
LCP: A Low-Communication Parallelization Method
for Fast Neural Network Inference in Image Recognition

Ramyad Hadidi, Bahar Asgari, Jiashen Cao, Younmin Bae, Da Eun Shim, Hyojong Kim,
Sung-Kyu Lim, Michael S. Ryoo†, Hyesoon Kim
Georgia Institute of Technology, †Stony Brook University

Abstract — Deep neural networks (DNNs) have inspired
new studies in myriad edge applications with robots, au-
tonomous agents, and Internet-of-things (IoT) devices. How-
ever, performing inference of DNNs in the edge is still a severe
challenge, mainly because of the contradiction between the in-
tensive resource requirements of DNNs and the tight resource
availability in several edge domains. Further, as communica-
tion is costly, taking advantage of other available edge devices
by using data- or model-parallelism methods is not an effec-
tive solution. To benefit from available compute resources with
low communication overhead, we propose the first DNN par-
allelization method for reducing the communication overhead
in a distributed system. We propose a low-communication par-
allelization (LCP) method in which models consist of several
almost-independent and narrow branches. LCP offers close-
to-minimum communication overhead with better distribution
and parallelization opportunities while significantly reducing
memory footprint and computation compared to data- and
model-parallelism methods. We deploy LCP models on three
distributed systems: AWS instances, Raspberry Pis, and PYNQ
boards. We also evaluate the performance of LCP models on
a customized hardware (tailored for low latency) implemented
on a small edge FPGA and as a 16mW 0.107mm2 ASIC @7nm
chip. LCP models achieve a maximum and average speedups
of 56x and 7x, compared to the originals, which could be im-
proved by up to an average speedup of 33x by incorporating
common optimizations such as pruning and quantization.

1. Introduction & Motivation

The advancements of deep neural networks (DNNs) have
made revolutionary changes in domains such as robotics [1–5],
unmanned aerial vehicles (UAVs) [6–9], and Internet-of-
things (IoT) [10–15]. In these domains, such as smart
homes/cities/offices (e.g., connected cameras, gaming con-
soles, TVs, routers) or collaborative robots/drones (e.g., dis-
aster relief [16–18], agriculture [19, 20], mining [21], con-
struction [22], mapping [18, 23]), (i) ensuring an acceptable
accuracy is enough (e.g., detecting human sound in a disas-
ter area with either 87% or 90% accuracy necessitates more
investigation); (ii) the network of devices is standalone (i.e.,
Internet connection is not available/necessary); and (iii) the
network has a unified ownership and hence communication
among devices is not hazardous (e.g., IoTs at home, robots at
warehouse). In such domains, executing inference in-the-edge
could enable several features; however, performing the heavy
inference computations locally is still a challenge. This pa-
per enables performing DNN inference locally with efficient
distribution and parallelization in the edge environments.

The widespread approach to deal with the heavy inference
computations of DNNs is to offload the requests and private
data to high-performance servers of cloud providers [24, 25].
However, cloud-based offloading is not always available (e.g.,
no Internet access) and often relies on unreliable network
latency. Furthermore, with the exponential increase in the
number of edge devices [26] and the scale of raw collected
data, centralized cloud-based approaches might not scale [27,
28]. Privacy concerns [29–31] and personalization are other
main driving forces for in-the-edge inference. However, the
challenge is that performing DNN inference locally in the edge
demands high compute and memory resources that contradict
the energy, computational, and economical profile of edge
devices [32, 33].

The Current Approach: The current approach for enabling
local DNN inference while adhering to edge devices computa-
tional and economical profile is to locally distribute inference
computations by taking advantage of the existing surrounding
devices such as idle IoT devices. The distribution is based
on data- or model-parallelism methods [34, 35]. In data par-
allelism, the entire model is duplicated on each device for
performing separate inferences. Hence, the system needs sev-
eral live and concurrent inputs to be efficient without real-time
jitter. Simply put, data parallelism only increases throughput.
In model parallelism, the model is divided and distributed
across several devices for the same inference.

The Key Challenge: The communication overhead and the in-
herent inter-layer data dependency limits effective parallelism.
Therefore, an ideal parallelization method for edge devices,
must minimize the communication overhead, while yielding
low memory and computation footprints per node. However,
none of the current distribution methods jointly reduce mem-
ory usage, computations, and communication (see Table 1).
§2 presents a detailed description.

Our Solution: To address the aforementioned challenge, we
propose a low-communication parallelization (LCP) method
that enables the following: (i) Reduces Communication: LCP
models replace a single, wide, and deep model with several
narrow ones that only communicate for input and pre-final
activations. Thus, their communication load is low with dis-
tributions (see Table 1). (ii) Reduces Compute & Memory
Footprints Per Node: LCP models have fewer connections
than those of the original ones, so their number of param-
eters and computational demands are also lower than those
of the peer model-parallelism versions, shown in Table 1.
(iii) Allows Inter-Layer Parallelism: Narrow branches in LCP
models are independent of each other, which enables inter-
layer parallelism. This is in contrast to model parallelism

ar
X

iv
:2

00
3.

06
46

4v
2

 [
ee

ss
.S

P]
 1

7
N

ov
 2

02
0

Table 1: Methods for distributing inference computations.
Data Model

Parallelism Parallelism Target LCP
Memory

Per Device DNN 1
n DNN 1

n DNN ≤ 1
n DNN

Communication Intermediates
Per Inference IN/OUT +IN/OUT IN/OUT ≈ IN/OUT

Computation
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

DNN: Metrics associated with the entire model; n: Number of devices.

that only allows intra-layer parallelism due to the single-chain
dependency between consecutive layers. (iv): Recovers Accu-
racy with no Additional Parameters: After splitting the model
into branches, to recover a possible accuracy loss, LCP may
slightly fatten the branches. However, since it reduces unnec-
essary communications, the overall parameters after fattening
are still fewer than the original one.

LCP is orthogonal and an addition to current techniques
such as weight pruning [32] and quantization [36] that reduce
the computational demand of models. LCP models offer dis-
tribution/parallelism opportunities for distributed computing,
whereas current techniques apply accuracy/performance trade-
offs to single-node models. Such techniques can be applied
to each branch of our method, as shown in §4.3. Thus, LCP
complement such techniques rather than compete with them.

Experiments Overview: (1) We generate and evaluate LCP
models based on image-recognition DNNs on MNIST [37], CI-
FAR10/100 [38], Flower102 [39], and ImageNet [40] datasets
(total of 53 training results), covering all MLPerf [41] image-
recognition models. (2) To evaluate the execution performance
of our method, we conduct real-world implementations on
three distributed systems with up to 10 Raspberry Pis (RPis),
two PYNQ boards, and up to eight AWS instances. RPis
are chosen because they represent the de facto choice for
several robotic and edge use cases and they are readily avail-
able [42–46]. (3) We also evaluate the performance of LCP
on customized hardware. Because, besides tailoring models
based on hardware limitations, the architecture of hardware
could be tailored to better achieve the goal of fast inference.
To this end, we slightly modify the architecture of TPU [47]
to make it latency-optimized for edge applications rather than
throughput-optimized, and implement it on a small Xilinx
FPGA. (4) To further investigate area and power efficiency of
our tailored hardware for integrating with edge devices, we
implement an ASIC chip in ASAP 7 nm [48].

Contributions: Our contributions are as follows:

• We propose the first DNN parallelization method to reduce
the communication overhead for distributed inference.

• We generate LCP models, with inter-layer parallelism for
fast inference at small memory and computation footprints.

• We investigate the impact of hardware/software co-design
on inference performance, by tailoring the hardware of
TPU [47] for optimizing single-batch inference latency, and
implement it on a small FPGA and as a tiny 0.107mm2

low-power chip consuming only 16mW.

2. Challenges
We first explain inevitable resource limitation for executing
DNNs causing the single device Pareto frontier. Then, we
summarize current distribution methods and their limitations,
causing straggler problem and limited scope of parallelism.
Resource Limitation & Pareto Frontier: DNN models con-
sist of several layers, the computations of which are based on
custom weights that are learned during the training phase with
back-propagation. In the inference, feed-forward computa-
tions are performed on batched inputs, and learned param-
eters stay constant. The most compute- and data-intensive
layers [49] are fully connected and convolution layers.1 Fig-
ure 1 shows the number of multiply-accumulate operations
and parameter size in several DNN models. As shown, gener-
ally newer models encapsulate more parameters and perform
more computations for better and more generalized feature
understanding than their predecessors. In short, this trend of
modern models will inevitably surpass the capabilities of any
resource-constrained device.

0
100
200
300
400

0
20
40
60
80

Le
Net

Cifa
rN

et

AlexNet

VGG-S

DenseNet-1
69

ResN
et50

ResN
et152

Ince
ptio

n v4

VGG16

GoogLe
Net

YOLO C3D

Bert-
Base

Bert-
La

rge

#P
ar

am
et

er
s (

1e
6x

)

#M
AC

 O
pe

ra
tio

ns
 (1

e9
x) #Params #MACs

>200G

Image Recognition Video Analytics/ Translation

Figure 1: DNNs #MAC operations/inference and parameters.

