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Abstract — Deep neural networks (DNNs) have inspired
new studies in myriad edge applications with robots, au-
tonomous agents, and Internet-of-things (IoT) devices. How-
ever, performing inference of DNNs in the edge is still a severe
challenge, mainly because of the contradiction between the in-
tensive resource requirements of DNNs and the tight resource
availability in several edge domains. Further, as communica-
tion is costly, taking advantage of other available edge devices
by using data- or model-parallelism methods is not an effec-
tive solution. To benefit from available compute resources with
low communication overhead, we propose the first DNN par-
allelization method for reducing the communication overhead
in a distributed system. We propose a low-communication par-
allelization (LCP) method in which models consist of several
almost-independent and narrow branches. LCP offers close-
to-minimum communication overhead with better distribution
and parallelization opportunities while significantly reducing
memory footprint and computation compared to data- and
model-parallelism methods. We deploy LCP models on three
distributed systems: AWS instances, Raspberry Pis, and PYNQ
boards. We also evaluate the performance of LCP models on
a customized hardware (tailored for low latency) implemented
on a small edge FPGA and as a 16mW 0.107mm2 ASIC @7nm
chip. LCP models achieve a maximum and average speedups
of 56x and 7x, compared to the originals, which could be im-
proved by up to an average speedup of 33x by incorporating
common optimizations such as pruning and quantization.

1. Introduction & Motivation

The advancements of deep neural networks (DNNs) have
made revolutionary changes in domains such as robotics [1–5],
unmanned aerial vehicles (UAVs) [6–9], and Internet-of-
things (IoT) [10–15]. In these domains, such as smart
homes/cities/offices (e.g., connected cameras, gaming con-
soles, TVs, routers) or collaborative robots/drones (e.g., dis-
aster relief [16–18], agriculture [19, 20], mining [21], con-
struction [22], mapping [18, 23]), (i) ensuring an acceptable
accuracy is enough (e.g., detecting human sound in a disas-
ter area with either 87% or 90% accuracy necessitates more
investigation); (ii) the network of devices is standalone (i.e.,
Internet connection is not available/necessary); and (iii) the
network has a unified ownership and hence communication
among devices is not hazardous (e.g., IoTs at home, robots at
warehouse). In such domains, executing inference in-the-edge
could enable several features; however, performing the heavy
inference computations locally is still a challenge. This pa-
per enables performing DNN inference locally with efficient
distribution and parallelization in the edge environments.

The widespread approach to deal with the heavy inference
computations of DNNs is to offload the requests and private
data to high-performance servers of cloud providers [24, 25].
However, cloud-based offloading is not always available (e.g.,
no Internet access) and often relies on unreliable network
latency. Furthermore, with the exponential increase in the
number of edge devices [26] and the scale of raw collected
data, centralized cloud-based approaches might not scale [27,
28]. Privacy concerns [29–31] and personalization are other
main driving forces for in-the-edge inference. However, the
challenge is that performing DNN inference locally in the edge
demands high compute and memory resources that contradict
the energy, computational, and economical profile of edge
devices [32, 33].

The Current Approach: The current approach for enabling
local DNN inference while adhering to edge devices computa-
tional and economical profile is to locally distribute inference
computations by taking advantage of the existing surrounding
devices such as idle IoT devices. The distribution is based
on data- or model-parallelism methods [34, 35]. In data par-
allelism, the entire model is duplicated on each device for
performing separate inferences. Hence, the system needs sev-
eral live and concurrent inputs to be efficient without real-time
jitter. Simply put, data parallelism only increases throughput.
In model parallelism, the model is divided and distributed
across several devices for the same inference.

The Key Challenge: The communication overhead and the in-
herent inter-layer data dependency limits effective parallelism.
Therefore, an ideal parallelization method for edge devices,
must minimize the communication overhead, while yielding
low memory and computation footprints per node. However,
none of the current distribution methods jointly reduce mem-
ory usage, computations, and communication (see Table 1).
§2 presents a detailed description.

Our Solution: To address the aforementioned challenge, we
propose a low-communication parallelization (LCP) method
that enables the following: (i) Reduces Communication: LCP
models replace a single, wide, and deep model with several
narrow ones that only communicate for input and pre-final
activations. Thus, their communication load is low with dis-
tributions (see Table 1). (ii) Reduces Compute & Memory
Footprints Per Node: LCP models have fewer connections
than those of the original ones, so their number of param-
eters and computational demands are also lower than those
of the peer model-parallelism versions, shown in Table 1.
(iii) Allows Inter-Layer Parallelism: Narrow branches in LCP
models are independent of each other, which enables inter-
layer parallelism. This is in contrast to model parallelism
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Table 1: Methods for distributing inference computations.
Data Model

Parallelism Parallelism Target LCP
Memory

Per Device DNN 1
n DNN 1

n DNN ≤ 1
n DNN

Communication Intermediates
Per Inference IN/OUT +IN/OUT IN/OUT ≈ IN/OUT

Computation
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

DNN: Metrics associated with the entire model; n: Number of devices.

that only allows intra-layer parallelism due to the single-chain
dependency between consecutive layers. (iv): Recovers Accu-
racy with no Additional Parameters: After splitting the model
into branches, to recover a possible accuracy loss, LCP may
slightly fatten the branches. However, since it reduces unnec-
essary communications, the overall parameters after fattening
are still fewer than the original one.

LCP is orthogonal and an addition to current techniques
such as weight pruning [32] and quantization [36] that reduce
the computational demand of models. LCP models offer dis-
tribution/parallelism opportunities for distributed computing,
whereas current techniques apply accuracy/performance trade-
offs to single-node models. Such techniques can be applied
to each branch of our method, as shown in §4.3. Thus, LCP
complement such techniques rather than compete with them.

