gatech.edu

Abstract—Fully autonomous drones have a plethora of appli-
cations in the real world, from agriculture and communication
to public services. With increasing attention, a new market
segment has opened up for highly efficient drones. However, the
deployment of efficient drones requires an in-depth analysis of
several components spanning from hardware sensors to software
stack. Specifically, to achieve high reliability, safety, and perfor-
mance, the top concerns in the professional drone industry are
characterizing underlying architecture and flight stack. In this
paper, we characterize a widely-used open source flight stack,
ArduCopter, to understand the performance requirements as a
research community. Additionally, we study how area-specific
applications affect flight stack. Our characterizations and bench-
marks indicate that the drone flying range can be dramatically
increased by optimizing the underlying flight controller software.

I. INTRODUCTION

Drones are rapidly expanding in several industries and

serve a vast variety of markets [1]. Quadcopters, the most

common type of drone, have an innate advantage by using

pairs of clockwise and counter-clockwise rotating propellers

which enable a robust drone for several applications. Currently,

drone software and hardware stacks are highly specialized as

an end-to-end system. For example, the SkyDio [2] drone

is specialized for video and photography. Although such

end-to-end specialization enables proprietary optimizations, it

does not provide flexibility on the user end. In other words,

current commercial drones rely so heavily on their proprietary

software and systems that it limits multi-functionality. Despite

commercial efforts, drones are still under experimentation and

limited use. Hence, architecting the end-to-end system still

remains an open research question with several opportunities.

To explore drone architecture and its software stack, we

built a fully open source drone with commonly available

hardware and sensors, shown in Figure 1a. Our drone uses

the Linux operating system which allows us to execute the

autopilot software as a service while leaving the system

available to other programs such as cognitive services (e.g.,

video recording, human recognition, path planning). Further,

using Linux as the base OS, we are able to have full control of

the firmware, allowing for performance optimizations. Having

full access to the drone’s underlying hardware and software

allows for easier expansion into connected drones and drone-

to-drone communication. In detail, our drone is an open

source quadcopter controlled by a Raspberry Pi running an

open source flight control stack called ArduCopter [3]. The

controller we use is the Navio2 [4] HAT developed for the

Raspberry Pi [5]. The OS that we use is a modified Linux Ker-

nel built with the RT-Preempt patch. For the characterization,

This work is supported by NSF CSR 1815047.

Fig. 1. (a) Our open source Raspberry-Pi-based drone. (b) The flight controller
[4] mounted on the Raspberry Pi.

we measure the overall performance of the autopilot software

and the drone while running tests along with other heavy

cognitive-based workloads such as OpenCV-based applications

or Simultaneous Localization and Mapping (SLAM) [6].

II. DRONE ARCHITECTURE

A. Hardware

The hardware consists of sensors and four motors. The

physics of the rotational direction of opposite-pairs of

propellers allows the drone to make varied movements in

3D space by changing PWM outputs to the motors. This

decreases processing burden on the Raspberry Pi and allows

us to use the Raspberry Pi for other activities such as flight

control algorithms or high-level machine learning algorithms.

Flight Controller: The flight controller used for this pro-

totype is the Navio2 [4] open source controller, shown in

Figure 1b [5]. This controller is a HAT for the Raspberry Pi

and interfaces with the Raspberry Pi using the GPIO pins. The

Navio2 is pre-configured with GLONASS and GPS abilities

and comes equipped with multiple IMUs to support guided

navigation. The flight controller is the interface between the

Linux Kernel and the hardware devices of the drone. The

Raspberry Pi sends signals to the flight controller to be

decoded. The controller then translates the instructions into

PWM signals and then outputs signals to the four motors.

B. Software

The drone uses the open source ArduCopter [3] to carry out

primary flight functions such as altitude and position control.

We also integrated the open source DroneKit APIs [7] into

the drone code base so that user programs written in C++

and Python can call the APIs to execute actions.

Operating System: The operating system has a Linux-based

Kernel optimized for Arm architecture. The Linux Kernel is

modified to support the RT-Preempt patch, enabling the Linux

operating system for real-time tasks. Moreover, the patch

gives the benefit of being able to completely shut down an

212

2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

DOI 10.1109/ISPASS48437.2020.00036



Fig. 2. Power graph of the Raspberry Pi in different conditions. In detail,
first, the Raspberry Pi is not connected to a power source. Next, the power is
plugged in and the Raspberry Pi boots up with ArduCopter software running
(avg 3.4 W). Then, SLAM is run with an average power usage of 4 W. At 230s,
the drone starts flying. The flying script is then run with an average power
consumption of 4.6 W, together with SLAM. At the end, the Raspberry Pi is
shutdown, only supplying power to the Navio2 HAT.

instance of a drone mission (a collection of pre-defined flight

commands) and spool up a new mission while the drone is

executing the current mission. Commercially available drones

from DJI [8] and SkyDio [2] are capable of changing their

missions mid-flight. However, they are unable to completely

shut down their autopilot binary and load a different one

since access to their autopilot architecture is limited. The only

way to achieve this general purpose behavior in a drone is to

run different autopilot binaries, each which is optimized for a

certain task. This ability opens up the field of general purpose

drones to the mass consumer and industrial markets. We also

modified the Linux Kernel to support continuous loop-back

and server instances so the drone could be controlled using

multiple devices such as telemetry or SSH. The OS runs

the ArduCopter binary as a multi-threaded service with high

priority. Simultaneously, the OS listens on dev/tty for

UDP packets containing a specific MavLink [9] header to

indicate the packet is for the ArduCopter Service.