The capabilities of resource-constrained platforms are lim-
ited. Figure 2 depicts latency per image using state-of-the-art
image recognition models on RPi [51]. All implementations
heavily utilize modern machine learning optimizations such as
pruning [32], quantization, low-precision inference [36,52,53],
and handcrafted models [54]. Additionally, the models are
highly optimized for ARMv8 architectures using the ELL
compilation tool [50]. However, achieving higher execution
performance is impossible on a single device due to the Pareto
frontier. As seen, the latency for high-accuracy models is
longer than 400ms, and generally, latencies are longer than

30

40

50

60

70

80

0 200 400 600 800 1000To
p-

1
Ac

cu
ra

cy
 (

IL
SV

RC
20

12
)

Latency (ms) per Image on RPi3

Single Device
Pareto Frontier

Multiple Devices
Zero Communication

Overhead
(Ideal)

Multiple Devices
Our Proposed

Work
(LCP)

Multiple Devices
With Communication

Overhead

Figure 2: Latency-Accuracy Pareto Frontier – Single device:
Latency per image on RPi3 for ILSVRC models with the op-
timized platform-specific compilation ELL [50] tool [51]. Mul-
tiple devices: Breaking the single device Pareto frontier, but
with significant communication overhead.

1Since this paper focuses on visual models, we only introduced the layers
in such models. For future work, we aim to include other types of DNNs.

2

Layer 1 Layer 2

Input

Output

Input Layer 2 Output Layer2

Output Splitting:

Input 1

Copy
Input 1

Part 1
Output 1

Part 2
Output 1

Layer 3
Input Splitting:

Input
Part1

Input
Part 2 Partial 2

Output 1

Partial 1
Output 1

Model Parallelism

Figure 3: Model parallelism for a fully connected layer.

100ms. In addition, the data shown in the figure is only for
image-recognition models; DNNs in other domains are already
surpassing these models in size and complexity. Fitting such
an exponentially increasing computation on a single device,
especially for edge devices, is a limiting factor for executing
DNNs in the edge. In other words, even after applying all
optimization techniques for DNNs, the single device Pareto
frontier limits the widespread applicability of DNNs in several
edge domains necessitating distribution and parallelization.
Current Distribution Methods: (1) Data parallelism (Fig-
ure 4a) parallelizes the computations of independent in-
puts [34, 35]. Data parallelism does not apply to the edge
because: It (i) serves several independent requests, the num-
ber of which is limited in an edge environment; (ii) does not
reduce end-to-end latency per inference and only increases
throughput. Latency is important in several applications in the
edge; and (iii) does not change the computation and memory
footprints per node (Table 1).

(2) Model-parallelism (Figure 4b) divides the inference
computations for the same request [34, 35]. This method
divides the computations within layer(s) while keeping depen-
dencies intact. Depending on the type of layer, the dividing
could take several forms. Figure 3 presents a simple exam-
ple for distributing a fully connected (fc) layer, illustrating
two extremes of model parallelism: Input and output split-
ting [14]. In output splitting, producing each output(s) is
divided among the devices. In input splitting, the input is
split and each device computes all parts of the output that
are dependent on their received input. As shown in Figure 3,
each method has communication overhead (transmission of
the input to all nodes or partial sums to a final node for sum-
mation). New model-parallelism methods is also crafted by

(a) Data Parallelism (b) Model Parallelism

(c) Hierarchical — SplitNet (d) This Work — LCP

Figure 4: Overview of distribution/parallelism methods.

600 800 1000 1200 1400 1600 1800 2000
0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ilit

y

 Arrival Time (ms)

Mean: 1019 ms
Stdev: 390.77 ms

Figure 5: Histogram of prediction latencies on a six RPi sys-
tem executing AlexNet with model parallelism (§4.2).

mixing these two extremes, but they similarly suffer from the
same discussed overhead. Several model-parallelism meth-
ods also exist for convolution layers by using matrix-matrix
multiplication [55, 56]. Model parallelism does not change
the interconnection of a model. Hence, although model par-
allelism reduces the compute and memory footprint per node;
the single-chain dependency between consecutive layers limits
the parallelism scope within a single inference and causes
communication overhead.

(3) SplitNet [57], shown in Figure 4c, gradually splits the
model in a tree-structured style manually based on the dataset
semantics, extracted in intermediate to final layers. Therefore,
SplitNet (i) splits only intermediate to final layers, (ii) is invari-
ant to the number devices, (iii) creates imbalanced workload
because of its dependency on semantics, (iv) results in tree-
style connections, incurring high communication overhead,
and (v) enforces a new splitting when dataset changes.
Communication Overhead & Limited Parallelism: Cur-
rent distribution methods have a high communication over-
head and limited scope of parallelism which stems from the
single-chain dependency between consecutive layers. High
communication induces the straggler problem, in which a sys-
tem is lagged by its slowest node. Specifically, since edge
devices usually use a wireless network, the latency deviations
are high. As an example, Figure 5 depicts the histogram of
prediction latencies on a distributed IoT system consisting
of six RPis executing AlexNet with model parallelism. The
computing time is bounded to 500ms, but the average delay
is ≈2x longer (and ≈4x for tail latency). To gain perspec-
tive, Figure 6a shows VGG-S with model parallelism and its
communication overhead. As seen, dependencies enforce a
strongly interconnected network among the nodes. Although
several techniques such as compression could alleviate the
cost of communication, still the number of connections re-
mains constant. Therefore, an ideal distribution method for

VGG-S
with

Model-Paralleism

Communication Overhead (partially or fully)

(a)

VGG-S Split
in Two

Execution

(b)

Node 1

Node 2

Final Node

Around Half of parameters
and MACs

Convolution Maxpool Fully ConnectedFlattenInput/Output

Figure 6: VGG-S (a) model parallelism and (b) LCP versions.

3

edge devices besides yielding low memory and computation
footprints per node must consider communication overhead.

The single-chain dependency between consecutive layers
limits the available parallelism that could be harvested by
the aforementioned methods. The limitation is that after the
computations of a single/few layer(s) are done, the interme-
diate results must be merged before being forwarded to the
next layer. Such merging acts as a global barrier, which sim-
ilar to parallel programming, limits the gained performance
speedup. In summary, with parallel execution on multiple de-
vices, ideally, we could pass the frontier in Figure 2. However
current distribution methods are limited by the communication
overhead and the inherent inter-layer data dependency. The
next section proposes LCP models, which significantly reduce
communication and allow inter-layer parallelism.

3. LCP For Fast Inference
To address challenges, we propose LCP method, which re-
places a single, wide, and deep model with several narrow
branches that only communicate for input and pre-final activa-
tion (Figure 4d). Figure 6b shows an example of a two-branch
LCP model for VGG-S. This section first explains the design
procedure of LCP models and discusses their key features
enabling low-communication parallelization. The second part
focuses on tailoring a systolic architecture for edge computing.

3.1. Tailoring Models

Design Procedure: Figure 7 describes the design procedure
of LCP models. We start by inputting the DNN model and
its per-layer memory and computation footprints. Similarly,
we input the specification of the hardware, such as memory
size, computation capability, and any overhead associated
with executing a DNN on our hardware. For instance, several
DNN frameworks have a memory overhead because of the
framework. A splitter procedure, described in Procedure 1,
in a while loop, splits the model, cuts the connection, and
measures the approximate footprints of each branch. The
DivisionFactor, a hyperparameter, defines the granularity of

Hardware
Specification

…
…

…

… … … ……

… …

Adder Tree

Sy
st

ol
ic

Ar
ra

y

Splitter

Desired
Accuracy?

Classification Layer Predictions

Te
st

 S
et

Testing

Yes

Split-Only
Model

Training

Tr
ai

ni
ng

 S

et

Hyper-
parameter
Tuning

Fa
tte

n
+F

%

Ea
ch

 B
ra

nc
h

Final
LCP
ModelSplit-Fattened

Model

No
Taskerror  "

<latexit sha1_base64="S7ToRRlKv+wuzhHUqwWapI0B2No=">AAACKXicbZDLSgNBEEV74ju+oi7dNAZBXIQZH+hSdONSIYlCJoSeTiVp0tM9dteIYcg/+B/u3eovuFO3bvwMO4+FJl4ouNyqoqgTJVJY9P0PLzczOze/sLiUX15ZXVsvbGxWrU4NhwrXUpvbiFmQQkEFBUq4TQywOJJwE3UvBv2bezBWaFXGXgL1mLWVaAnO0EWNwn6I8IBZmdluvzHyYIw2fRpKuKPhPTOQWCG1oo1C0S/5Q9FpE4xNkYx11Sh8h03N0xgUcsmsrQV+gvWMGRRcQj8fphYSxrusDTVnFYvB1rPhT32665ImbWnjSiEdpr83MhZb24sjNxkz7NjJ3iD8tzeAKlTbTtzH1mk9EypJERQfnW+lkqKmA2y0KQxwlD1nGDfCfUB5hxnG0cHNOzTBJIhpUz0oBYel4+uj4tn5GNIi2SY7ZI8E5ISckUtyRSqEk0fyTF7Iq/fkvXnv3udoNOeNd7bIH3lfP9XyqKk=</latexit>

Input
Model

e.g., Memory Size

Figure 7: Design Procedure of LCP models.

Procedure 1: LCP Splitter (in Figure 7)
Input :DNN: Layer configurations [0 : n]

DNNMem, DNNMAC: DNN memory and computational footprints
Divisionfactor: Division Factor for splitting
DevMem, DevMAC: Hardware specification

Output : DNN: Layer configurations [1 : n]
1 Split(DNN, DNNMem, DNNMAC, Divisionfactor, DevMem, DevMAC)
2 Memfit ← 0; MACMac ← 0;
3 while not Memfit and not MACMac do
4 Memfit ← DNNMem < DevMem

5 MACMac ← DNNMAC < DevMAC

6 for layer [0..n−1] in DNN do
7 layer.width← layer.width/ Divisionfactor

8 RemoveNonBranchConnections(DNN)

9 return <DNN>

division/splitting. Here, we assume the DivisionFactor of two,
but any number is viable. The loop exits when a single branch
is fitted on a device (both memory and computation wise). If
the number of devices is fewer than the number of branches,
the execution is still possible, but will be inefficient. Then,
we remove non-branch connections in a simple operation that
keeps only one connection per layer. The derived model from
the splitter is the split-only model. By training the split-only
model and testing it, we measure its accuracy. The split-only
models have fewer parameters and MAC operations than the
original models (see Table 2) in total. Hence, after distribution,
each branch has less computation and memory footprint than
its model-parallelism version.