Experiments Overview: (1) We generate and evaluate LCP
models based on image-recognition DNNs on MNIST [37], CI-
FAR10/100 [38], Flower102 [39], and ImageNet [40] datasets
(total of 53 training results), covering all MLPerf [41] image-
recognition models. (2) To evaluate the execution performance
of our method, we conduct real-world implementations on
three distributed systems with up to 10 Raspberry Pis (RPis),
two PYNQ boards, and up to eight AWS instances. RPis
are chosen because they represent the de facto choice for
several robotic and edge use cases and they are readily avail-
able [42–46]. (3) We also evaluate the performance of LCP
on customized hardware. Because, besides tailoring models
based on hardware limitations, the architecture of hardware
could be tailored to better achieve the goal of fast inference.
To this end, we slightly modify the architecture of TPU [47]
to make it latency-optimized for edge applications rather than
throughput-optimized, and implement it on a small Xilinx
FPGA. (4) To further investigate area and power efficiency of
our tailored hardware for integrating with edge devices, we
implement an ASIC chip in ASAP 7 nm [48].

Contributions: Our contributions are as follows:

• We propose the first DNN parallelization method to reduce
the communication overhead for distributed inference.

• We generate LCP models, with inter-layer parallelism for
fast inference at small memory and computation footprints.

• We investigate the impact of hardware/software co-design
on inference performance, by tailoring the hardware of
TPU [47] for optimizing single-batch inference latency, and
implement it on a small FPGA and as a tiny 0.107mm2

low-power chip consuming only 16mW.

2. Challenges
We first explain inevitable resource limitation for executing
DNNs causing the single device Pareto frontier. Then, we
summarize current distribution methods and their limitations,
causing straggler problem and limited scope of parallelism.
Resource Limitation & Pareto Frontier: DNN models con-
sist of several layers, the computations of which are based on
custom weights that are learned during the training phase with
back-propagation. In the inference, feed-forward computa-
tions are performed on batched inputs, and learned param-
eters stay constant. The most compute- and data-intensive
layers [49] are fully connected and convolution layers.1 Fig-
ure 1 shows the number of multiply-accumulate operations
and parameter size in several DNN models. As shown, gener-
ally newer models encapsulate more parameters and perform
more computations for better and more generalized feature
understanding than their predecessors. In short, this trend of
modern models will inevitably surpass the capabilities of any
resource-constrained device.
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Figure 1: DNNs #MAC operations/inference and parameters.

The capabilities of resource-constrained platforms are lim-
ited. Figure 2 depicts latency per image using state-of-the-art
image recognition models on RPi [51]. All implementations
heavily utilize modern machine learning optimizations such as
pruning [32], quantization, low-precision inference [36,52,53],
and handcrafted models [54]. Additionally, the models are
highly optimized for ARMv8 architectures using the ELL
compilation tool [50]. However, achieving higher execution
performance is impossible on a single device due to the Pareto
frontier. As seen, the latency for high-accuracy models is
longer than 400ms, and generally, latencies are longer than
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with significant communication overhead.

1Since this paper focuses on visual models, we only introduced the layers
in such models. For future work, we aim to include other types of DNNs.
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Figure 3: Model parallelism for a fully connected layer.

100ms. In addition, the data shown in the figure is only for
image-recognition models; DNNs in other domains are already
surpassing these models in size and complexity. Fitting such
an exponentially increasing computation on a single device,
especially for edge devices, is a limiting factor for executing
DNNs in the edge. In other words, even after applying all
optimization techniques for DNNs, the single device Pareto
frontier limits the widespread applicability of DNNs in several
edge domains necessitating distribution and parallelization.
Current Distribution Methods: (1) Data parallelism (Fig-
ure 4a) parallelizes the computations of independent in-
puts [34, 35]. Data parallelism does not apply to the edge
because: It (i) serves several independent requests, the num-
ber of which is limited in an edge environment; (ii) does not
reduce end-to-end latency per inference and only increases
throughput. Latency is important in several applications in the
edge; and (iii) does not change the computation and memory
footprints per node (Table 1).

(2) Model-parallelism (Figure 4b) divides the inference
computations for the same request [34, 35]. This method
divides the computations within layer(s) while keeping depen-
dencies intact. Depending on the type of layer, the dividing
could take several forms. Figure 3 presents a simple exam-
ple for distributing a fully connected (fc) layer, illustrating
two extremes of model parallelism: Input and output split-
ting [14]. In output splitting, producing each output(s) is
divided among the devices. In input splitting, the input is
split and each device computes all parts of the output that
are dependent on their received input. As shown in Figure 3,
each method has communication overhead (transmission of
the input to all nodes or partial sums to a final node for sum-
mation). New model-parallelism methods is also crafted by

(a) Data Parallelism (b) Model Parallelism

(c) Hierarchical — SplitNet (d) This Work — LCP

Figure 4: Overview of distribution/parallelism methods.
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Figure 5: Histogram of prediction latencies on a six RPi sys-
tem executing AlexNet with model parallelism (§4.2).

mixing these two extremes, but they similarly suffer from the
same discussed overhead. Several model-parallelism meth-
ods also exist for convolution layers by using matrix-matrix
multiplication [55, 56]. Model parallelism does not change
the interconnection of a model. Hence, although model par-
allelism reduces the compute and memory footprint per node;
the single-chain dependency between consecutive layers limits
the parallelism scope within a single inference and causes
communication overhead.

