2011.07092v1 [cs.CV] 13 Nov 2020

arxXiv

Reducing Inference Latency with Concurrent
Architectures for Image Recognition

Ramyad Hadidi!, Jiashen Cao'!, Michael S. Ryoo?, Hyesoon Kim!

Georgia Institute of Technology', Stony Brooks University?

T Same Contribution

Abstract. Satisfying the high computation demand of modern deep
learning architectures is challenging for achieving low inference latency.
The current approaches in decreasing latency only increase parallelism
within a layer. This is because architectures typically capture a single-
chain dependency pattern that prevents efficient distribution with a
higher concurrency (i.e., simultaneous execution of one inference among
devices). Such single-chain dependencies are so widespread that even
implicitly biases recent neural architecture search (NAS) studies. In this
visionary paper, we draw attention to an entirely new space of NAS
that relaxes the single-chain dependency to provide higher concurrency
and distribution opportunities. To quantitatively compare these archi-
tectures, we propose a score that encapsulates crucial metrics such as
communication, concurrency, and load balancing. Additionally, we pro-
pose a new generator and transformation block that consistently deliver
superior architectures compared to current state-of-the-art methods. Fi-
nally, our preliminary results show that these new architectures reduce
the inference latency and deserve more attention.

1 Introduction & Motivation

Increasingly deeper and wider convolution/deep neural networks (CNN/DNN) (37,
with higher computation demands are continuously attaining higher accu-
racies. Nevertheless, the high computation and memory demands of these DNNs
hinder achieving low inference latency [14]. Although current platforms exploit
parallelism, we discover that, since most architectures capture a single-chain
dependency pattern , shown in Figures & b, we cannot efficiently
extend concurrency and distribution beyond current explicit parallelism exposed
within intra-layer computations (i.e., matrix-matrix multiplications) to reduce
the latency of an inference. In other words, distribution and concurrency, if any,
is implemented at data level , which only increases the throughput.

The status quo approaches in reducing the inference latency are always ap-
plied after an architecture is defined (e.g., reducing parameters with weight
pruning |16] or reducing computation with quantization) Additionally, for
extremely large architectures, limited model parallelism is applied on final layers
(i.e., large fully-connected layers that do not fit in the memory [11-13]). However,
since model-parallelism methods do not change the architecture, distributing all

2 Hadidi & Cao et al.

@ Single-Chain Dependency
X Not Concurrent

Concurrent 0@0 Easily Distributed

Hard To
Distribute

v/
8
ﬁ'! ”

) \ V&%

(a) ResNet50

(c) This work
(with DP generator)

Fig.1. Sampled Architectures Overview — (a) & (b) Limited concurrency and
distribution due to single-chain dependency. (c) Improved concurrent architecture.

layers with such methods adds several synchronization/merging points, incurring
high communication overheads (Figure[Th & b). We discover that the single-chain
inter-layer dependency pattern, common in all the well-known architectures and
even in state-of-the-art neural architecture search (NAS) studies |48|, prevents
the efficient model distribution for reducing inference latency.

This visionary paper addresses the single-chain data dependency in current
architecture designs and endeavour to inspire discussion for new concurrent ar-
chitectures. To do so, first, we analyze architectures generated by recent unbi-
ased NAS studies [48] and discover that scaling/staging blocks implicitly en-
force dependencies. Then, we generate new architectures with prior and our new
distance-based network generators using our new probabilistic scaling block.
Then, for quantitatively comparing generated architectures, we propose a con-
currency score that encapsulates important metrics such as communication, load
balancing, and overlapped computations, by reformulating the problem as a hy-
pergraph partitioning problem [4,27]. Based on the scores and experiments, our
generated architectures have higher concurrency and are more efficient for distri-
bution than current architectures, an example of which is shown in Figure[Te. Ad-
ditionally, as shown in Figure[2] they provide competitive accuracy while deliver-
ing high concurrency, directly proportional to inference latency (Figure . Our
experiment results (on over 1000 samples) show that our architectures achieve
6-7x faster inference time. As an added benefit, the current methods in reducing
the inference latency can be applied on top of our generated architectures. The
following is our contribution:

Addressing Single-Chain Data Dependencies: Our concurrent archi-
tectures created by network generators (specially the new distance-based
generator) break current biased designs by delivering high concurrency.

Reducing Inference Latency with Concurrent Architectures 3

88 <
Lower Score =
87 More Concurrent
* Architectures
Y Prior Work:
86 PY Ineffective Distribution
> * & No Concurrency
© 851 For an Inference
5 wk v °
Y 841 ve® e . [Y DP
< * ¢/ @ R
83 \A4 21y BA
This Work: F
82 - Enabling Distribution ws
& Concurrency ¢ FB
For an Inference
81 T r T T .
1 2 3 4 5 6 7

Concurrency Score

Fig. 2. Accuracy vs. Concurrency Score — Randomly sampled concurrent architec-
tures generated with our NAS consistently achieve competitive accuracies with a higher
concurrency and distribution opportunities during an inference (Flower-102, .

Proposing Representative Concurrency Score: Our problem formu-
lation based on hypergraph theory encapsulates critical metrics to quanti-
tatively compare all architectures for efficient distribution and concurrency.