As a result of fewer number of parameters and removing
several connections, a slight accuracy drop in split-only LCP
models is expected. Depending on the accuracy requirement
of the task, we either fatten each branch by F%, a hyperparam-
eter, or output the resulted model. We assumed a maximum of
3% bound for Taskerror. Fattening each branch by F% is done
by increasing the number of channels and output features of
convolution and fully connected layers of the split-only model,
respectively. Note that theses new split-fattened models are
fattened within each branch. Thus, even with a high fatten-
ing percentage, still they have fewer parameters and MAC
operations than the original model (see Table 3). When the
accuracy is in the acceptable error range for our task, Taskerror,
we output the model architecture and its weights. It is expected
that with similar number of parameters after fattening, LCP
models achieve the same level of accuracy [58]. We showcase
LCP models in §4.1 covering MLPerf [41].
Key Features of LCP Models: LCP models are designed by
considering their underlying computation domain and have the
following key features to address the challenges discussed in
§2: (1) LCP models only communicate for input and pre-final
activation. Therefore, they significantly reduce communica-
tion overhead in a distributed system. Additionally, the low
communication load per inference helps with the straggler
problem. This is in contrast to model parallelism, which highly
depends on communication among all the intermediate layers;
(2) LCP models split the size of a layer, so the total parameter
size and computation complexity of the model are reduced.
Therefore, they require fewer parameter sizes, less computa-

4

tion complexity, and no communication between the nodes
for intermediate layers. These lower memory and computa-
tion footprints allow edge devices to efficiently operate within
their limited resources (e.g., no swap space activities due to
limited memory); (3) LCP models replace the original wide
model with several narrow and independent branches. Since
the computations of branches are not dependent, in contrast
to the single-chain of dependency in the original model, the
scope of parallelism is not limited with each layer anymore.
In other words, LCP models go beyond intra-layer parallelism.

3.2. Tailoring Hardware

Last section showed how we enable fast inference under re-
source constraints and at costly communication, by proposing
a low-communication parallelization method that results in
several narrow models. To further achieve the goal of fast
inference and recognize the potential, the hardware can also
be tailored. Recently, several popular tailored hardware de-
signs for DNNs [47, 59–63] including TPU [47] use systolic
arrays [64] that offer a high degree of concurrent process-
ing through a dataflow compute arrays hence providing high
throughput. In the edge applications, however, the main goal
is reducing single-batch inference latency, rather than high
throughput solely. This section introduces our microarchitec-
ture (Figure 8a), an example of tailoring and simplifying the
architecture of TPU to be implemented on small FPGAs or
be fabricated as tiny (i.e., 0.107 mm2 as shown in Figure 8b)
low-power chips to be integrated with edge devices.

Figure 8a illustrates our tailored microarchitecture that sim-
ilar to TPU, comprises a weight-stationary systolic array [64]
for implementing matrix-matrix multiplication. The systolic
array cells are organized in a 32x64 array ¶. To reduce the
number of connections, only the first row of the systolic array
is connected to the memory ¶. Moreover, each cell of the
first row is only connected to one data stream line ·. Based

5-
La

ye
r

Pi
pe

lin
ed

LPDDR2
933Mb/s/pin

…
…

…

… … … ……

… …

length

Adder Tree

1

3

Memory

Width = 32

…

sum row col

sum row col

sum row col

sum row col

… …

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

row = i;

if i < length; i + +;

row = 0;
<latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit>

i

<< 6
<latexit sha1_base64="Qk+Z99zGNHVInFMth/OH+LSF0AA=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtUgRtLGMaD4gOcLeZi9Zsrd37M4JIeQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeIo4X5E+0qEglG00kOlctktFN2SOwNZJl5GipCh1i18dXoxSyOukElqTNtzE/THVKNgkk/yndTwhLIh7fO2pYpG3Pjj2akTcmqVHgljbUshmam/J8Y0MmYUBbYzojgwi95U/M9rpxhe+2OhkhS5YvNFYSoJxmT6N+kJzRnKkSWUaWFvJWxANWVo08nbELzFl5dJo1zyzkvl+4ti9SaLIwfHcAJn4MEVVOEOalAHBn14hld4c6Tz4rw7H/PWFSebOYI/cD5/AIPsjUo=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

…

last?<latexit sha1_base64="Am01QNGuHYldM+tXqbNi+J8Orjs=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiid4kevGIiQsksCHd0oWGbnfTzpoQwm/w4kFjvPqDvPlvLLAHBV/S5OW9menMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+ZIavOmVK27VnYOsEi8nFcjR6JW/uv2EZTFXyOwE0/HcFIMJ1SiY5NNSNzM8pWxEB7xjqaIxN8FkvuyUnFmlT6JE26eQzNXfHRMaGzOOQ1sZUxyaZW8m/ud1Moyug4lQaYZcscVHUSYJJmR2OekLzRnKsSWUaWF3JWxINWVo8ynZELzlk1dJs1b1Lqq1h8tK/TaPowgncArn4MEV1OEeGuADAwHP8ApvjnJenHfnY1FacPKeY/gD5/MHvemOow==</latexit>

… Po
ol

in
g

Ac
tiv

at
io

n

M
em

or
y

In
te

rfa
ce

4 5

Indexing Activation & Pooling

Sy
st

ol
ic

 A
rra

y

(a)

x

i

data t

To register
of next cell

To adder
tree

To next
buffer

(Initialization)

2
Cell

R1

De
pt

h
=

64

(b)

295µm

365µm

6

Figure 8: Details of Tailored Hardware for Edge: (a) Microar-
chitecture overview, and (b) Layout of ASIC design at 7nm.

on the type of an operand (t), streaming data is used for ei-
ther initialization or for processing. Since the width of the
systolic array is 32, a heuristic algorithm partitions the stream-
ing (i.e., non-stationary operand) into blocks of 32 width and
arbitrary length, and splits the stationary operand, into 32
× 64 blocks. To assist the smooth streaming of data from
memory to the systolic array, we map these blocks along with
their indices (i), type (stationary/non-stationary), and length to
sequential memory addresses. We implement our 32×64 sys-
tolic array connected to LPDDR2 memory with the data rate
of 933Mb/s/pin @466 MHz [65], which gives a bandwidth of
3.7 GB/s. Other packaging options with higher memory band-
widths are also feasible. However, seeking a fair comparison
with RPi3s, we choose this memory technology. The maxi-
mum data reuse rate of our design is 64 OPs/Byte, which leads
to a peak throughput of 217.6 GOPs/s. The following explains
three main modifications we made to this systolic architecture,
to achieve our goal of reducing single-batch latency.
(1) Adder Trees: Instead of MAC-based systolic arrays, we
separate adders from multiplications by integrating adder trees,
the well established components for DNN accelerators [66–
68], into systolic arrays architecture. Each cell of our systolic
array is a multiplier with two integer operands, one stationary
and one streaming (R1). Each row of the multiplier array is
connected to an adder tree ¸, pipelined in five (log232) stages.
Adder trees reduce the result of multiplications into a single
integer, which then contributes to creating an output element.
The structure of the multiplier array connected to the adder
trees reduces latency from O(n) to O(log(n)).
(2) Simple Indexing Logic: We use a data-driven execution
model, in which data is pushed by the memory to the systolic
array, triggered by the arrival of data. During execution, for
each element, the indexing logic (¹) generates the appropriate
row and column indices of the element using the index (i) of
a block and its length to accompany the result. The row and
column indices will later be used by the memory interface to
write the results to physical locations in memory. By compar-
ing the length and index (i), the end of the operations in the
current layer is detected. The end of the current layer signals
the start of activation and pooling functions (º) for that layer.
(3) Buffering Stationary Operands: The stationary
operands are often larger than the depth of the systolic ar-
ray. In such cases, we have to partition a multiplication into
several small operations that share a non-stationary operand,
but have distinct stationary operands. To avoid multiple loads
of stationary registers, we choose to integrate a buffer (») for
stationary operands at each cell. As a result, the design serves
requests with lower latency. Moreover, since each branch of
the model has several layers, integrating these buffers allows
fast context switching without the overhead of reloading the
stationary operands. These buffers are connected in a column
of cells, similar to streaming registers (R1)s. During the initial-
ization, stationary operands are poured into these connected
buffers to fill them by utilizing the connections between them.

5

4. Experimental Studies

This section shares our experimental results for generating
LCP models and then their full-system implementation on
RPi, TVM [69] on PYNQ boards, and AWS servers. Finally,
we evaluated our hardware with edge FPGA implementation,
and ASIC chip design. At the start of each subsection, the
setup of related experiments is provided.