(3) SplitNet [57], shown in Figure 4c, gradually splits the
model in a tree-structured style manually based on the dataset
semantics, extracted in intermediate to final layers. Therefore,
SplitNet (i) splits only intermediate to final layers, (ii) is invari-
ant to the number devices, (iii) creates imbalanced workload
because of its dependency on semantics, (iv) results in tree-
style connections, incurring high communication overhead,
and (v) enforces a new splitting when dataset changes.
Communication Overhead & Limited Parallelism: Cur-
rent distribution methods have a high communication over-
head and limited scope of parallelism which stems from the
single-chain dependency between consecutive layers. High
communication induces the straggler problem, in which a sys-
tem is lagged by its slowest node. Specifically, since edge
devices usually use a wireless network, the latency deviations
are high. As an example, Figure 5 depicts the histogram of
prediction latencies on a distributed IoT system consisting
of six RPis executing AlexNet with model parallelism. The
computing time is bounded to 500ms, but the average delay
is ≈2x longer (and ≈4x for tail latency). To gain perspec-
tive, Figure 6a shows VGG-S with model parallelism and its
communication overhead. As seen, dependencies enforce a
strongly interconnected network among the nodes. Although
several techniques such as compression could alleviate the
cost of communication, still the number of connections re-
mains constant. Therefore, an ideal distribution method for

VGG-S
with

Model-Paralleism

Communication Overhead (partially or fully)

(a)

VGG-S Split
in Two

Execution

(b)

Node 1

Node 2

Final Node

Around Half of parameters
and MACs 

Convolution Maxpool Fully ConnectedFlattenInput/Output

Figure 6: VGG-S (a) model parallelism and (b) LCP versions.
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edge devices besides yielding low memory and computation
footprints per node must consider communication overhead.

The single-chain dependency between consecutive layers
limits the available parallelism that could be harvested by
the aforementioned methods. The limitation is that after the
computations of a single/few layer(s) are done, the interme-
diate results must be merged before being forwarded to the
next layer. Such merging acts as a global barrier, which sim-
ilar to parallel programming, limits the gained performance
speedup. In summary, with parallel execution on multiple de-
vices, ideally, we could pass the frontier in Figure 2. However
current distribution methods are limited by the communication
overhead and the inherent inter-layer data dependency. The
next section proposes LCP models, which significantly reduce
communication and allow inter-layer parallelism.

3. LCP For Fast Inference
To address challenges, we propose LCP method, which re-
places a single, wide, and deep model with several narrow
branches that only communicate for input and pre-final activa-
tion (Figure 4d). Figure 6b shows an example of a two-branch
LCP model for VGG-S. This section first explains the design
procedure of LCP models and discusses their key features
enabling low-communication parallelization. The second part
focuses on tailoring a systolic architecture for edge computing.

3.1. Tailoring Models

Design Procedure: Figure 7 describes the design procedure
of LCP models. We start by inputting the DNN model and
its per-layer memory and computation footprints. Similarly,
we input the specification of the hardware, such as memory
size, computation capability, and any overhead associated
with executing a DNN on our hardware. For instance, several
DNN frameworks have a memory overhead because of the
framework. A splitter procedure, described in Procedure 1,
in a while loop, splits the model, cuts the connection, and
measures the approximate footprints of each branch. The
DivisionFactor, a hyperparameter, defines the granularity of
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Figure 7: Design Procedure of LCP models.

Procedure 1: LCP Splitter (in Figure 7)
Input :DNN: Layer configurations [0 : n]

DNNMem, DNNMAC: DNN memory and computational footprints
Divisionfactor: Division Factor for splitting
DevMem, DevMAC: Hardware specification

Output : DNN: Layer configurations [1 : n]
1 Split(DNN, DNNMem, DNNMAC, Divisionfactor, DevMem, DevMAC)
2 Memfit ← 0; MACMac ← 0;
3 while not Memfit and not MACMac do
4 Memfit ← DNNMem < DevMem

5 MACMac ← DNNMAC < DevMAC

6 for layer [0..n−1] in DNN do
7 layer.width← layer.width/ Divisionfactor

8 RemoveNonBranchConnections(DNN)

9 return <DNN>

division/splitting. Here, we assume the DivisionFactor of two,
but any number is viable. The loop exits when a single branch
is fitted on a device (both memory and computation wise). If
the number of devices is fewer than the number of branches,
the execution is still possible, but will be inefficient. Then,
we remove non-branch connections in a simple operation that
keeps only one connection per layer. The derived model from
the splitter is the split-only model. By training the split-only
model and testing it, we measure its accuracy. The split-only
models have fewer parameters and MAC operations than the
original models (see Table 2) in total. Hence, after distribution,
each branch has less computation and memory footprint than
its model-parallelism version.

As a result of fewer number of parameters and removing
several connections, a slight accuracy drop in split-only LCP
models is expected. Depending on the accuracy requirement
of the task, we either fatten each branch by F%, a hyperparam-
eter, or output the resulted model. We assumed a maximum of
3% bound for Taskerror. Fattening each branch by F% is done
by increasing the number of channels and output features of
convolution and fully connected layers of the split-only model,
respectively. Note that theses new split-fattened models are
fattened within each branch. Thus, even with a high fatten-
ing percentage, still they have fewer parameters and MAC
operations than the original model (see Table 3). When the
accuracy is in the acceptable error range for our task, Taskerror,
we output the model architecture and its weights. It is expected
that with similar number of parameters after fattening, LCP
models achieve the same level of accuracy [58]. We showcase
LCP models in §4.1 covering MLPerf [41].
Key Features of LCP Models: LCP models are designed by
considering their underlying computation domain and have the
following key features to address the challenges discussed in
§2: (1) LCP models only communicate for input and pre-final
activation. Therefore, they significantly reduce communica-
tion overhead in a distributed system. Additionally, the low
communication load per inference helps with the straggler
problem. This is in contrast to model parallelism, which highly
depends on communication among all the intermediate layers;
(2) LCP models split the size of a layer, so the total parameter
size and computation complexity of the model are reduced.
Therefore, they require fewer parameter sizes, less computa-
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tion complexity, and no communication between the nodes
for intermediate layers. These lower memory and computa-
tion footprints allow edge devices to efficiently operate within
their limited resources (e.g., no swap space activities due to
limited memory); (3) LCP models replace the original wide
model with several narrow and independent branches. Since
the computations of branches are not dependent, in contrast
to the single-chain of dependency in the original model, the
scope of parallelism is not limited with each layer anymore.
In other words, LCP models go beyond intra-layer parallelism.