2 Related Work

Computation & Parameter Reduction: Reducing computation and param-
eters to reduce inference latency is an active research area. These techniques
are applied after an architecture is fixed. One common approach is to remove
the weak connections with weight pruning [2}/16,30,45./49], in which the close-
to-zero weights are pruned away. It is also been shown that moderate pruning
with iterative retraining enables superior accuracy [16]. Quantization and low-
precision inference [6,10}[24)[29,/43] change the representation of numbers for
faster calculations. Several methods also have been proposed for binarizing the
weights [7],28,36]. The concurrent architectures can also benefit from these ap-
proaches, making them complementary to further reduce inference latency.
Concurrency & Distribution: With increasingly larger architectures and
widespread usage of deep learning, distribution have gained attention [8||11]
20(321/42]. Most of the techniques either exploit data or model parallelism [8}|26].
Data parallelism only increases the throughput of the system and does not affect
the latency. Model parallelism divides the work of a single inference. However,
model parallelism keeps the connections intact. Thus, applying model parallelism
on intra-layer computations results in a huge communication overhead for shar-
ing the partial results after each layer due to existing single-chain dependency.
SplitNet [22] focuses on improving the concurrency opportunity within an archi-
tecture by explicitly enforcing dataset semantics in the distribution of only the
final layers. Each task needs to be handcrafted individually for each dataset by
examining the semantics in the dataset. In this paper, we propose concurrent
architectures that is generated by NAS by considering all important factors for
distribution, which has not been explored by prior work.

4 Hadidi & Cao et al.

Neural Architecture Search: With the growing interests in automating the
search space for architectures, several studies [3,[31},37,41,(48,/50/51] have pro-
posed new optimization methods. Most of these studies [50451] utilize an LSTM
controller for generating the architecture. However, as pointed out in [48], the
search space in these studies is determined by the implicit assumption in network
generators and sometimes explicit staging (i.e., downsampling spatially while
upsampling channels). Although Xie et al. [48] aimed to remove all the implicit
wiring biases from the network generator by using classical random graph gener-
ator algorithms, they introduced a scaling/staging bias in the final architecture
to deal with a large amount of computation. Such stagings create a merging
point after a stage where all the features are collected and downsampled before
the next stage. Hence, the generated architecture still carries the single-chain
of dependency which limits the further concurrency. In contrast, our proposed
architectures do not enforce such a dependency by removing this bias. Moreover,
compared to prior work, our target is to reduce inference latency by increasing
concurrency, which has not been explored before.

3 Concurrent Architectures

Here, we propose concurrent architectures that break the single-chain depen-
dency pattern for enabling concurrent execution of an inference. To improve
distribution and concurrency, we aim to search for an architecture that has min-
imal communication overhead and is load balanced when it is distributed. To
do so, the following provides the general problem formulation, while §3.1] and
describe our implementation details. In we extend the representation
to quantitatively study distribution and concurrency opportunities, derived by
reformulating the problem as a hypergraph partitioning problem.

Overview: The current design of neural architectures is optimized for prediction
accuracy and has an implicit bias towards the single-chain approach [48,50], as
we discussed in This bias limits concurrency and distribution for reducing in-
ference latency. In other words, only the computation within a layer is performed
in parallel and not the computation within a model. To tackle this challenge, we
aim to consider concurrency and distribution during the design stage and test
if such architectures provide higher concurrency with good accuracy. To do so,
first, we use network generators to create a random graph structure, which rep-
resents a potential architecture. Among all generated architectures, we sample
(without any optimized search) and evaluate generated architectures with our
proposed concurrency score. Then, we transform the graph to a DNN and per-
form experiments. Our final results show a promising direction worth exploring.
DAG Representation: A neural architecture, N/, can be represented as a di-
rected acyclic graph (DAG) because the computation flow always goes in one
direction without looping. We define a DAG as G = (V, E) where V and E are
sets of vertices and edges, respectively. We define a network generator, f, as a
function that constructs random DAG. f creates the edge set, F/, and defines the
source and sink vertices for each edge, regardless of the type of the vertices. Al-

Reducing Inference Latency with Concurrent Architectures 5

though network generators could be deterministic (e.g., a generator implemented
with NAS approach), we are interested in stochastic network generators. The rea-
sons are two-fold. First, the stochastic generator provides a larger search space
than the deterministic generator, so it is more likely to remove any bias. Second,
since, unlike prior work, we don not use scaling/staging to glue different parts
of our NAS generated network [48] (shown in Figure [Ip), stochastic generators
provide more options for a potential solution. Note that the generated DAG only
represents the dataflow and does not include the weights, which are learned in
subsequent steps. provides more details about our network generators and
how we utilize them to create a DAG.

DAG to DNN: Once we have found a promising DAG representation after the
concurrency score study, we transform the DAG into an actual DNN. Vertices in
DAG are components (e.g., layers or sub-networks) and edges are connections.
Within the process of transformation, we convert the nodes in DAG to a block of
layers and connect blocks with its corresponding edge in DAG. Each vertex, V;,
has several properties such as type of the layer and its properties (e.g., depth,
width, activation size, etc.). In this paper, we use a uniform computation in
vertices: ReLU, 3x3 separable convolution [5], and batch normalization [19).

3.1 Network Generators

We use three classical random graph generators as baselines. Additionally, after
discovering that state-of-the-art generators do not generate a concurrent archi-
tecture, we propose a new graph generator with distance-based heuristics. Below,
we describe the generators identified by how their stochastic nature influences
the graph. Note that although the first three generators are based on 48], to gen-
erate concurrent architectures, we have removed the introduced staging blocks,
which enforces the single-chain dependency in prior work. Thus, all the studied
architectures in this work are novel and have never been studied before.