4.1. Generating LCP Models

Training Specifications: We train all the models, including
the original model, from scratch to conduct a fair comparison.
Normalization [70] layers are included. The training is done
with an exponential learning rate with a decay factor of 0.94,
initial learning rate 1e−2, number of epoch per decay of two or
10, a dropout rate of 50%, and L2 regularization with weight
decay of 5e−4. We use ADAM optimizer [71] with β1 =
0.9 and β2 = 0.99. All biases are initialized to zeros and all
weights are initialized with a normal distribution of mean 0 and
a standard deviation of 4e−2. All of our models are trained
until the loss is flattened or least for 12 epochs. Test and
accuracy measurements are done on at least 10% of datasets
that have never been used in training to provide an unbiased
evaluation of the model. For LCP, the DivisionFactor, F , and ε ,
are 2%, 10%, and ≈3%, respectively.
Datasets: We use the following datasets: (1) MNIST [37],
which contains 70k grayscale handwritten 28x28 images in 10
classes; (2) CIFAR10 [38], which contains 60k colored 32x32
images in 10 classes; (3) CIFAR100 [38], which contains 60k
colored 32x32 images in 100 classes; (4) Flower102 [39],
which contains 16,378 colored 224x224 images of flowers in
102 classes; and (5) ImageNet [40], which contains 1.33 M
colored 224x224 images in 1000 classes.
Models: We use the representative model for each dataset,
LeNet [72], LeNet-FC [72], VGG-S [73], CifarNet [38],
VGG16 [73], AlexNetv2 [74], ResNet-18/50 [75], and Mo-
bileNet [76]. We cover all image-recognition models in
MLPerf. In total, for brevity, we only report 53 instances of
training results to show LCP extensibility using five datasets
and nine models. Our additional results (not reported) with
ResNet-34, DenseNet [77], and DarkNet19 [78] confirms ex-
tendibility. Simple sequential DNNs serve as a basis to con-
firm our method, while ResNets and MobileNet showcase
LCP with modern models.
Split-Only Models: For split-only models, we use
DivisionFactor of two, which results in models with two, four,
and eight branches. Except the width, defined as output fea-
tures in fully connected layers and the number of output chan-
nels (i.e., filters) in convolution layers, the rest of the parame-
ters are similar to the original model as Splitter Procedure 1
only touches widths. Table 2 lists the training results. Fig-
ure 9a illustrates the accuracy difference of our models, shown
in Table 2. As shown, the maximum accuracy drop is around
5% for CifarNet. Note that this accuracy drop occurs when we

Table 2: Results of split-only LCP models.

Model Name Dataset Layers† Top-1 # # MAC
Accuracy Param Opr.

LeNet-FC* MNIST 3fc 97.95 266.6k 266.2k

LeNet MNIST 2fc-3c-2p 98.76 61.7k 61.5k
LeNet-split2 MNIST 3fc-6c-4p 98.86 31.5k 30.5k
LeNet-split4 MNIST 5fc-12c-8p 98.93 16.1k 16.0k
LeNet-split8 MNIST 9fc-24c-16p 98.81 8.8k 8.5k

CifarNet* Cifar10 2fc-2c-2p-2n-1d 80.72 797.97k 14.79M

CifarNet Cifar100 2fc-2c-2p-2n-1d 52.87 815.34k 14.81M
CifarNet-split2 Cifar100 5fc-4c-4p-4n-2d 51.22 410.48k 9.33M
CifarNet-split4 Cifar100 9fc-8c-8p-8n-4d 48.48 208.05k 6.59M
CifarNet-split8 Cifar100 17fc-16c-16p-16n-8d 47.98 106.85k 5.23M

VGG-S* Cifar100 3fc-5c-2p-1n-2d 50.33 76.15M 154.09M

VGG-S Flower102 3fc-5c-3p-1n-2d 88.14 60.79M 1.85G
VGG-S-split2 Flower102 5fc-10c-6p-2n-4d 89.31 30.50M 1.01G
VGG-S-split4 Flower102 9fc-20c-12p-4n-8d 87.55 15.26M 591.65M
VGG-S-split8 Flower102 17fc-40c-24p-8n-16d 85.66 7.64M 382.51M

ResNet-18 ImageNet 18c-2p-17n 70.68 11.69M 1.82G
ResNet-18-split2 ImageNet 35c-3p-34n 69.85 6.11M 0.98G
ResNet-18-split4 ImageNet 69c-5p-68n 68.07 3.32M 0.55G
ResNet-18-split8 ImageNet 137c-9p-136n 66.76 1.93M 0.34G

† fc: fully-connected, c: convolution, p: pooling, n: normalization, and d: dropout.
* Detailed results are removed for brevity, refer to Figure 9. The results follows the same trend.

reduced the parameter size of our model extensively (around
1/8). Figure 9b and c show reduction in the number of parame-
ters and computation compared with the original DNN model;
as seen, each split reduces both by about split f actor times. This
is because each convolution and fully connected layer in the
split version create fewer outputs; therefore, the next layer
requires fewer parameters. In the next section, we restore the
accuracy of LCP models with split-fattened models.
Split-Fattened Models Accuracy is a defining factor in sev-
eral applications. Thus, we provide a remedy to restore the
accuracy of split-only models. By fattening (i.e., adding more
parameters) each branch, we aim to create larger layers in the
split-only models. To do so, for each layer (excluding classifi-
cation layer) in every branch, we increase the width by a frac-
tion. So, fattening by 20% means the size of the output in each
layer is increased 1.2x. We fatten every branch in 10% steps
as Procedure 1 shows. Our experiments focus on split8, which
have the highest accuracy drops. Figure 10 shows a summary
of these models. As seen, 40% split-fattened models have
higher accuracy than the original model while having fewer
parameters and MAC operations. On average (for 30% and

-0.9

0.05

-4.02 -4.89
-1.85 -2.48

-3.9-6

-1

4

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)

To
p-

1
Ac

cu
ra

cy

Di
ffe

re
nc

e
Vs

.
O

rig
in

al
 (%

)

Split2 Split4 Split8

7.89 6.99 7.63 7.63 7.98 7.96
6.06

0
2
4
6
8

10

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)

Re
du

ct
io

n
in

#P

ar
am

et
er

s
(T

im
es

)

7.89 6.99

2.83 2.83

7.19
4.84 5.35

0
2
4
6
8

10

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)Re

du
ct

io
n

in

#M
AC

 O
pe

ra
tio

ns

(T
im

es
)

(a)

(b)

(c)

Figure 9: Split-Only Models: (a) Accuracy, (b) reduction in the
number of parameters, and (c) reduction in the number of MAC
operations in comparison with the original model.

6

2.83

7.33
4.84

2.13

5.19 3.80

1.88

4.38
3.14

1.50
3.77 2.80

0
2
4
6
8

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)Re
du

ct
io

n
in

N

um
be

r o
f M

AC

O
pe

ra
tio

ns

(T
im

es
)

7.63 7.98 7.96
5.11 5.61 5.75

4.30 4.74 4.79
3.32 4.06 4.12

0
2
4
6
8

10

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)Re
du

ct
io

n
in

N

um
be

r o
f

Pa
ra

m
et

er
s

(T
im

es
)

(a)

(b)

(c)

-4.02
-1.85 -2.48

-1.07
-0.28

0.51

-0.55

0.27 1.10.38 0.73 1.45

-5
-3
-1
1
3

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)

Ac
cu

ra
cy

Di

ffe
re

nc
e

Vs
.

O
rig

in
al

 (%
) Split8 Split8-f10 Split8-f20 Split8-f30 Split8-f40

Figure 10: Split-Fattened Models – Common visual models (a)
Accuracy difference, (b) reduction in the number of parame-
ters, and (c) reduction in the number of MAC operations in
comparison with the original one (Table 2).

40% models), with 4.61x–3.81x fewer parameters and 2.95x–
2.5x fewer MAC operations, split-fattened models achieve
accuracy within our error bound of 3%, Taskerror, while they
jointly optimize memory, computation, and communication
for edge.
ImageNet Models: Table 3 illustrates the results of ImageNet
models. For the sake of brevity, we only show split8 and one
fattened model. As shown, f40 models restore the accuracy
within 3% of the original model. The tradeoff for 3% accuracy
loss is about 4x fewer parameters, 4x fewer computations, and
8x less communication load (vs. model parallelism). Figure 11
presents a comparative analysis for the communication load
between distributed original models with model parallelism
and distributed LCP models. Since LCP models avoid com-
munication between their branches, the communication load
is reduced significantly. In short, although split models are
more complex than the original models in terms of the number
of layers and connections, they achieve more parallelism with
less communication load.

4.2. Exploring Performance on RPis, PYNQs, and AWS

RPi Experiments Setup: To study the benefits of LCP mod-
els versus only model-parallelism methods, we deploy several
models on a distributed system of Raspberry Pi 3s (RPis),
the specifications in Table 4. On each RPi, with the Ubuntu
16.04 operating system, we use TensorFlow [79] and Apache
Avro [80], a remote procedure call (RPC) and data serialization
framework, for communication between RPis. We measure

0
300
600
900

1200

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

VGG16 AlexNet ResNet-50

Re
qu

ire
d

Pa
irs

 o
f

Co
nn

ec
te

d
De

vi
ce

s Model Parallelism ETP

∼8x ∼8x ∼8x

VGG16 AlexNet ResNet-50

LCP

Figure 11: Communication reduction with LCP models com-
pared to model parallelism (required pairs of connections).

Table 3: Results of ImageNet LCP models.

Model Name Dataset Top-1 Top-5 # # MAC
Acc. Acc. Param. MAC Opr.