3.2. Tailoring Hardware

Last section showed how we enable fast inference under re-
source constraints and at costly communication, by proposing
a low-communication parallelization method that results in
several narrow models. To further achieve the goal of fast
inference and recognize the potential, the hardware can also
be tailored. Recently, several popular tailored hardware de-
signs for DNNs [47, 59–63] including TPU [47] use systolic
arrays [64] that offer a high degree of concurrent process-
ing through a dataflow compute arrays hence providing high
throughput. In the edge applications, however, the main goal
is reducing single-batch inference latency, rather than high
throughput solely. This section introduces our microarchitec-
ture (Figure 8a), an example of tailoring and simplifying the
architecture of TPU to be implemented on small FPGAs or
be fabricated as tiny (i.e., 0.107 mm2 as shown in Figure 8b)
low-power chips to be integrated with edge devices.

Figure 8a illustrates our tailored microarchitecture that sim-
ilar to TPU, comprises a weight-stationary systolic array [64]
for implementing matrix-matrix multiplication. The systolic
array cells are organized in a 32x64 array ¶. To reduce the
number of connections, only the first row of the systolic array
is connected to the memory ¶. Moreover, each cell of the
first row is only connected to one data stream line ·. Based
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+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

row = i;

if i < length; i + +;

row = 0;
<latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit>

i

<< 6
<latexit sha1_base64="Qk+Z99zGNHVInFMth/OH+LSF0AA=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtUgRtLGMaD4gOcLeZi9Zsrd37M4JIeQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeIo4X5E+0qEglG00kOlctktFN2SOwNZJl5GipCh1i18dXoxSyOukElqTNtzE/THVKNgkk/yndTwhLIh7fO2pYpG3Pjj2akTcmqVHgljbUshmam/J8Y0MmYUBbYzojgwi95U/M9rpxhe+2OhkhS5YvNFYSoJxmT6N+kJzRnKkSWUaWFvJWxANWVo08nbELzFl5dJo1zyzkvl+4ti9SaLIwfHcAJn4MEVVOEOalAHBn14hld4c6Tz4rw7H/PWFSebOYI/cD5/AIPsjUo=</latexit>

+
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+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

…

last?<latexit sha1_base64="Am01QNGuHYldM+tXqbNi+J8Orjs=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiid4kevGIiQsksCHd0oWGbnfTzpoQwm/w4kFjvPqDvPlvLLAHBV/S5OW9menMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+ZIavOmVK27VnYOsEi8nFcjR6JW/uv2EZTFXyOwE0/HcFIMJ1SiY5NNSNzM8pWxEB7xjqaIxN8FkvuyUnFmlT6JE26eQzNXfHRMaGzOOQ1sZUxyaZW8m/ud1Moyug4lQaYZcscVHUSYJJmR2OekLzRnKsSWUaWF3JWxINWVo8ynZELzlk1dJs1b1Lqq1h8tK/TaPowgncArn4MEV1OEeGuADAwHP8ApvjnJenHfnY1FacPKeY/gD5/MHvemOow==</latexit>
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Figure 8: Details of Tailored Hardware for Edge: (a) Microar-
chitecture overview, and (b) Layout of ASIC design at 7nm.

on the type of an operand (t), streaming data is used for ei-
ther initialization or for processing. Since the width of the
systolic array is 32, a heuristic algorithm partitions the stream-
ing (i.e., non-stationary operand) into blocks of 32 width and
arbitrary length, and splits the stationary operand, into 32
× 64 blocks. To assist the smooth streaming of data from
memory to the systolic array, we map these blocks along with
their indices (i), type (stationary/non-stationary), and length to
sequential memory addresses. We implement our 32×64 sys-
tolic array connected to LPDDR2 memory with the data rate
of 933Mb/s/pin @466 MHz [65], which gives a bandwidth of
3.7 GB/s. Other packaging options with higher memory band-
widths are also feasible. However, seeking a fair comparison
with RPi3s, we choose this memory technology. The maxi-
mum data reuse rate of our design is 64 OPs/Byte, which leads
to a peak throughput of 217.6 GOPs/s. The following explains
three main modifications we made to this systolic architecture,
to achieve our goal of reducing single-batch latency.
(1) Adder Trees: Instead of MAC-based systolic arrays, we
separate adders from multiplications by integrating adder trees,
the well established components for DNN accelerators [66–
68], into systolic arrays architecture. Each cell of our systolic
array is a multiplier with two integer operands, one stationary
and one streaming (R1). Each row of the multiplier array is
connected to an adder tree ¸, pipelined in five (log232) stages.
Adder trees reduce the result of multiplications into a single
integer, which then contributes to creating an output element.
The structure of the multiplier array connected to the adder
trees reduces latency from O(n) to O(log(n)).
(2) Simple Indexing Logic: We use a data-driven execution
model, in which data is pushed by the memory to the systolic
array, triggered by the arrival of data. During execution, for
each element, the indexing logic (¹) generates the appropriate
row and column indices of the element using the index (i) of
a block and its length to accompany the result. The row and
column indices will later be used by the memory interface to
write the results to physical locations in memory. By compar-
ing the length and index (i), the end of the operations in the
current layer is detected. The end of the current layer signals
the start of activation and pooling functions (º) for that layer.
(3) Buffering Stationary Operands: The stationary
operands are often larger than the depth of the systolic ar-
ray. In such cases, we have to partition a multiplication into
several small operations that share a non-stationary operand,
but have distinct stationary operands. To avoid multiple loads
of stationary registers, we choose to integrate a buffer (») for
stationary operands at each cell. As a result, the design serves
requests with lower latency. Moreover, since each branch of
the model has several layers, integrating these buffers allows
fast context switching without the overhead of reloading the
stationary operands. These buffers are connected in a column
of cells, similar to streaming registers (R1)s. During the initial-
ization, stationary operands are poured into these connected
buffers to fill them by utilizing the connections between them.
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4. Experimental Studies

This section shares our experimental results for generating
LCP models and then their full-system implementation on
RPi, TVM [69] on PYNQ boards, and AWS servers. Finally,
we evaluated our hardware with edge FPGA implementation,
and ASIC chip design. At the start of each subsection, the
setup of related experiments is provided.