Once we obtain an undirected random graph from the generator, we convert
the undirected graph to DAG by using the depth-first search algorithm. The
vertices with smaller vertex ID is traversed earlier than vertices with larger ID.
As the final step, we add an input vertex to all vertices without predecessors and
an output vertex to all vertices without successors. This ensures that we obtain
a DAG with a single source and sink.

(1) Independent Probability: In this group, the probability of adding an
edge is independent of other properties. Similar to the Erdés and Rényi model
(ER) [9], in which an edge exists with a probability of P. Generators with in-
dependent probability completely ignore the graph structure and create a con-
nected graph (Figure [3h) that is hard to efficiently distribute.

(2) Degree Probability: In this group, the probability of adding an edge is
defined by the degree of one of its connected vertices. A vertex with a higher
degree has more probability of accepting a new edge. Figure[3p shows an example
of such a generator. Barabdsi-Albert model (BA) [1], first adds M disconnected
vertices, then for the total number of vertices until N, it adds a total of M edges
with a linear probability proportional to the degree of each vertex (i.e., a total of

6 Hadidi & Cao et al.

M(N — M) edges). Generators with degree probability create a tree-structured
graph, in which at least one vertex is strongly connected to other vertices. Such
a graph structure is hard to distribute since all the vertices are dependent on at
least one vertex, if not more.

(3) Enforced Grouping: In this group, initially, a pre-defined grouping is per-
formed on disconnected vertices and then edges are added based on the groups.
Small world graphs [23]33/44] are good examples. In one approach (WS) [44],
vertices are placed in a ring and each one is connected to X/2 neighbors on both
sides. Then, in a clockwise loop on vertices, an existing edge between its iy,
neighbor is rewired with a uniform probability of P for X/2 times. As shown in
Figure [3k, a graph with WS algorithm tends to form a single-chain structure if
P is small. With a larger P, the structure becomes similar to ER.

(4) Distance Probability: In distance probability (DP), initially, a pre-defined
grouping is performed on disconnected vertices, then a distance probability func-
tion defines the existence of an edge. We first arrange the vertices in a ring. Then,
the probability of adding an edge between two vertices is dependent on their dis-
tance. In other words, closer vertices have a higher probability of getting edges.
— Distance Metrics: We define distance d as the smallest number of nodes plus
one between two nodes in a ring. The maximum distance can be half of the total
number of nodes, which is N/2. We use the distance to re-scale the passed in
probability P presented in WS. We use exponential re-scaling function:

Prew = aP??, 1)

in which o and 3 are constants. The probability quickly decreases as the distance
increases. This mechanism naturally creates multiple locally strongly connected
graphs, Figure B, which can be distributed. However, we still need to examine
the distribution and concurrency opportunities, which are presented in

3.2 Transformations

Transformations are operations, the main objective of which is to create a rea-
sonable architecture, that happens after the construction of the DAG. We first

(c) Watts-Strogatz

Fig. 3. Network Generators — Four examples of different random graph generators.
Note that only (d) produces a good concurrent balanced graph.

Reducing Inference Latency with Concurrent Architectures 7

Input from Input
, Other Blocks '

[Sigmoid] [Sigmoid] ' MaxPooling '

“u, ~# Learnable
Weighted

Sum
Conv Block

‘,a’ ’ AR -
Direct Output to Other
Blocks Scaled Output

(a) Basic Building Block. (b) Scaling Building Block.
Fig. 4. Building Blocks — Building blocks used for conversion from DAG to DNN.

DNNs with Uniform

Dataset Baseline Channels
Cifar-10 32x32 80.70 81.13
Flower-102 224x224 87.80 74.73 (Fails to Scale!)

Table 1. Accuracy of Uniform Channels — The mean accuracy comparison be-
tween sampled group architectures with uniform channel vs. handcrafted without any
advanced optimizations. (baselines Cifar-10 and Flower-102 are vanilla CifarNet and
ResNet-50, respectively).

introduce the building blocks, which include a scaling building block that, con-
trary to previous work, does not enforce a single-chain dependency.

Building Block: During the process of transforming a DAG to DNN, vertices
are interpreted as basic building blocks, as shown in Figure [d] Inside a basic
building block, Sigmoid activations are applied on inputs, then, the activations
are summed with a learnable weighted sum. The Sigmoid function is used to
avoid weighted sum overflow. As described before, the conv block consists of a
ReLLU, 3x3 separable convolution, and batch normalization.

Redefining Staging: Staging is deemed to be necessary for all NAS generated
architectures to reduce the computation and facilitate learning. For staging, af-
ter a few layers, usually, the common method is to gather and merge outputs
from all transformation vertices, conduct downsampling, and channel upsam-
pling. However, such staging points create a rigid architecture with single-chain
dependencies that are hard to distribute and execute concurrently (e.g., [48]).
To address the single-chain bottleneck problem caused by staging, the first solu-
tion is implementing a uniform channel size for the entire architecture. In other
words, all conv blocks share the same filter size. Thus, there would be no need
to merge and synchronize at a point during an inference. However, as shown in
Table [T} the uniform channel size approach works well on a small image dataset
(e.g., Cifar-10), but it fails to achieve good accuracy on a dataset with larger
image dimension (e.g., Flower-102).

In this paper, we propose individual staging after any conv block. Because
of that, inputs to a conv block could have different dimensions. To tackle this
problem, we dynamically add a new scaling block in the process of construction.
The scaling block consists of a number of maxpooling layers. Maxpooling layers
downsamples the dimensions to match with the smallest dimension in the input.