AlexNet ImageNet 57.02 80.32 50.3M 678.97M
AlexNet-split8 ImageNet 49.03 73.10 6.32M 145.37M

AlexNet-split8-f40 ImageNet 54.68 77.06 12.11M 244M

VGG16 ImageNet 70.48 90.02 138.36M 15.47G
VGG16-split8 ImageNet 58.67 81.54 7.64M 2.01G

VGG16-split8-f40 ImageNet 67.24 89.23 33.78M 3.87G

ResNet-50 ImageNet 75.4 93.1 22.80M 4.87G
ResNet-split8 ImageNet 61.79 81.22 5.42M 0.88G

ResNet-split8-f40 ImageNet 72.12 92.19 8.60M 1.18G

MobileNet ImageNet 71.7 90 4.24M 4.86G
MobileNet-split8 ImageNet 59.68 83.23 1.12M 0.93G

MobileNet-split8-f40 ImageNet 68.05 89.12 2.12M 1.34G

For [model_name]-f[number], number represent the percentage of fattening.

power using a USB digital multimeter [81]. A local WiFi net-
work with the measured bandwidth of 62.24 Mbps and a mea-
sured client-to-client latency of 8.83 ms for 64 B is used. All
the real-world experiments are full-system measurements with
all overheads included without any simulations/estimations.
RPi Performance & Energy: Figure 12 presents latency of
inference per image on RPis. On a single device, AlexNet
has 2.8 seconds latency, while VGG16 achieves 9.4 seconds
latency. By deploying model-parallelism variants of the mod-
els on four and eight RPis, we achieve a maximum of 0.42s
latency, a 6.6x increase, for AlexNet. But, for VGG16, on
four RPis, we observe a slowdown, which is caused by high
communication latency. LCP variants of split4 and split8
can reach up to 115 ms and 400 ms latency per image for
AlexNet and VGG16, respectively. This is because LCP mod-
els are lightweight and parallelizable and have low commu-
nication. Figure 13 shows measured energy per inference
for RPi implementations. To compare with previous related
work, SplitNet [57], Figure 12 presents the performance of
SplitNet models for AlexNet with different configurations. As
seen, the performance is worse than LCP models. This is
because SplitNet creates more merging/synchronization points
with its tree-structured model design. The resulting model
exponentially introduces more merging/synchronization with
increased depth, which also does not equally split all the layers
(causing load balancing issues). Finally, SplitNet performs
parallelization based on dataset semantics, which means every
dataset and model needs to be manually split. §2 provided
more reasons on this performance difference.
TVM Experiments on PYNQ Boards: As a real-world ex-

Table 4: Specification of RPi, PYNQ FPGA, and AWS.
Raspberry Pi 3B+

CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 1 GB LPDDR2 SDRAM @ 933Mb/s/pin
Die Size ≈ 196mm2 @ 28 nm

Edge FPGA (Zynq Artix 7 XC7Z020)

Utilization
DSP48E FF LUT

#Unit 96 5427 2343
% 44 5 4

Static Power 0.121 W
Dynamic Power Signals: 0.009 W Logic: 0.003 W

AWS
AWS Instance T2.micro
Specification 1 vCPU, 1 GB Memory, 64 GB Storage

7

28
01

64
0

42
0 75

0

74
5

57
9

57
8

17
0

11
5

14
6

93
81

13
30

0

27
78

88
7

39
9 75

3

24
60

14
06

10
60

11
80

99
0

13
98

10
58

0
400
800

1200
1600

One Device (1)

Model Parallelism (4)

Model Parallelism (8)

SplitNets (1-1-3)

SplitNets (1-2-5)

SplitNets (2-4-8)

SplitNets (2x5)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)
Split4 (4)

Split8 (8)

Split8-40f (8)

ResNet-18 (1)

MobileNets-v2 (1)

SqueezeNet (1) [35]

AlexNet VGG16 ResNet-50 ABC

La
te

nc
y

/
Im

ag
e

(m
s)

LCP
Models For
Comparison

Most Recent Related Work -- SplitNet

[61]

Figure 12: Latency per image: Model-parallelism, SplitNet [57], and LCP models on RPi (number in parenthesis is #devices).

3.
16

3.
75

3.
49

0.
50

0.
33

0.
42

34
.4

6

16
8.

11

72
.8

5

11
.9

9

10
.1

7 19
.6

6

0
4
8

12
16

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

AlexNet VGG16

En
er

gy
 /

 In
fe

re
nc

e
(J

)

Figure 13: All devices energy per inference: Model-
parallelism, and LCP on RPi (number in parenthesis is #de-
vices).

ample for edge FPGA implementation, we use TVM [69]
on the PYNQ [82] board. PYNQ is designed for embedded
applications. We use the TVM VTA stack on the PYNQ as
the architecture (RISC-style instructions) and only change
the models (ResNet-18 vs. LCP ResNet-18 Split2 with <1
accuracy drop). In this way, we can measure the benefits of
LCP models without relying on any special tailored hardware.

0
2
4
6

ResNet-18 ResNet-18
Split2

4.
9

1.
8

2.7x
Latency Reduction

(1) (2)La
te

nc
y

/
Im

ag
e

(s
)

0
10
20
30
40
50

ResNet-18 ResNet-18
Split2M

em
or

y
Fo

ot
pr

in
t

/
D

ev
ic

e
(M

B)

44

11

(a)

(b)

4x Memory
Footprint Reduction

(1) (2)

Figure 14: TVM Experiments:
(a) Latency per image, (b)
memory footprint per device
(number in parenthesis is
#devices).

Our performance result
shares the entire system
pipeline performance,
from a live camera feed to
prediction output on two
boards versus one board.
Figure 14a shows a 2.7x
speedup, including all
communication and system
overheads, network latency,
and jitter because LCP
models are parallelized on
two devices and, in total,
they have lower computa-
tion and memory footprints.
The measured reduction in
memory footprint is shown
Figure 14b.
AWS Experiments: To see the reduced communication and
distributed execution benefits of LCP models further, we

0

200

400

600

1 2 4 8
Split

ResNet-50

0

500

1000

1500

1 2 4 8
Split

VGG16

0

200

400

600

1 2 4 8

La
te

nc
y

(m
s)

Split

AlexNet

max

min
avg

Figure 15: Average, minimum, and maximum latencies of dis-
tributed LCP execution on AWS T2.micro instances with 1
vCPU and 1 GB memory per instance.

deploy AlexNet, VGG16, and ResNet-50 models on AWS
T2.micro instances with only one vCPU and 1 GB memory
per instance. Figure 15 presents the derived statistics. In all
cases, LCP models not only reduces the average latency but
also significantly reduce maximum latency. Splits four and
eight have lower speedup compared with our RPi experiments
because all the 4/8 instances are not hosted on the same ma-
chine; thus, the communication cost is higher than the usual
edge-specific cases that this paper targets.

4.3. Edge FPGA Experiments

FPGA Experiments Setup: We implement our tailored mi-
croarchitecture on a ZYNQ XC7Z020 FPGA targeting PYNQ-
z1 boards [83]. We use Xilinx Vivado HLS for implemen-
tation and verify the functionality of our implementation us-
ing regression tests. We use relevant #pragrma as hints to
describe our desired microarchitectures in C++. We synthe-
size and implement our design using Vivado and report post-
implementation (i.e., place & route) performance numbers and
resource utilizations. Inputs and output of our design are trans-
ferred through the AXI stream interface. The clock frequency
is set to 100 MHz. Communication for multiple devices is
estimated with the network provided in §4.2.
FPGA Performance: Figure 16 shows the experiment results
for our edge-tailored hardware. The latency per image is
shown in Figure 16a, with improvement in communication

7.
6

2.
2

0.
7

0.
2

0.
3

9.
8

3.
2

1.
2

0.
5

0.
6

9.
6

3.
6

1.
5

0.
7 0.
7

57
.8

14
.8

3.
8

1.
0 1.
4

14
.8

3.
6

1.
2

0.
4

0.
7

0%
20%
40%
60%
80%
100%

0
2
4
6
8

10
12

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

CifarNet VGG-S AlexNet VGG16 ResNet-50

La
te

nc
y

/
Im

ag
e

(m
s)

Latency Improvement in Communication

1.
0 3.
5 11
.2

32
.1

27
.4

1.
0 3.
1 8.
1 19

.6

17
.9

1.
0 2.
6 6.
3

13
.9 13
.2

1.
0

3.
9

15
.0

56
.4

41
.5

1.
0

4.
1 12

.5

33
.1

21
.5

0
10
20
30
40
50
60

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

O
ne

 D
ev

ic
e

(1
)

Sp
lit

2
(2

)
Sp

lit
4

(4
)

Sp
lit

8
(8

)
Sp

lit
8-

f4
0

(8
)

CifarNet VGG-S AlexNet VGG16 ResNet-50

Speedup Ideal Linear Speedup due to More Devices

Sp
ee

du
p

ov
er

 O
ne

 D
ev

ic
e

Im
pr

ov
em

en
t I

n
 C

om
m

un
ic

at
io

n

(a)
CifarNet VGG-S AlexNet VGG16 ResNet-50

CifarNet VGG-S AlexNet VGG16 ResNet-50

(b)

Figure 16: Edge FPGA with tailored hardware latency and
speedup: (a) Latency per image, (b) speedup over one device
(number in parenthesis is #devices).

8

7.
35

x
14

.4
1x 16

.3
1x

32
.6

2x

1

10

100

1000

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

CifarNet VGGS AlexNet VGG16 ResNet-50 GMEAN GMEAN

Base Quantization Pruning Quantization & Pruning

Sp
ee

du
p

O
ve

r
O

ne
 D

ev
ic

e
fo

r
Ea

ch
 D

N
N

 (l
og

. S
ca

le
)

CifarNet VGG-S AlexNet VGG16 ResNet-50

O
ve

ra
ll

G
M

EA
N

GMEAN

Figure 17: Edge FPGA with tailored hardware speedup with quantization & pruning. Additional speedup is gained by applying
lossless (≤0.1%) quantization and structured pruning.