4.1. Generating LCP Models

Training Specifications: We train all the models, including
the original model, from scratch to conduct a fair comparison.
Normalization [70] layers are included. The training is done
with an exponential learning rate with a decay factor of 0.94,
initial learning rate 1e−2, number of epoch per decay of two or
10, a dropout rate of 50%, and L2 regularization with weight
decay of 5e−4. We use ADAM optimizer [71] with β1 =
0.9 and β2 = 0.99. All biases are initialized to zeros and all
weights are initialized with a normal distribution of mean 0 and
a standard deviation of 4e−2. All of our models are trained
until the loss is flattened or least for 12 epochs. Test and
accuracy measurements are done on at least 10% of datasets
that have never been used in training to provide an unbiased
evaluation of the model. For LCP, the DivisionFactor, F , and ε ,
are 2%, 10%, and ≈3%, respectively.
Datasets: We use the following datasets: (1) MNIST [37],
which contains 70k grayscale handwritten 28x28 images in 10
classes; (2) CIFAR10 [38], which contains 60k colored 32x32
images in 10 classes; (3) CIFAR100 [38], which contains 60k
colored 32x32 images in 100 classes; (4) Flower102 [39],
which contains 16,378 colored 224x224 images of flowers in
102 classes; and (5) ImageNet [40], which contains 1.33 M
colored 224x224 images in 1000 classes.
Models: We use the representative model for each dataset,
LeNet [72], LeNet-FC [72], VGG-S [73], CifarNet [38],
VGG16 [73], AlexNetv2 [74], ResNet-18/50 [75], and Mo-
bileNet [76]. We cover all image-recognition models in
MLPerf. In total, for brevity, we only report 53 instances of
training results to show LCP extensibility using five datasets
and nine models. Our additional results (not reported) with
ResNet-34, DenseNet [77], and DarkNet19 [78] confirms ex-
tendibility. Simple sequential DNNs serve as a basis to con-
firm our method, while ResNets and MobileNet showcase
LCP with modern models.
Split-Only Models: For split-only models, we use
DivisionFactor of two, which results in models with two, four,
and eight branches. Except the width, defined as output fea-
tures in fully connected layers and the number of output chan-
nels (i.e., filters) in convolution layers, the rest of the parame-
ters are similar to the original model as Splitter Procedure 1
only touches widths. Table 2 lists the training results. Fig-
ure 9a illustrates the accuracy difference of our models, shown
in Table 2. As shown, the maximum accuracy drop is around
5% for CifarNet. Note that this accuracy drop occurs when we

Table 2: Results of split-only LCP models.

Model Name Dataset Layers† Top-1 # # MAC
Accuracy Param Opr.

LeNet-FC* MNIST 3fc 97.95 266.6k 266.2k

LeNet MNIST 2fc-3c-2p 98.76 61.7k 61.5k
LeNet-split2 MNIST 3fc-6c-4p 98.86 31.5k 30.5k
LeNet-split4 MNIST 5fc-12c-8p 98.93 16.1k 16.0k
LeNet-split8 MNIST 9fc-24c-16p 98.81 8.8k 8.5k

CifarNet* Cifar10 2fc-2c-2p-2n-1d 80.72 797.97k 14.79M

CifarNet Cifar100 2fc-2c-2p-2n-1d 52.87 815.34k 14.81M
CifarNet-split2 Cifar100 5fc-4c-4p-4n-2d 51.22 410.48k 9.33M
CifarNet-split4 Cifar100 9fc-8c-8p-8n-4d 48.48 208.05k 6.59M
CifarNet-split8 Cifar100 17fc-16c-16p-16n-8d 47.98 106.85k 5.23M

VGG-S* Cifar100 3fc-5c-2p-1n-2d 50.33 76.15M 154.09M

VGG-S Flower102 3fc-5c-3p-1n-2d 88.14 60.79M 1.85G
VGG-S-split2 Flower102 5fc-10c-6p-2n-4d 89.31 30.50M 1.01G
VGG-S-split4 Flower102 9fc-20c-12p-4n-8d 87.55 15.26M 591.65M
VGG-S-split8 Flower102 17fc-40c-24p-8n-16d 85.66 7.64M 382.51M

ResNet-18 ImageNet 18c-2p-17n 70.68 11.69M 1.82G
ResNet-18-split2 ImageNet 35c-3p-34n 69.85 6.11M 0.98G
ResNet-18-split4 ImageNet 69c-5p-68n 68.07 3.32M 0.55G
ResNet-18-split8 ImageNet 137c-9p-136n 66.76 1.93M 0.34G

† fc: fully-connected, c: convolution, p: pooling, n: normalization, and d: dropout.
* Detailed results are removed for brevity, refer to Figure 9. The results follows the same trend.