8 Hadidi & Cao et al.

Staging/Samples A B C Overall Mean

Greedy 82.30 81.32 82.42 82.01

Probabilistic 82.42 86.69 84.62 84.58
Table 2. Average Accuracy — Comparison of randomly sampled group of generated
architectures with different staging choices (trained on Flower-102).

Staging/Samples A B C Overall Mean

Greedy 2.31 2.27 2.63 2.40

Probabilistic 3.00 3.28 3.58 3.29
Table 3. Average Accuracy/Parameters Ratio — Comparison of randomly sam-
pled generated architectures with different staging choices (trained Flower-102).

We also use 1x1 convolution layers to upsample the channel size to match the
highest channel size in the inputs in these scaling blocks. Therefore, we avoid
bottlenecks in generated architecture.

We adopted two design choices for the staging mechanism. In the first design,
greedy-based staging, we start with greedy-based staging. Within the construc-
tion process, we set an upper limit for channel size. As long as channel sizes have
not reached the upper bound, we conduct staging (i.e., downsample the input
& upsample the channel). However, this design raises an issue that intermedi-
ate outputs are quickly squeezed through the maxpooling layer, which discards
important features. This approach hurts the accuracy to some extent. s In the
second design, probabilistic-based staging, we use a probabilistic method in stag-
ing. In this design, although the channel size may have not reached the limit,
staging is done with a fixed probability of 0.5 to avoid discarding features too
quickly. As shown in Tables [2] and [3] the probabilistic approach achieves better
accuracy rate than the greedy-based approach. In addition, Table |3 shows that
probabilistic staging supports higher accuracy with less parameter size because
(i) probabilistic staging gracefully discards features, so the architecture learns
better; and (ii) the aggressive greedy-based staging creates more size mismatch,
so it requires more scaling blocks.

3.3 Concurrency & Distribution

Our goal in this paper is to inspire concurrent architecture designs to improve
inference latency performance. As a result, besides common accuracy considera-
tion, we need to study concurrency and distribution opportunities of a candidate
architecture. To help the community to extend our study, instead of focusing and
showcasing on a single architecture, we are interested in finding a customized
concurrency score (CS) for a given architecture, N, that is easily calculated. In
this way, we can study various architectures and future works that can further
improve this work. CS shows how optimal the concurrent and distributed task
assignment for an architecture is. Lower PS score represents fewer communica-
tions, better load-balanced tasks, and more distribution opportunities with more
overlapped computation, so the architecture is more efficient for concurrency.

Metrics in The Score: We can formulate our problem of allocating tasks
on n units as a multi-constraint problem. The first constraint is that all units

Reducing Inference Latency with Concurrent Architectures 9

Width of Concurrent Computations at Same Depth
n=3 n=3 n=3 n=3

Fig. 5. Overlapped of Computation Metric — Illustration of 7.

should perform the same amount of work, or be load balanced. Second, the
communication amount, the main bottleneck in distribution, should be at a
minimum. And third, we want to minimize runtime by increasing overlapped
computations among the units. The first two constraints are addressable by
finding a set of hypergraph partitions, in which we divide the vertices into equally
weighted sets so that few hyper-edges cross between partitions. The derivable
metric is the amount of variability in loads (dy) and a total of communication
(A). The third constraint is measurable by finding the longest path between
the input and output vertices on the DAG and quantify concurrency (7). For
instance in pipeline parallelism, the longest path is the entire architecture, as
a result the latency is never reduced (and throughput is increased). Now, we
provide the formal definition of these solutions by first studying the DAG.
Maximizing Overlapped Computations: We measure how overlapped is the
inter-layer computations of an architecture from its DAG, or 7, as a raito. We
measure this by observing the longest path in the distinct paths between input
and output vertices in the DAG, G, relative to the number of the computation
cores, n. Assume {d;} is the set of distinct longest paths in G. We define 7 as

max{d;}
= T (2)

in which |V| is the total number of vertices. Figure [5| depicts an examples of 7.
A higher n value shows a more limited opportunity to overlap the computation.
Figure |5 also shows the width ofthe overlapped computation at the same depth
(i.e., DFS depth with the source of input), which is a good representation of
why some architectures are more efficient for concurrency.

Hypergraph Representation: Using graph representations in task assign-
ment for distributed computing is a well-known problem [18]. Basically, in the
generated DAG, vertices of the graph represent the units of computations, and
edges encode data dependencies. We can indicate the amount of work and/or
data, by associating weights (w) and costs (A) to vertices and edges, respec-
tively. However, a DAG representation does not sufficiently capture the com-
munication overhead, load balancing factor, and the fact that some edges are

10 Hadidi & Cao et al.

Generating Network Assigning
Weights and Costs

Converting to DAG G = (V(wi), E(\)))
Algorithm(12|_ [Partitioning Analyzing
Inputs (€ Hypergraph Paths

Several Partitioning Options (777)
{H=0,6P={V1,Va,Vs,.. Vet } |

Calculating metrics for Each Option:

Load variability: 5117 1 6w 2 51113 w

. . /7
Communication: | | A’ || A% || Aj cee Al
Overlapped Computations: | | 771 || 772 || 713 Im

Fig. 6. Calculating Concurrency Score — Summarizing steps for deriving the score.