0
4
8

12
16

4 Devices 8 Devices

VGG16

Original Model with Model Parallelism ETP Model

0
0.5

1
1.5

2
2.5

4 Devices 8 Devices

AlexNet

La
te

nc
y

/
Im

ag
e

(m
s)

Avg Speedup: 3.76x Avg Speedup: 8.89x

0
1
2
3
4

4 Devices 8 Devices

ResNet-50

Avg Speedup: 7.17x

AlexNet VGG16 ResNet-50

LCP Model

Figure 18: Latency per image for edge FPGA with tailored
hardware comparing LCP vs. model parallelism.

overhead versus model-parallelism methods (86% and 60%
for 8split and 4split). Depending on the model, the inference
per latency on a single device is between 4–29ms; a 221–325x
speedup compared to RPi results for AlexNet and VGG16.
Our designed LCP models achieve acceptable performance for
edge computing, which is 10s of inferences per second, around
1–10ms. As observed, the accuracy loss of our split-only mod-
els can be easily restored by fast split-fattened models of f40
with a negligible performance overhead (maximum of 20 ms).
Figure 16b illustrates the speedup numbers over one device.
The ideal linear speedup shows the ideal scaling speedup with
more available devices. As shown, we achieve superlinear
speedups. An important parameter in scaling concerns how
the overheads scale. The superlinear speedup stems from
the dramatic reduction of communication overhead as paral-
lelism increases. In traditional data and model parallelism,
such overhead increases, which causes sublinear speedup. Fig-
ure 18 compares latency per image for LCP and model paral-
lelism. On average, LCP models are 3.76x, 8.89x, and 7.17x
faster than their model-parallelism counterparts for AlexNet,
VGG16, and ResNet-50 (4 and 8 devices), respectively. LCP
achieves a maximum and average speedups of 56x and 7x,
compared to the originals (Figure 17, base bars).
Quantization & Pruning: As mentioned in §5 and §1, tech-
niques that reduce the footprint of DNNs can be applied to
each individual LCP branch. Basically, the target output for
each LCP branch is now its pre-final activations during opti-
mizations. We study the benefits of lossless quantization and
structured pruning on top of our LCP models. Based on our
experiment, with 3.13 (<integer.fraction>) quantization, our
models do not lose accuracy. Similarly, applying structured
pruning [84], for which systolic arrays gain benefits, reduces
the size of parameters between 40%–50% per convolution
layer without an accuracy drop. Other pruning algorithms
increase the sparsity of the data, which is not necessarily bene-
ficial for systolic arrays. Figure 17 presents the speedup gained
from these techniques normalized to the baseline implemen-

tation for each model, the execution performance of which
shown in Figure 16a. Quantization and pruning themselves,
improve the performance of the original models by 1.96x and
2.2x, respectively, and 4.31x when applied together. When
quantization and pruning are combined with LCP, the overall
performance speedup becomes 14.41x and 16.31x, respec-
tively. Compared to the original models, LCP + quantization
and pruning achieves up to 244x speedup (VGG16-split8), and
an average of 33x (across all models and variants).

4.4. ASIC Implementation

We implement the ASIC design of LCP using an Arizona
State Predictive PDK (ASAP) 7nm technology node [48]. Our
tool chain includes the Synopsys design compiler (DC) for
synthesis, Cadence Innovus for place and route, and Cadence
Tempus for timing and power analysis. As an input to our
ASIC design, we use our same Verilog code generated by
Vivado HLS. Figure 8b show the layout of our chip of size
0.107 mm2 (i.e., 295µm× 365µm). The memory cells shown
in the figure represent the FIFO buffers, used for pipelining.
Figure 19 shows the power consumption of our ASIC design.
The breakdown of power consummation leading to a total
16.1 mW is listed in Figure 19a. As a comparison point,
Eyeriss [60] and EIE [85] consume ≈250 mW and ≈590 mW,
respectively. Besides, as Figure 19b shows, power distributes
uniformly, which prevents hot spot creation.

5. Related Work

We review related techniques used to reduce the high demands
of DNNs, distributing their computation, and current efforts
on DNN hardware accelerators.
Techniques Without Changing Model Architecture: Sev-
eral techniques have been developed to reduce the computation

2.7

13.4

0.02

16.1

0
2
4
6
8

10
12
14
16
18

Sw
itc
hin
g

Int
erc
on
ne
cti
on
s

Le
ak
ag
e
To
talPo

w
er

 C
on

su
m

pt
io

n
(m

W
)

1.0e+02
mW(log)

5.6e+00
3.2e-01
1.8e-02
1.0e-03
5.6e-06
3.2e-06

1.8e-07
1.0e-08

(a) (b)

Figure 19: Power Consumption for 7-nm ASIC Design
@800MHz: (a) breakdown (b) distribution.

9

and memory footprint of DNNs without changing the network
architecture. For instance, pruning [32, 86–89] removes the
close-to-zero weights and quantization or low-precision infer-
ence [36,52,53,90,91] change the representations of numbers,
which results in simpler calculations. Other methods partition
resources [92, 93] or binarize the weights [94–96]. Binarizing
weights hurts accuracy. The aforementioned techniques are
orthogonal to our work and can be applied to each branch to
further reduce the computational and memory costs (§4.3).
Techniques That Change Model Architecture: With the
prevalence of IoT and edge devices, specific frameworks such
as ELL library [50] (see Figure 2) by Microsoft and Ten-
sorflow Lite [97] have been developed by industry. Other
proposals developed mobile-specific models [54, 77, 98–100]
by handcrafting more efficient operations or models to reduce
the number of parameters [54], create efficient operation to
minimize computation density [98], or use resource-efficient
connections [100]. Unlike LCP models, all these models
have a single chain of dependency [58] that prevents efficient
parallelism. Moreover, several of the models trade off the
state-of-the-art accuracy with efficiency [100]. SplitNet [57]
is one the few papers that focuses on higher parallelizability
of models (evaluation on ResNet and AlexNet), but relying
on dataset semantics creates imbalanced branches and the
method is invariant to number of devices, as discussed in §2.
Recently, with the growing interest in automating the design
process [58, 101–103], learning new networks for mobiles has
also gained attention by integrating the constraints of mobile
platforms (i.e., latency). These attempts are still limited to
single-device execution. In summary, these studies (1) have a
high design cost, (i.e., they target only one specific model and
dataset without extendibility); (2) target single mobile plat-
forms; and (3) do not consider inter-layer layer parallelism
and communication challenges.
Distributing DNN Inference Computations: With large
DNN models, distributing a single model has gained the atten-
tion of researchers [5,14,35,104,105]. Usually, the distribution
is done in a high-performance computing domain with differ-
ent goals in mind. In the resource-constrained edge devices,
Neurosurgeon [105] dynamically partitions a DNN model
between a single edge device and the cloud. DDNN [104]
partitions the model between edge devices and the cloud but
uses data parallelism. Hadidi et al. [5, 14, 106–109] investi-
gate the distribution in edge with model-parallelism methods,
showing the effect of the communication barrier in distributing
by the diminishing return in performance with a large number
of devices. LCP models go beyond model parallelism meth-
ods, which was not the focus of the above studied, and enable
efficient distribution that is not examined in the above studies.

6. Discussions
Intuition Behind LCP: We conjecture that LCP models pro-
vide good performance because (1) independent branches
learn complex non-overlapping features independently within

a small search space, whereas original models need to create
the same complex features from a higher dimension feature
search. We observe that each branch eventually learns an
almost disjoint feature representation; (2) In split models,
gradient descent updates are more efficient in reaching early
layers compared to the original models due to fewer number
of parameters in their route.
Extension to New Models: We studied ResNets and Mo-
bileNet, which are still widely used models. Other models
represent sequential DNNs that serve as the basis to confirm
our method and are still used in robotics. Newer models such
as EfficientNet [110] and MobileNetv3 [111] that use novel
blocks such as Bottleneck or Squeeze & Excitation can be rep-
resented with convolution, fully connected, and basic matrix
multiplications. All of which can be parallelized by LCP.
System-Level Choices: LCP is in conjunction with other
technologies available today. LCP does not replace these tech-
nologies, but rather enables exploitation of local edge devices
to enable intelligence in the edge [112, 113]. In a few cases,
relying on cloud-based offloading for accuracy-critical tasks
is necessary (e.g., finding a specific license plate), whereas, in
several others (e.g., counting the cars passing an intersection)
the system must rely on cloud or high-performance systems.
SqueezeNet: SqueezeNet [54] achieves an accuracy similar
to that of AlexNet with fewer parameters by using compute-
heavy Fire modules. SqueezeNet trades off parameters with
computations, and requires 860M MAC operations, whereas
our distributed AlexNet requires only 240M MAC operations.
We also observe a 12x increase in the number of activations
from 12.58 M in SqueezeNet vs. 1.39 M in AlexNet.
Skip/Residual Connections: LCP procedure similarly ap-
plies to more complex models with residual and skip connec-
tions as shown for ResNets in §4. Simply put, each branch has
similar connections but with smaller depth.
Alleviating Large Memory Footprints: Sometimes large
memory footprints are necessary and access to the next levels
of the storage system is enforced. In our design (§3.2), such
accesses do not cause slowdown because data is stored in
sequential addresses (i.e., streaming), and we overlap data
transfer and computations for independent elements.
Memory Layout Preprocessing: Our simple algorithm to
change the storage format is in O(N) (§3.2(4)). Therefore, the
host preprocessing for reordering the data can be done during
writing the data to the memory with a single pass.