reduced the parameter size of our model extensively (around
1/8). Figure 9b and c show reduction in the number of parame-
ters and computation compared with the original DNN model;
as seen, each split reduces both by about split f actor times. This
is because each convolution and fully connected layer in the
split version create fewer outputs; therefore, the next layer
requires fewer parameters. In the next section, we restore the
accuracy of LCP models with split-fattened models.
Split-Fattened Models Accuracy is a defining factor in sev-
eral applications. Thus, we provide a remedy to restore the
accuracy of split-only models. By fattening (i.e., adding more
parameters) each branch, we aim to create larger layers in the
split-only models. To do so, for each layer (excluding classifi-
cation layer) in every branch, we increase the width by a frac-
tion. So, fattening by 20% means the size of the output in each
layer is increased 1.2x. We fatten every branch in 10% steps
as Procedure 1 shows. Our experiments focus on split8, which
have the highest accuracy drops. Figure 10 shows a summary
of these models. As seen, 40% split-fattened models have
higher accuracy than the original model while having fewer
parameters and MAC operations. On average (for 30% and
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Figure 9: Split-Only Models: (a) Accuracy, (b) reduction in the
number of parameters, and (c) reduction in the number of MAC
operations in comparison with the original model.
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Figure 10: Split-Fattened Models – Common visual models (a)
Accuracy difference, (b) reduction in the number of parame-
ters, and (c) reduction in the number of MAC operations in
comparison with the original one (Table 2).

40% models), with 4.61x–3.81x fewer parameters and 2.95x–
2.5x fewer MAC operations, split-fattened models achieve
accuracy within our error bound of 3%, Taskerror, while they
jointly optimize memory, computation, and communication
for edge.
ImageNet Models: Table 3 illustrates the results of ImageNet
models. For the sake of brevity, we only show split8 and one
fattened model. As shown, f40 models restore the accuracy
within 3% of the original model. The tradeoff for 3% accuracy
loss is about 4x fewer parameters, 4x fewer computations, and
8x less communication load (vs. model parallelism). Figure 11
presents a comparative analysis for the communication load
between distributed original models with model parallelism
and distributed LCP models. Since LCP models avoid com-
munication between their branches, the communication load
is reduced significantly. In short, although split models are
more complex than the original models in terms of the number
of layers and connections, they achieve more parallelism with
less communication load.

4.2. Exploring Performance on RPis, PYNQs, and AWS

RPi Experiments Setup: To study the benefits of LCP mod-
els versus only model-parallelism methods, we deploy several
models on a distributed system of Raspberry Pi 3s (RPis),
the specifications in Table 4. On each RPi, with the Ubuntu
16.04 operating system, we use TensorFlow [79] and Apache
Avro [80], a remote procedure call (RPC) and data serialization
framework, for communication between RPis. We measure
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Figure 11: Communication reduction with LCP models com-
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Table 3: Results of ImageNet LCP models.

Model Name Dataset Top-1 Top-5 # # MAC
Acc. Acc. Param. MAC Opr.

AlexNet ImageNet 57.02 80.32 50.3M 678.97M
AlexNet-split8 ImageNet 49.03 73.10 6.32M 145.37M

AlexNet-split8-f40 ImageNet 54.68 77.06 12.11M 244M

VGG16 ImageNet 70.48 90.02 138.36M 15.47G
VGG16-split8 ImageNet 58.67 81.54 7.64M 2.01G

VGG16-split8-f40 ImageNet 67.24 89.23 33.78M 3.87G

ResNet-50 ImageNet 75.4 93.1 22.80M 4.87G
ResNet-split8 ImageNet 61.79 81.22 5.42M 0.88G

ResNet-split8-f40 ImageNet 72.12 92.19 8.60M 1.18G

MobileNet ImageNet 71.7 90 4.24M 4.86G
MobileNet-split8 ImageNet 59.68 83.23 1.12M 0.93G

MobileNet-split8-f40 ImageNet 68.05 89.12 2.12M 1.34G

For [model_name]-f[number], number represent the percentage of fattening.

power using a USB digital multimeter [81]. A local WiFi net-
work with the measured bandwidth of 62.24 Mbps and a mea-
sured client-to-client latency of 8.83 ms for 64 B is used. All
the real-world experiments are full-system measurements with
all overheads included without any simulations/estimations.
RPi Performance & Energy: Figure 12 presents latency of
inference per image on RPis. On a single device, AlexNet
has 2.8 seconds latency, while VGG16 achieves 9.4 seconds
latency. By deploying model-parallelism variants of the mod-
els on four and eight RPis, we achieve a maximum of 0.42s
latency, a 6.6x increase, for AlexNet. But, for VGG16, on
four RPis, we observe a slowdown, which is caused by high
communication latency. LCP variants of split4 and split8
can reach up to 115 ms and 400 ms latency per image for
AlexNet and VGG16, respectively. This is because LCP mod-
els are lightweight and parallelizable and have low commu-
nication. Figure 13 shows measured energy per inference
for RPi implementations. To compare with previous related
work, SplitNet [57], Figure 12 presents the performance of
SplitNet models for AlexNet with different configurations. As
seen, the performance is worse than LCP models. This is
because SplitNet creates more merging/synchronization points
with its tree-structured model design. The resulting model
exponentially introduces more merging/synchronization with
increased depth, which also does not equally split all the layers
(causing load balancing issues). Finally, SplitNet performs
parallelization based on dataset semantics, which means every
dataset and model needs to be manually split. §2 provided
more reasons on this performance difference.
TVM Experiments on PYNQ Boards: As a real-world ex-

Table 4: Specification of RPi, PYNQ FPGA, and AWS.
Raspberry Pi 3B+

CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 1 GB LPDDR2 SDRAM @ 933Mb/s/pin
Die Size ≈ 196mm2 @ 28 nm

Edge FPGA (Zynq Artix 7 XC7Z020)