basically sending the same data/features. Therefore, for task assignment, we
use an alternative graph representation, derivable from the DAG, hypergraph.
A hypergraph [4] is a generalization of a graph, in which an edge can join any
number of vertices [46]. The hypergraph representation, common in optimization
for integrated circuits |27], enables us to consider the mentioned factors.
Formal Definition of Hypergraph: A hypergraph H = (V,€) is defined as a set
of vertices ¥V and a set of hyper-edges £ selected among those vertices. Every
hyper-edge e; € £ is a subset of vertices, or e; C V. The size of a hyper-edge is
equal to the number of vertices.
Hypergraph Partitioning: We assign weights (w;) and costs ();) to the
vertices (v; € V) and edges (e; € &) of the hypergraph, respectively. P =
{V1,V2,Va,...,Vp} is a P-way partition of H if (i) VV;,0 # V; C V, (ii) parts are
pairwise disjoint, and (iii) |JP = V. A partition is balanced if W), < eW,y, for
1 < p < P, where W,yg = 2u,evwv; /P denotes the weight of each part, and ¢
represents the imbalance ratio, or dyy.

In a partition P of H, a hyper-edge that has at least one vertex in a part
is said to connect that part. The number of connections «y; of a hyper-edge e;
denotes the number of parts connected by e;. A hyper-edge is a cut if v; > 1. We
define such hyper-edges as an external hyper-edges £g. The total communication
for P is

A= > Ny - 1) 3)
ej€€p

Therefore, our two constraints can be defined as a hypergraph partitioning prob-
lem, in which we divide a hypergrpah into two or more parts such that the
total communication is minimized, while a given balance criterion among the
part weights is maintained. We can solve this NP-hard |27] problem with multi-
paradigm algorithms, such as hMETIS [21] relatively fast. Note that solving this
problem is a pre-processing step, which does not affect runtime.
Concurrency Score: Now, we have the tools to calculate the concurrency score,
CS. Figure [6]summarizes all the steps to derive our metrics: Load variability, d,,;
total amount of communication, A; and overlapped computations, . Hypergraph
algorithm accepts the number of units and a higher bound of €. By changing
the €, we create a set of partitioning options, for each of which we compute
all the metrics. Note that the DAG input requires a weight and cost value for

Reducing Inference Latency with Concurrent Architectures 11

every vertex and edge, respectively. Both of these values are easily derivable. The
weight of a vertex is directly proportional to its floating operations (FLOPs),
reported by most frameworks. The cost of an edge is directly proportional to the
transferred data size. To get CS, first, we need to normalize the communication
metric. We write A as A’ = 4/(U.xn), in which U, is a unit of data and n is the
number of units. We define

Cs = /sa (4)

as a custom concurrency score, in which a,b and ¢ are constant that show the
relative importance of each metric for a user. In this paper, we assume a =c =1
and b = 1.5, for a higher priority for communication. We chose U, as the smallest
amount of communication for an edge in a generator. Hence, a higher CS value
shows poor distribution and concurrency opportunities.

4 Experimental Analysis

In this section, we evaluate our generated architectures by comparing our cus-
tomized generator and transformation process with prior work. The results
demonstrate that our generated architectures preserves accuracy while achieving
better concurrency scores by removing the implicit bias of single-chain depen-
dency. Besides, by running the final architecture on actual devices, we show that
the concurrency score provides reasonable heuristic about the real performance.

4.1 Experimental Setup

Generators: All generators use probabilistic scaling blocks. FB represents prior
work in unbiased NAS with staging blocks [48]. As mentioned in although
ER, BA, and WS generators are based on [48], we remove the staging block that
causes the limited concurrency. As a result, all the studied network generators
and resulted architectures are novel and have never been studied before.
Randomization: To evaluate the accuracy of randomly generated architecture,
we collect representative samples with no optimized search. we followed the same
training procedure for architectures and reported the average accuracy. For CS,
total communication, and computation time evaluations, we collect 1,000 sam-
ples with no optimized search and compare across different generators.
Datasets: We conducted experiments on multiple datasets to ensure the exten-
sibility of concurrent architectures. We use two image classification datasets; (i)
Cifar-10 [25], which contains 60K 32x32 images in 10 classes; and (ii) Flower-
102 [34], which contains 16K 224x224 images in 102 classes. We strongly en-
courage future extensive studies on larger datasets, but given the heavy-compute
bound of NAS-based experiments, we chose to use representative datasets stud-
ied in most of the prior works [47].

Training Procedure: We use a uniform training pipeline with a stochastic
gradient descent optimizer for all architectures. We train on Cifar-10 with 100
epochs and on Flower-102 with 300 epochs. We report the top-1 classification

12 Hadidi & Cao et al.

. Best Prior Work M This Work 4 Significant Accuracy Loss

c
o .
T
— 0 2 10
gsa]
()
[I
£ 5
oFf eR P \NS B oFf eR P NS ¢® oFf eR P \NS ¢® oFf eR P NS B
(a) [V =40, (b) |V| =40, () [V] =40, (d) [V] =40,
|P| =4 [Pl =6 [Pl =8 [Pl =10

Fig. 7. Total Communication with Distribution — Measured communication in
MB for 1000 sampled architectures in each category for 40 vertices on {4,6,8,10} units.