7. Conclusions
We proposed low-communication parallelization (LCP) mod-
els, designed for efficient in-the-edge distribution. LCP mod-
els optimize communication while reducing memory and com-
putation by utilizing several narrow independent branches. We
presented our results on the accuracy of LCP models. We build
a systolic architecture for edge computing both on FPGA and
ASIC. Finally, our results on RPis, edge-based FPGAs, AWS
instances confirms the benefits.

10

References
[1] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He,

Juan P Rodríguez, Flavio Fontana, Matthias Faessler, Christian
Forster, Jürgen Schmidhuber, Gianni Di Caro, et al. A machine
learning approach to visual perception of forest trails for mobile
robots. IEEE Robotics and Automation Letters, 1(2):661–667, 2016.

[2] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and
Cesar Cadena. From perception to decision: A data-driven approach
to end-to-end motion planning for autonomous ground robots. In
2017 ieee international conference on robotics and automation (icra),
pages 1527–1533. IEEE, 2017.

[3] Peter Corcoran and Soumya Kanti Datta. Mobile-edge computing
and the internet of things for consumers: Extending cloud computing
and services to the edge of the network. IEEE Consumer Electronics
Magazine, 5(4):73–74, 2016.

[4] Manuela Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal,
Tom Kollar, Cetin Mericli, Mehdi Samadi, Susana Brandao, and
Rodrigo Ventura. Cobots: Collaborative robots servicing multi-floor
buildings. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 5446–5447. IEEE, 2012.

[5] Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael S Ryoo,
and Hyesoon Kim. Distributed perception by collaborative robots.
IEEE Robotics and Automation Letters, 3(4):3709–3716, 2018.

[6] Arti Singh, Baskar Ganapathysubramanian, Asheesh Kumar Singh,
and Soumik Sarkar. Machine learning for high-throughput stress
phenotyping in plants. Trends in plant science, 21(2):110–124, 2016.

[7] Huimin Lu, Yujie Li, Shenglin Mu, Dong Wang, Hyoungseop Kim,
and Seiichi Serikawa. Motor anomaly detection for unmanned aerial
vehicles using reinforcement learning. IEEE internet of things journal,
5(4):2315–2322, 2018.

[8] Zhangjie Fu, Yuanhang Mao, Daojing He, Jingnan Yu, and Guowu
Xie. Secure multi-uav collaborative task allocation. IEEE Access,
7:35579–35587, 2019.

[9] Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, and Sanja
Lazarova-Molnar. A service-oriented middleware for building collab-
orative uavs. Journal of Intelligent & Robotic Systems, 74(1-2):309–
321, 2014.

[10] Shuochao Yao, Yiran Zhao, Aston Zhang, Shaohan Hu, Huajie Shao,
Chao Zhang, Lu Su, and Tarek Abdelzaher. Deep learning for the
internet of things. Computer, 51(5):32–41, 2018.

[11] Omer Berat Sezer, Erdogan Dogdu, and Ahmet Murat Ozbayoglu.
Context-aware computing, learning, and big data in internet of things:
a survey. IEEE Internet of Things Journal, 5(1):1–27, 2018.

[12] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge:
Deep learning for the internet of things with edge computing. IEEE
Network, 32(1):96–101, 2018.

[13] Tuyen X Tran, Abolfazl Hajisami, Parul Pandey, and Dario Pom-
pili. Collaborative mobile edge computing in 5g networks: New
paradigms, scenarios, and challenges. IEEE Communications Maga-
zine, 55(4):54–61, 2017.

[14] Ramyad Hadidi, Jiashen Cao, Michael S Ryoo, and Hyesoon Kim.
Towards collaborative inferencing of deep neural networks on internet
of things devices. IEEE Internet of Things Journal, 2020.

[15] Luigi Alfredo Grieco, Alessandro Rizzo, Simona Colucci, Sabrina
Sicari, Giuseppe Piro, Donato Di Paola, and Gennaro Boggia. Iot-
aided robotics applications: Technological implications, target do-
mains and open issues. Computer Communications, 54:32–47, 2014.

[16] Milan Erdelj, Michał Król, and Enrico Natalizio. Wireless sensor
networks and multi-uav systems for natural disaster management.
Computer Networks, 124:72–86, 2017.

[17] Markus Quaritsch, Emil Stojanovski, Christian Bettstetter, Gerhard
Friedrich, Hermann Hellwagner, Bernhard Rinner, Michael Hofbaur,
and Mubarak Shah. Collaborative microdrones: applications and
research challenges. In Proceedings of the 2nd International Confer-
ence on Autonomic Computing and Communication Systems, pages
1–7, 2008.

[18] Nathan Michael, Shaojie Shen, Kartik Mohta, Vijay Kumar, Keiji
Nagatani, Yoshito Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya
Yoshida, Kazunori Ohno, et al. Collaborative mapping of an earth-
quake damaged building via ground and aerial robots. In Field and
service robotics, pages 33–47. Springer, 2014.

[19] Avital Bechar and Clément Vigneault. Agricultural robots for field
operations: Concepts and components. Biosystems Engineering,
149:94–111, 2016.

[20] H Anil, KS Nikhil, V Chaitra, and BS Guru Sharan. Revolutionizing
farming using swarm robotics. In 2015 6th International Conference
on Intelligent Systems, Modelling and Simulation, pages 141–147.
IEEE, 2015.

[21] Y Baudoin and Maki K Habib. Using robots in hazardous envi-
ronments: Landmine detection, de-mining and other applications.
Elsevier, 2010.

[22] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar
Buyya. Distributed data stream processing and edge computing:
A survey on resource elasticity and future directions. Journal of
Network and Computer Applications, 103:1–17, 2018.

[23] Stuart Golodetz, Tommaso Cavallari, Nicholas A Lord, Victor A
Prisacariu, David W Murray, and Philip HS Torr. Collaborative
large-scale dense 3d reconstruction with online inter-agent pose opti-
misation. IEEE transactions on visualization and computer graphics,
24(11):2895–2905, 2018.

[24] Binita Gupta. Discovering cloud-based services for iot devices in
an iot network associated with a user, June 4 2015. US Patent App.
14/550,595.

[25] Hui Li and Xiaojiang Xing. Internet of things service architecture
and method for realizing internet of things service, March 17 2015.
US Patent 8,984,113.

[26] Inc. Gartner. Gartner says 6.4 billion connected "things" will be
in use in 2016, up 30 percent from 2015. https://www.gartner.
com/newsroom/id/3165317, 2015. [Online; accessed 04/10/20].

[27] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, architec-
tural elements, and future directions. Future generation computer
systems, 29(7):1645–1660, 2013.

[28] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric
Allman, John Wawrzynek, Edward Lee, and John Kubiatowicz. The
cloud is not enough: Saving iot from the cloud. In 7th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 15), 2015.

[29] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things:
a survey. Information Systems Frontiers, 17(2):243–259, 2015.

[30] F Biscotti, J Skorupa, R Contu, et al. The impact of the internet of
things on data centers. Gartner Research, 18, 2014.

[31] In Lee and Kyoochun Lee. The internet of things (iot): Applica-
tions, investments, and challenges for enterprises. Business Horizons,
58(4):431–440, 2015.

[32] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural network with pruning, trained quantization
and huffman coding. In 4th International Conference on Learning
Representations. ACM, 2016.

[33] Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari, Tushar Kr-
ishna, and Hyesoon Kim. Characterizing the deployment of deep
neural networks on commercial edge devices. In Proceedings of IEEE
International Symposium on Workload Characterization, 2019.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In 26th An-
nual Conference on Neural Information Processing Systems (NIPS),
pages 1097–1105. ACM, 2012.

[35] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In NIPS’12, pages 1223–1231.
ACM, 2012.

[36] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Com-
pressing deep convolutional networks using vector quantization.
arXiv preprint arXiv:1412.6115, 2014.

[37] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/, 1998.

[38] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[39] M-E. Nilsback and A. Zisserman. Automated flower classification
over a large number of classes. In Proceedings of the Indian Con-
ference on Computer Vision, Graphics and Image Processing, Dec
2008.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

[41] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman,
Greg Diamos, David Kanter, Paulius Micikevicius, David Patterson,
Guenther Schmuelling, Hanlin Tang, et al. Mlperf: An industry
standard benchmark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

11

https://www.gartner.com/newsroom/id/3165317
https://www.gartner.com/newsroom/id/3165317

[42] Vladimir Vujović and Mirjana Maksimović. Raspberry pi as a sensor
web node for home automation. Computers & Electrical Engineering,
44:153–171, 2015.

[43] Richard Grimmett. Raspberry Pi robotics projects. Packt Publishing
Ltd, 2015.

[44] Alan G Millard, Russell Joyce, James A Hilder, Cristian Fleşeriu,
Leonard Newbrook, Wei Li, Liam J McDaid, and David M Halliday.
The pi-puck extension board: a raspberry pi interface for the e-puck
robot platform. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 741–748. IEEE, 2017.

[45] Isaiah Brand, Josh Roy, Aaron Ray, John Oberlin, and Stefanie Ober-
lix. Pidrone: An autonomous educational drone using raspberry pi
and python. In 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1–7. IEEE, 2018.