Utilization
DSP48E FF LUT

#Unit 96 5427 2343
% 44 5 4

Static Power 0.121 W
Dynamic Power Signals: 0.009 W Logic: 0.003 W

AWS
AWS Instance T2.micro
Specification 1 vCPU, 1 GB Memory, 64 GB Storage
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ample for edge FPGA implementation, we use TVM [69]
on the PYNQ [82] board. PYNQ is designed for embedded
applications. We use the TVM VTA stack on the PYNQ as
the architecture (RISC-style instructions) and only change
the models (ResNet-18 vs. LCP ResNet-18 Split2 with <1
accuracy drop). In this way, we can measure the benefits of
LCP models without relying on any special tailored hardware.
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Our performance result
shares the entire system
pipeline performance,
from a live camera feed to
prediction output on two
boards versus one board.
Figure 14a shows a 2.7x
speedup, including all
communication and system
overheads, network latency,
and jitter because LCP
models are parallelized on
two devices and, in total,
they have lower computa-
tion and memory footprints.
The measured reduction in
memory footprint is shown
Figure 14b.
AWS Experiments: To see the reduced communication and
distributed execution benefits of LCP models further, we
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Figure 15: Average, minimum, and maximum latencies of dis-
tributed LCP execution on AWS T2.micro instances with 1
vCPU and 1 GB memory per instance.

deploy AlexNet, VGG16, and ResNet-50 models on AWS
T2.micro instances with only one vCPU and 1 GB memory
per instance. Figure 15 presents the derived statistics. In all
cases, LCP models not only reduces the average latency but
also significantly reduce maximum latency. Splits four and
eight have lower speedup compared with our RPi experiments
because all the 4/8 instances are not hosted on the same ma-
chine; thus, the communication cost is higher than the usual
edge-specific cases that this paper targets.

4.3. Edge FPGA Experiments

FPGA Experiments Setup: We implement our tailored mi-
croarchitecture on a ZYNQ XC7Z020 FPGA targeting PYNQ-
z1 boards [83]. We use Xilinx Vivado HLS for implemen-
tation and verify the functionality of our implementation us-
ing regression tests. We use relevant #pragrma as hints to
describe our desired microarchitectures in C++. We synthe-
size and implement our design using Vivado and report post-
implementation (i.e., place & route) performance numbers and
resource utilizations. Inputs and output of our design are trans-
ferred through the AXI stream interface. The clock frequency
is set to 100 MHz. Communication for multiple devices is
estimated with the network provided in §4.2.
FPGA Performance: Figure 16 shows the experiment results
for our edge-tailored hardware. The latency per image is
shown in Figure 16a, with improvement in communication
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Figure 17: Edge FPGA with tailored hardware speedup with quantization & pruning. Additional speedup is gained by applying
lossless (≤0.1%) quantization and structured pruning.
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overhead versus model-parallelism methods (86% and 60%
for 8split and 4split). Depending on the model, the inference
per latency on a single device is between 4–29ms; a 221–325x
speedup compared to RPi results for AlexNet and VGG16.
Our designed LCP models achieve acceptable performance for
edge computing, which is 10s of inferences per second, around
1–10ms. As observed, the accuracy loss of our split-only mod-
els can be easily restored by fast split-fattened models of f40
with a negligible performance overhead (maximum of 20 ms).
Figure 16b illustrates the speedup numbers over one device.
The ideal linear speedup shows the ideal scaling speedup with
more available devices. As shown, we achieve superlinear
speedups. An important parameter in scaling concerns how
the overheads scale. The superlinear speedup stems from
the dramatic reduction of communication overhead as paral-
lelism increases. In traditional data and model parallelism,
such overhead increases, which causes sublinear speedup. Fig-
ure 18 compares latency per image for LCP and model paral-
lelism. On average, LCP models are 3.76x, 8.89x, and 7.17x
faster than their model-parallelism counterparts for AlexNet,
VGG16, and ResNet-50 (4 and 8 devices), respectively. LCP
achieves a maximum and average speedups of 56x and 7x,
compared to the originals (Figure 17, base bars).
Quantization & Pruning: As mentioned in §5 and §1, tech-
niques that reduce the footprint of DNNs can be applied to
each individual LCP branch. Basically, the target output for
each LCP branch is now its pre-final activations during opti-
mizations. We study the benefits of lossless quantization and
structured pruning on top of our LCP models. Based on our
experiment, with 3.13 (<integer.fraction>) quantization, our
models do not lose accuracy. Similarly, applying structured
pruning [84], for which systolic arrays gain benefits, reduces
the size of parameters between 40%–50% per convolution
layer without an accuracy drop. Other pruning algorithms
increase the sparsity of the data, which is not necessarily bene-
ficial for systolic arrays. Figure 17 presents the speedup gained
from these techniques normalized to the baseline implemen-

tation for each model, the execution performance of which
shown in Figure 16a. Quantization and pruning themselves,
improve the performance of the original models by 1.96x and
2.2x, respectively, and 4.31x when applied together. When
quantization and pruning are combined with LCP, the overall
performance speedup becomes 14.41x and 16.31x, respec-
tively. Compared to the original models, LCP + quantization
and pruning achieves up to 244x speedup (VGG16-split8), and
an average of 33x (across all models and variants).

4.4. ASIC Implementation

We implement the ASIC design of LCP using an Arizona
State Predictive PDK (ASAP) 7nm technology node [48]. Our
tool chain includes the Synopsys design compiler (DC) for
synthesis, Cadence Innovus for place and route, and Cadence
Tempus for timing and power analysis. As an input to our
ASIC design, we use our same Verilog code generated by
Vivado HLS. Figure 8b show the layout of our chip of size
0.107 mm2 (i.e., 295µm× 365µm). The memory cells shown
in the figure represent the FIFO buffers, used for pipelining.
Figure 19 shows the power consumption of our ASIC design.
The breakdown of power consummation leading to a total
16.1 mW is listed in Figure 19a. As a comparison point,
Eyeriss [60] and EIE [85] consume ≈250 mW and ≈590 mW,
respectively. Besides, as Figure 19b shows, power distributes
uniformly, which prevents hot spot creation.