‘I Best Prior Work M This Work @ Significant Accuracy Loss ‘

£

S Egs

= 8’5

=40

gt o~

€£cMmo N

s Q LT 10°

zg 25

- oP eR PSR P R pPNSED oP eR PSR P R pPNSED
(a) [V| =40, (b) |V| = 40, (c) |V| = 40, (d) |V| = 40,
[Pl =4 [Pl=6 [Pl =8 [P| =10

Fig. 8. Inference Time — Normalized inference time normalized to FB (for 1000
sampled architectures in each category for 40 vertices on {4,6,8,10} units.

accuracy on the test sets. For the first 100 epochs, we set the learning rate to
be le-3 and momentum to be 0.9. We changed the learning rate to 5e-4 and
momentum to 0.95 for the remaining 200 epochs on Flower-102.
Implementation: We implemented all graph representations in Python Net-
workX library. Then, we convert a graph to a PyTorch compatible
model. We constructed a graph-based forwarding path in PyTorch module class
to directly reproduce the graph structure.

4.2 Experiments

We analyze the results from three perspectives, communication, latency, and
concurrency score. Because we are interested in finding a general solution, we
start with the architecture stability evaluation that particularly focuses on the
architecture parameter size. Then, we show the generated architectures achieve
competitive accuracies, while, in the last part, we illustrate the high concurrency
and distribution opportunities of these architectures.

Architecture Stability:

For the architecture stability experiment, we used a fixed number of 40 build-
ing blocks. We created 1,000 samples from each network generator. We recorded
mean and standard deviation regarding the parameter sizes. We also evaluate
the architecture stability under different staging design choices (greedy vs prob-
abilistic). From Table @ we see that proposed generators with greedy scaling
blocks creates larger but more stable architectures than with probabilistic scal-
ing blocks. Additionally, we see that our proposed DP generator creates the most

Reducing Inference Latency with Concurrent Architectures

‘ M Best Prior Work

M This Work|

Smaller=Better

oFf e® A WNS B
(a) [V =40,
[Pl=4

Concurrency Score
(Log Scale)

13.4

oPf e® A NS ¢8
(b) V| =40,
[P|=6

a 118

Better

Concurrency Score
(Log Scale)
Smaller:

5
o° R g NS¢0
(e) [V =80,
[P| =4

13.4

5
oP eR A NS ¢B

) VI =80,
Pl=6

0.5

»

N

=

13.6

oF e® P WNS ¢B
(c) [V| = 40,
[Pl=8

5
P €R P NS €8

(g) VI =80,
Pl =8

15.0

of eR P WS ¢B
(d) V| =40,
[Pl =10

5
of eR P NS ¢B

(h) [V| = 80,
[P| =10

13

Fig. 9. Concurrency Scores — Measured CS for 1000 sampled architectures in each
category with {40,80} vertices on {4,6,8,10} units (

efficient architecture. We will see that architectures that use DP generators are
generally the most optimized.
Accuracy Study:

Here, we demonstrate that the concurrent architectures achieve compet-
itive accuracy on both Cifar-10 and Flower-102 datasets. Given the heavy-
compute bound of NAS-based experiments, we encourage further studies on
larger datasets. We used the same architecture samples as before without any
optimized search and reported both mean and best results. As shown in Ta-
ble [f] and [6} our concurrent architectures achieve comparable accuracy on both
datasets. Generated DNNs achieve better or similar accuracy on Cifar-10. For
Flower-102, because both network generation and transformation processes have
more randomness, the mean accuracy has a small gap compared to the baseline.
However, the best accuracy is close to the baseline, so we believe the accuracy
gap can be leveraged by conducting an optimized search in terms of accuracy.
Concurrency Study:

Finally, to show improved distribution and concurrency opportunities, we
examined the concurrency score of our architectures to ResNet-50 and FB (§4.1))
by sketching width/depth histograms in Figure As shown, we achieve higher
width/depth, which enables more concurrency, while provides lower maximum

ER AB ‘WS DP
Greedy Mean 48.63 48.33 42.03 35.03
Staging Std 1.11 0.91 1.28 2.25
Probabilistic Mean 46.03 45.63 36.44 26.69
Staging Std 2.70 4.41 3.52 3.05

Table 4. Parameter Size Stability — The mean and standard deviation of parameter
size in sampled generated architectures with different staging.

14 Hadidi & Cao et al.

Mean Best Mean Best

Acc. Acc. Acc./Param. Acc./Param.
CifarNet 80.70 80.70 5.38 5.38
ER 81.33 81.81 4.94 5.03
BA 80.29 81.66 4.81 4.92
WS 79.89 81.45 4.75 4.84
DP 80.87 82.47 4.81 4.90

Table 5. Concurrent Architectures on Cifar-10 — Overall sampled metrics.

Mean Best Mean Best

Acc. Acc. Acc./Param. Acc./Param.
ResNet-50 87.80 87.80 3.43 3.43
ER 84.88 86.20 2.11 2.43
BA 82.91 84.62 2.41 2.91
WS 81.46 86.57 3.17 3.10
DP 84.66 86.69 3.19 3.28

Table 6. Concurrent Architects on Flower-102 — Overall sampled metrics.

depth, which enables shorter execution time. To quantitatively compare the gen-
erators and FB, Figure [9] depicts concurrency scores, summarized on over 1000
architectures in each category per set. As seen, our generators (and specifically
DP) consistently gain the best score. Moreover, to gain more insights, Figure
and [8] illustrate total communication with distribution and inference (i.e. com-
putation) time, when each architecture is deployed on |P| units. We see that
though ER and BA methods deliver better computation speedup, they suffer
performance slow down more from data communication. For our new generator,
DP, we see an 6-Tx speedup in inference time. We observe a close relationship
between the reported score and actual latency and communication. In fact, la-
tency and communication measure performance in an orthogonal way, but CS
score captures the overall efficiency of the generated architecture pretty well and
could be used in future studies.