ArduCopter: ArduCopter is a versatile and powerful open

source flight control stack which provides flying functionality.

Arducopter utilizes the Navio2 HAT to interface with the

motors and on-board sensors. The software utilizes the

RT-Preempt Linux patch to ensure a lag-free response to any

input it receives. ArduCopter takes input from the loop-back

ports and receiver and transforms the corresponding action

into respective PWM signals which are then controlled by

the Navio2 HAT. Additionally, using the WAF compile

chain [10], we are able to deploy any firmware during a

mission. ArduCopter also runs multiple daemons which are

able to perform the firmware switch and performance analysis.

Secondary Programs and Workloads: To characterize our

drone, we simultaneously ran the ArduCopter software with

ORB-SLAM [6]. ORB-SLAM is a localization and mapping

algorithm that enables an agent to map an unknown envi-

ronment as well as maintain its location in that environment.

SLAM is very important to drones as it increases the versatility

of the drone flight stack in autonomous missions. Further,

characterizing the drone with the SLAM workload enables us

to gauge the metrics we would expect to see if the drone was

Fig. 3. Performance metric measurements. (a) ArduCopter with SLAM dTLB
and iTLB misses normalized to only execute ArduCopter. (b) LLC and branch
prediction miss rates for ArduCopter, ArduCopter with SLAM, and SLAM.
(c) IPC for ArduCopter, ArduCopter with SLAM, and SLAM.

further developed with additional cognitive workloads.

III. CHARACTERIZATIONS

A. Power Measurements

The power consumption of the Raspberry Pi was measured

by using a USB digital multimeter which records measure-

ments to an Excel file once every second. The results are dis-

played in Table 1 and Fig 2. The average power consumption

of the Raspberry Pi when executing ArduCopter was measured

to be 3.39 W. The average power consumption increased

by 0.66 W when additionally running the SLAM workload.

Finally, running the autonomous flight script on top of the

current workload led to high variations in power consumption,

producing an average value of 4.56 W, an increase of 0.51 W.

TABLE I
POWER CONSUMPTION MEASUREMENTS

Experiment ArduCopter
ArduCopter

+SLAM

ArduCopter
+SLAM

+Fly

Avg. Power Consumption 3.39 W 4.05 W 4.56 W
Peak Value 4.21 W 4.18 W 5.40 W
σ/SD 0.13 0.09 0.34

B. Performance Measurements

To measure performance, we used Linux perf and carried

out analysis on the executing processes. Figure 3 illustrates

our performance measurements. Figure 3a shows that when

ArduCopter is running with SLAM, the TLB misses increase

by 4.5x. Figure 3b show a similar trend in LLC and branch

prediction miss rates. Additionally, Figure 3c sheds light on

these trends. SLAM is heavily compute and memory bounded.

Therefore, although ArduCopter has a higher priority, it ex-

periences performance slowdown when SLAM is running.

The impacts of these findings indicate that running additional

workloads would decrease drone flight time as it leads to

higher power consumption. Moreover, running such heavy

workloads would increase response time from the autopilot

software, underscoring the need for better optimizations.

IV. CONCLUSION & FUTURE WORK

We plan on using the metrics obtained to further develop

the autonomous drone. We aim to continue more research into

optimizing the flight-stack and drone collaboration for deep

learning tasks [11], [12]. We are building a baseline model

for a general-purpose drone capable of switching between

firmware versions and changing missions mid-flight.

213



REFERENCES

[1] L. P. Koh and S. A. Wich, “Dawn of drone ecology: low-cost au-
tonomous aerial vehicles for conservation,” Tropical Conservation Sci-
ence, vol. 5, no. 2, pp. 121–132, 2012.

[2] SkyDio, “Skydio,” skydio.com.
[3] ArduPilot, “Ardupilot,” ardupilot.org.
[4] Emlid, “Emlid navio2 hat for raspberry pi,” emlid.com/navio.
[5] S. Jijina, A. Amyette, R. Hadidi, and H. Kim, “Towards a general pur-

pose cognitive drone,” The Fourth Workshop on Cognitive Architectures
(CogArch 2020), 2020.

[6] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[7] DroneKit, “Dronekit api,” dronekit.io.
[8] DJI, “Skydio,” dji.com.
[9] Wikipedia, “Mavlink,” wiki/MAVLink.

[10] T. Nagy, “Waf,” waf.io.
[11] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Towards collaborative

inferencing of deep neural networks on internet of things devices,” IEEE
Internet of Things Journal, 2020.

[12] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Distributed
perception by collaborative robots,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3709–3716, 2018.

214