5. Related Work

We review related techniques used to reduce the high demands
of DNNs, distributing their computation, and current efforts
on DNN hardware accelerators.
Techniques Without Changing Model Architecture: Sev-
eral techniques have been developed to reduce the computation
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and memory footprint of DNNs without changing the network
architecture. For instance, pruning [32, 86–89] removes the
close-to-zero weights and quantization or low-precision infer-
ence [36,52,53,90,91] change the representations of numbers,
which results in simpler calculations. Other methods partition
resources [92, 93] or binarize the weights [94–96]. Binarizing
weights hurts accuracy. The aforementioned techniques are
orthogonal to our work and can be applied to each branch to
further reduce the computational and memory costs (§4.3).
Techniques That Change Model Architecture: With the
prevalence of IoT and edge devices, specific frameworks such
as ELL library [50] (see Figure 2) by Microsoft and Ten-
sorflow Lite [97] have been developed by industry. Other
proposals developed mobile-specific models [54, 77, 98–100]
by handcrafting more efficient operations or models to reduce
the number of parameters [54], create efficient operation to
minimize computation density [98], or use resource-efficient
connections [100]. Unlike LCP models, all these models
have a single chain of dependency [58] that prevents efficient
parallelism. Moreover, several of the models trade off the
state-of-the-art accuracy with efficiency [100]. SplitNet [57]
is one the few papers that focuses on higher parallelizability
of models (evaluation on ResNet and AlexNet), but relying
on dataset semantics creates imbalanced branches and the
method is invariant to number of devices, as discussed in §2.
Recently, with the growing interest in automating the design
process [58, 101–103], learning new networks for mobiles has
also gained attention by integrating the constraints of mobile
platforms (i.e., latency). These attempts are still limited to
single-device execution. In summary, these studies (1) have a
high design cost, (i.e., they target only one specific model and
dataset without extendibility); (2) target single mobile plat-
forms; and (3) do not consider inter-layer layer parallelism
and communication challenges.
Distributing DNN Inference Computations: With large
DNN models, distributing a single model has gained the atten-
tion of researchers [5,14,35,104,105]. Usually, the distribution
is done in a high-performance computing domain with differ-
ent goals in mind. In the resource-constrained edge devices,
Neurosurgeon [105] dynamically partitions a DNN model
between a single edge device and the cloud. DDNN [104]
partitions the model between edge devices and the cloud but
uses data parallelism. Hadidi et al. [5, 14, 106–109] investi-
gate the distribution in edge with model-parallelism methods,
showing the effect of the communication barrier in distributing
by the diminishing return in performance with a large number
of devices. LCP models go beyond model parallelism meth-
ods, which was not the focus of the above studied, and enable
efficient distribution that is not examined in the above studies.

6. Discussions
Intuition Behind LCP: We conjecture that LCP models pro-
vide good performance because (1) independent branches
learn complex non-overlapping features independently within

a small search space, whereas original models need to create
the same complex features from a higher dimension feature
search. We observe that each branch eventually learns an
almost disjoint feature representation; (2) In split models,
gradient descent updates are more efficient in reaching early
layers compared to the original models due to fewer number
of parameters in their route.
Extension to New Models: We studied ResNets and Mo-
bileNet, which are still widely used models. Other models
represent sequential DNNs that serve as the basis to confirm
our method and are still used in robotics. Newer models such
as EfficientNet [110] and MobileNetv3 [111] that use novel
blocks such as Bottleneck or Squeeze & Excitation can be rep-
resented with convolution, fully connected, and basic matrix
multiplications. All of which can be parallelized by LCP.
System-Level Choices: LCP is in conjunction with other
technologies available today. LCP does not replace these tech-
nologies, but rather enables exploitation of local edge devices
to enable intelligence in the edge [112, 113]. In a few cases,
relying on cloud-based offloading for accuracy-critical tasks
is necessary (e.g., finding a specific license plate), whereas, in
several others (e.g., counting the cars passing an intersection)
the system must rely on cloud or high-performance systems.
SqueezeNet: SqueezeNet [54] achieves an accuracy similar
to that of AlexNet with fewer parameters by using compute-
heavy Fire modules. SqueezeNet trades off parameters with
computations, and requires 860M MAC operations, whereas
our distributed AlexNet requires only 240M MAC operations.
We also observe a 12x increase in the number of activations
from 12.58 M in SqueezeNet vs. 1.39 M in AlexNet.
Skip/Residual Connections: LCP procedure similarly ap-
plies to more complex models with residual and skip connec-
tions as shown for ResNets in §4. Simply put, each branch has
similar connections but with smaller depth.
Alleviating Large Memory Footprints: Sometimes large
memory footprints are necessary and access to the next levels
of the storage system is enforced. In our design (§3.2), such
accesses do not cause slowdown because data is stored in
sequential addresses (i.e., streaming), and we overlap data
transfer and computations for independent elements.
Memory Layout Preprocessing: Our simple algorithm to
change the storage format is in O(N) (§3.2(4)). Therefore, the
host preprocessing for reordering the data can be done during
writing the data to the memory with a single pass.

7. Conclusions
We proposed low-communication parallelization (LCP) mod-
els, designed for efficient in-the-edge distribution. LCP mod-
els optimize communication while reducing memory and com-
putation by utilizing several narrow independent branches. We
presented our results on the accuracy of LCP models. We build
a systolic architecture for edge computing both on FPGA and
ASIC. Finally, our results on RPis, edge-based FPGAs, AWS
instances confirms the benefits.
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