5 Conclusion

In this work, we proposed concurrent architectures that break the single-chain
of dependencies, a common bias in modern architecture designs. We showed that
these architectures are concurrent and have more distribution opportunities for

16
X Longer Execution Time

= 5 X Longer Execution Time
g £ Z ’ o
2 23 = 23
= 4 g2 5 4 g2
i} 5 g
ElA_A A A CE 2 ;
1 10 20 pooth 30 40 50 1 10 20 pon 30 40 50
(a) ResNet50 (b) FB
_. XLonger Execution Time 16 X Longer Execution Time
g E
c 4 s 4
g ws £ —_—p
H —— BA H — ER
1 EY
1 10 20 pepth 30 40 50 1 10 0 oot ° 40 50
(c) BA& WS (d) DP & ER

Fig.10. Width/Depth Histograms — Illustration of ResNet50, FB, and concurrent
architectures, which enable more concurrency and shorter inference latency.

Reducing Inference Latency with Concurrent Architectures 15

reducing the inference time while achieving competitive accuracy. Since we dis-
cover that previous NAS studies were implicitly biased in creating a sequential
model, we introduced a new generator that naturally creates concurrent archi-
tectures. To quantitatively compare concurrent architectures, we proposed the
concurrency score that encapsulates critical metrics in distribution.

References

10.

11.

12.

13.

14.

15.

Albert, R., Barabési, A.L.: Statistical mechanics of complex networks. Reviews of
modern physics 74(1), 47 (2002)

Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC)
13(3), 32 (2017)

Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Transactions on parallel and
distributed systems 10(7), 673-693 (1999)

Chollet, F.: Xception: Deep learning with depthwise separable convolutions. arXiv
preprint (2016)

Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low
precision multiplication. arXiv preprint arXiv:1412.7024 (2014)

Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to +1 or- 1. arXiv preprint arXiv:1602.02830 (2016)

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
NIPS’12. pp. 1223-1231. ACM (2012)

Erdés, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5(1), 17-60 (1960)

Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

Hadidi, R., Cao, J., Ryoo, M.S., Kim, H.: Distributed perception by collaborative
robots. IEEE Robotics and Automation Letters (RA-L), Invited to IEEE/RSJ
International Conference on Intelligent Robots and Systems 2018 (IROS) 3(4),
3709-3716 (Oct 2018). |https://doi.org/10.1109/LRA.2018.2856261

Hadidi, R., Cao, J., Ryoo, M.S., Kim, H.: Towards collaborative inferencing of deep
neural networks on internet of things devices. IEEE Internet of Things Journal
(2020)

Hadidi, R., Cao, J., Woodward, M., Ryoo, M.S., Kim, H.: Musical chair:
Efficient real-time recognition using collaborative iot devices. arXiv preprint
arXiv:1802.02138 (2018)

Hadidi, R., Cao, J., Xie, Y., Asgari, B., Krishna, T., Kim, H.: Characterizing the
deployment of deep neural networks on commercial edge devices. In: 2019 IEEE
International Symposium on Workload Characterization (IISWC). pp. 35-48. IEEE
(2019)

Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics,
and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los
Alamos, NM (United States) (2008)

https://doi.org/10.1109/LRA.2018.2856261

16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Hadidi & Cao et al.

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. In: 4th International
Conference on Learning Representations. ACM (2016)

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy,
M., Jia, B., Jia, Y., Kalro, A., et al.: Applied machine learning at facebook: A
datacenter infrastructure perspective. In: 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). pp. 620-629. IEEE (2018)
Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel computing 26(12), 1519-1534 (2000)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML’17. pp. 448-456. ACM (2015)

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.:
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. In:
22nd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. pp. 615-629. ACM (2017)

Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph par-
titioning: applications in vlsi domain. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 7(1), 6979 (1999)

Kim, J., Park, Y., Kim, G., Hwang, S.J.: Splitnet: Learning to semantically split
deep networks for parameter reduction and model parallelization. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70. pp. 1866—
1874. JMLR. org (2017)

Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. Tech.
rep., Cornell University (1999)

Késter, U., Webb, T., Wang, X., Nassar, M., Bansal, A.K., Constable, W., Elibol,
O., Gray, S., Hall, S., Hornof, L., et al.: Flexpoint: An adaptive numerical format
for efficient training of deep neural networks. In: Advances in Neural Information
Processing Systems (NIPS). pp. 1742-1752 (2017)

Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced
research)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: 26th Annual Conference on Neural Information
Processing Systems (NIPS). pp. 1097-1105. ACM (2012)

Lengauer, T.: Combinatorial algorithms for integrated circuit layout. Springer Sci-
ence & Business Media (2012)

Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016)

Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: International Conference on Machine Learning. pp. 2849-2858
(2016)

Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural
Information Processing Systems (NIPS). pp. 2181-2191 (2017)

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 19-34 (2018)
Mao, J., Chen, X., Nixon, K.W., Krieger, C., Chen, Y.: Modnn: Local distributed
mobile computing system for deep neural network. In: 2017 Design, automation
and Test in eurpe (Date). pp. 1396-1401. IEEE (2017)

Newman, M.E., Watts, D.J.: Renormalization group analysis of the small-world
network model. Physics Letters A 263(4-6), 341-346 (1999)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