[46] Sean Wilson, Ruben Gameros, Michael Sheely, Matthew Lin,
Kathryn Dover, Robert Gevorkyan, Matt Haberland, Andrea Bertozzi,
and Spring Berman. Pheeno, a versatile swarm robotic research
and education platform. IEEE Robotics and Automation Letters,
1(2):884–891, 2016.

[47] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan
Boden, Al Borchers, et al. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages 1–12. IEEE,
2017.

[48] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja,
Saurabh Sinha, Brian Cline, Chandarasekaran Ramamurthy, and
Greg Yeric. Asap7: A 7-nm finfet predictive process design kit.
Microelectronics Journal, 53:105–115, 2016.

[49] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dhee-
manth Nagaraj, Bharat Kaul, Pradeep Dubey, et al. Scaledeep: A
scalable compute architecture for learning and evaluating deep net-
works. In ISCA’17, pages 13–26. ACM, 2017.

[50] Microsoft. Embedded learning library (ell). https://microsoft.
github.io/ELL/, 2017. [Online; accessed 04/10/20].

[51] Ofer Dekel - Microsoft Research. Compiling ai for the edge. SysML
2019 Keynote, 2019.

[52] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the
speed of neural networks on cpus. In Proceeding Deep Learning and
Unsupervised Feature Learning NIPS Workshop, volume 1, page 4.
ACM, 2011.

[53] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. In International Con-
ference on Machine Learning, pages 2849–2858, 2016.

[54] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level ac-
curacy with 50x fewer parameters and <0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

[55] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. Cudnn: Effi-
cient primitives for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[56] Stefan Hadjis, Firas Abuzaid, Ce Zhang, and Christopher Ré. Caffe
con troll: Shallow ideas to speed up deep learning. In Proceedings of
the Fourth Workshop on Data analytics in the Cloud, page 2. ACM,
2015.

[57] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju Hwang.
Splitnet: Learning to semantically split deep networks for parameter
reduction and model parallelization. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages
1866–1874. JMLR. org, 2017.

[58] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He.
Exploring randomly wired neural networks for image recognition.
In Proceedings of the IEEE International Conference on Computer
Vision, pages 1284–1293, 2019.

[59] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin
Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese:
Efficient speech recognition engine with sparse lstm on fpga. In
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 75–84. ACM, 2017.

[60] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Ey-
eriss: An energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE Journal of Solid-State Circuits,
52(1):127–138, 2017.

[61] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li,
Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shid-
iannao: Shifting vision processing closer to the sensor. In ACM
SIGARCH Computer Architecture News, volume 43, pages 92–104.
ACM, 2015.

[62] Jeff Dean. Machine learning for systems and systems for machine
learning, 2017.

[63] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yala-
manchili. Eridanus: Efficiently running inference of dnns using
systolic arrays. IEEE Micro, 39(5):46–54, 2019.

[64] Hsiang-Tsung Kung. Why systolic architectures? IEEE computer,
15(1):37–46, 1982.

[65] JEDEC. Jedec standard: Low power double data rate 2
(lpddr2). https://www.jedec.org/sites/default/files/
docs/JESD209-2B.pdf, 2019. [Online; accessed 04/10/20].

[66] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
161–170. ACM, 2015.

[67] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun
Xiong, Wen-mei Hwu, and Deming Chen. Dnnbuilder: an automated
tool for building high-performance dnn hardware accelerators for
fpgas. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[68] Yunxuan Yu, Chen Wu, Tiandong Zhao, Kun Wang, and Lei He. Opu:
An fpga-based overlay processor for convolutional neural networks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2019.

[69] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: end-to-end optimization stack for deep
learning. arXiv preprint arXiv:1802.04799, pages 1–15, 2018.

[70] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift. In
ICML’17, pages 448–456. ACM, 2015.

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[72] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[73] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In 3rd International
Conference on Learning Representations. ACM, 2015.

[74] Alex Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR’16, pages 770–778.
IEEE, 2016.

[76] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[77] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q
Weinberger. Condensenet: An efficient densenet using learned group
convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2752–2761, 2018.

[78] Joseph Redmon. Darknet: Open source neural networks in c. pjred-
die.com/darknet, 2013–2016.

[79] Martín Abadi et al. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[80] The Apache Software Foundation. Apache avro. https://avro.
apache.org, 2017. [Online; accessed 04/10/20].

[81] Makerhawk. Um25c usb power meter. makerhawk.com, 2019. [On-
line; accessed 04/10/20].

[82] Xilinx Inc. Pynq: Python productivity for zynq. pynq.io, 2019.
[Online; accessed 04/10/20].

[83] Younmin Bae, Ramyad Hadidi, Bahar Asgari, Jiashen Cao, and Hye-
soon Kim. Capella: Customizing perception for edge devices by
efficiently allocating fpgas to dnns. In 2019 29th International Con-
ference on Field Programmable Logic and Applications (FPL), pages
421–421. IEEE, 2019.

[84] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured prun-
ing of deep convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(3):32, 2017.

12

https://microsoft.github.io/ELL/
https://microsoft.github.io/ELL/
https://www.jedec.org/sites/default/files/docs/JESD209-2B.pdf
https://www.jedec.org/sites/default/files/docs/JESD209-2B.pdf
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://avro.apache.org
https://avro.apache.org
https://www.makerhawk.com/
http://www.pynq.io/

[85] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: efficient inference engine on
compressed deep neural network. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pages
243–254. IEEE, 2016.

[86] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika,
Reetuparna Das, and Scott Mahlke. Scalpel: Customizing dnn prun-
ing to the underlying hardware parallelism. In 44th International
Symposium on Computer Architecture (ISCA), pages 548–560. IEEE,
2017.

[87] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. In Advances in Neural Information Processing Systems
(NIPS), pages 2181–2191, 2017.

[88] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances in
neural information processing systems, pages 2074–2082, 2016.

[89] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalaman-
chili. Lodestar: Creating locally-dense cnns for efficient inference on
systolic arrays. In Proceedings of the 56th Annual Design Automation
Conference 2019, pages 1–2, 2019.

[90] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Train-
ing deep neural networks with low precision multiplication. arXiv
preprint arXiv:1412.7024, 2014.

[91] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal,
William Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke
Hornof, et al. Flexpoint: An adaptive numerical format for efficient
training of deep neural networks. In Advances in Neural Information
Processing Systems (NIPS), pages 1742–1752, 2017.

[92] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing
CNN accelerator efficiency through resource partitioning. In 44th
International Symposium on Computer Architecture (ISCA). IEEE,
2017.

[93] Jianxin Guo, Shouyi Yin, Peng Ouyang, Leibo Liu, and Shaojun Wei.
Bit-width based resource partitioning for cnn acceleration on fpga. In
25th Annual IEEE International Symposium on. Field- Programmable
Custom Computing Machines, 2017.

[94] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[95] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or- 1. arXiv
preprint arXiv:1602.02830, 2016.

[96] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In ECCV’16, pages 525–542. Springer, 2016.

[97] Google. Introduction to tensorflow lite. https://www.tensorflow.
org/mobile/tflite/, 2017. [Online; accessed 04/10/20].

[98] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[99] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile de-
vices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6848–6856, 2018.

[100] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4510–4520, 2018.

[101] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

[102] Barret Zoph and Quoc V Le. Neural architecture search with rein-
forcement learning. 2016.

[103] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. De-
signing neural network architectures using reinforcement learning.
arXiv preprint arXiv:1611.02167, 2016.

[104] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed
deep neural networks over the cloud, the edge and end devices. In 37th
IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 328–339. IEEE, 2017.

[105] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In 22nd ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 615–629. ACM, 2017.

[106] Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael S Ryoo,
and Hyesoon Kim. Musical chair: Efficient real-time recognition
using collaborative iot devices. arXiv preprint arXiv:1802.02138,
2018.

[107] Jiashen Cao, Fei Wu, Ramyad Hadidi, Lixing Liu, Tushar Krishna,
Micheal S Ryoo, and Hyesoon Kim. An edge-centric scalable intelli-
gent framework to collaboratively execute dnn. In Demo for SysML
Conference, Palo Alto, CA, 2019.

[108] Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael S Ryoo,
and Hyesoon Kim. Real-time image recognition using collaborative
iot devices. In Proceedings of the 1st on Reproducible Quality-
Efficient Systems Tournament on Co-designing Pareto-efficient Deep
Learning, page 1. 2018.

[109] Ramyad Hadidi, Jiashen Cao, Micheal S Ryoo, and Hyesoon Kim.
Collaborative execution of deep neural networks on internet of things
devices. arXiv preprint arXiv:1901.02537, 2019.

[110] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Conference on
Machine Learning, pages 6105–6114, 2019.

[111] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings
of the IEEE International Conference on Computer Vision, pages
1314–1324, 2019.

[112] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan
Zhang. Edge intelligence: Paving the last mile of artificial intelligence
with edge computing. Proceedings of the IEEE, 107(8):1738–1762,
2019.

[113] Ramyad Hadidi, Jiashen Cao, Michael S Ryoo, and Hyesoon Kim.
Robustly executing dnns in iot systems using coded distributed com-
puting. In Proceedings of the 56th Annual Design Automation Con-
ference 2019, pages 1–2, 2019.

13

https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/

	1 Introduction & Motivation
	2 Challenges
	3 LCP For Fast Inference
	3.1 Tailoring Models
	3.2 Tailoring Hardware

	4 Experimental Studies
	4.1 Generating LCP Models
	4.2 Exploring Performance on RPis, PYNQs, and AWS
	4.3 Edge FPGA Experiments
	4.4 ASIC Implementation

	5 Related Work
	6 Discussions
	7 Conclusions