Reducing Inference Latency with Concurrent Architectures 17

Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: Proc. of ICVGIP (2008)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017),
https://pytorch.org

Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: ECCV’16. pp. 525-542.
Springer (2016)

Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 4780-4789 (2019)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 779-788 (2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations.
ACM (2015)

Szegedy, C., loffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence (2017)

Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: Mnasnet: Platform-Aware
Neural Architecture Search for Mobile. arXiv preprint arXiv:1807.11626 (2018)
Teerapittayanon, S., McDanel, B., Kung, H.: Distributed deep neural networks
over the cloud, the edge and end devices. In: 37th IEEE International Conference
on Distributed Computing Systems (ICDCS). pp. 328-339. IEEE (2017)
Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks
on cpus. In: Proceeding Deep Learning and Unsupervised Feature Learning NIPS
Workshop. vol. 1, p. 4. ACM (2011)

Watts, D.J.: Networks, dynamics, and the small-world phenomenon. American
Journal of sociology 105(2), 493-527 (1999)

Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in neural information processing systems. pp.
2074-2082 (2016)

Wikipedia: Hypergraph. https://en.wikipedia.org/wiki/Hypergraph (2019),
[Online; accessed 12/11/19]

Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search.
arXiv preprint arXiv:1905.01392 (2019)

Xie, S., Kirillov, A.; Girshick, R., He, K.: Exploring randomly wired neural net-
works for image recognition. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 1284-1293 (2019)

Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R., Mahlke, S.: Scalpel:
Customizing dnn pruning to the underlying hardware parallelism. In: 44th Inter-
national Symposium on Computer Architecture (ISCA). pp. 548-560. IEEE (2017)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2016)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697-8710 (2018)

https://pytorch.org
https://en.wikipedia.org/wiki/Hypergraph

6 Appendix

Reducing Inference Latency with Concurrent Architectures 19

6.1 Distribution

To distribute the generated networks according to the number of units, we first
group node in the same sequential path together to minimize the communication
overhead. The detailed algorithm of grouping can be found in ?7?. After the nodes
in the graph are grouped together, we use heuristic-based greedy algorithm ?7
to distribute all nodes to units. The objective of the algorithm is to balance the
workload. To make the load balancing simple, we assume the final goal is that
each unit performs a similar amount of computations. Ultimately, this process
can be improved using various other techniques that currently is out of the
scope of this paper. Here, we provide an example of our process, which starts
from network generation to workload distribution.

Network Generation Figure(l1l|demonstrates a example of raw random neu-
ral network generated. This network is later fed into a grouping and distribution
algorithm to decide which unit runs which nodes.

Distribution to 2,4 and 8 Units Figure[I1]shows network distribution on 2,4
and 8 units. The coloring marks the node is distributed on which unit. Because
all units need to run the computations of the first node, we leave it as a common
node (this could be just a scatter operation). In addition, for the last node, an
extra unit is needed to merge all results together, so we mark that unit as black
(this could be just a gather operation).

Load Balancing From the graphs, we observe that the current grouping and
distribution algorithm does well load balancing under the scenario with a small
number of units. The quality of load balancing affects the final inference latency,
because the final results may slow down due to a bottleneck node, which hap-
pens when unbalanced loads exist. We conduct a load balance quality study as

1.0 4

2e

S 200

5509

[oF=}

o

=y

gep=

& E 0.7

- 38 T | o 50%

gz

S€ 6l 1% - 99%
: 25% - 75%

2 3 4 5 6 7 8
Number of Unit

Fig. 12. Load Balance Quality — The load balance quality analysis on two, four, six
and eight units compared to the normalized Shannon entropy value.

20 Hadidi & Cao et al.

©w
&
S
©w
@
S
w
I
S

2 Units 4 Units & Units
300 H H

w
S
3

w

S

3

N
131
S

N

13

S

IS
S
1S
i

7

)
S
3

Latency (ms)
»
S
8

Latency (ms)
Latency (ms)

@

S
@
S
@
=]

o
S

o
3
o
S

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Packet ID Packet ID Packet ID

Fig. 13. Performance Scaling — the random neural network latency on two, four,
and eight distribution units.

well as shown in Figure We use normalized Shannon entropy value to indi-
cate the load balancing quality (the higher the number represents the load is
more balanced, and 1 means the load is perfectly balanced across distribution
units). In the Figure we showcase the median, 25% — 75% percentile, and
1% — 99% percentile load balancing qualities. We observe that as the number of
distribution units increases, the overall load balancing quality downgrades and
the variation of quality increases. We aim to develop distribution algorithms
with higher quality; however, currently, our aim in this paper is showing that
parallel inference computations of a single request is a viable option and should
be studied more.

Performance Scaling As the final step, we also conduct a study on perfor-
mance scaling. We use a total of 10 AWS t2.micro EC2 instances for performance
evaluation. Each instance is equipped with only 1 vCPU and 1 GB memory. The
specification are chosen to emulate edge units with limited compute and mem-
ory that have a higher computational cost (remember that constants in the
Equation [4| give higher priority to communication). As shown in Figure the
inference latency improves when the system has more distribution units. How-
ever, The latency stops to decrease as the number of distribution units becomes
8, because the workload is not well balanced on each unit, as shown in our load
balancing study. In this example, the bottleneck unit in the system causes longer
latency for the entire system.

	Reducing Inference Latency with Concurrent Architectures for Image Recognition

