
Analyzing Consistency Issues in HMC Atomics

Pranith Kumar
Georgia Institute of

Technology
pranith@gatech.edu

Lifeng Nai
Georgia Institute of

Technology
lnai3@gatech.edu

Hyesoon Kim
Georgia Institute of

Technology
hyesoon@cc.gatech.edu

ABSTRACT
As 3D stacked technology gets popular, Processing-in-memory
(PIM) is gaining momentum. HMC 2.0 specification offers a
fine-grained, instruction granularity offloading capability to
the host processor. The current work studies the potential
consistency issues which arise from offloading the atomic
instructions from CPU to HMC as present in the current
specification.

1. INTRODUCTION
Utilizing 3D-stacked memory technology, high-performance

memory systems are in active development. This not only
increases the memory bandwidth and performance, but also
includes computing capabilities. HMC is one example which
has introduced the capability to offload certain computa-
tions from the host processor to the memory system [1].
These HMC instructions can atomically read-modify-write
inside the memory system. The question arises about how
HMC atomic instructions will affect the processor consis-
tency. In current systems, the processor ensures the consis-
tency guarantees and the memory system is not involved.
However, when memory starts to perform computations di-
rectly, it is likely to violates these guarantees if not carefully
designed.

CPU1 atomic operations have high overhead to provide
processors’ consistency semantics[3]. However, if utilizing

HMCâĂŹs atomic operations has similar overhead as proces-
sor atomic instructions, the motivation to use them will be
reduced. There has been no discussion on the processor side
implementation of HMC’s atomic operations. Since with in-
struction offloading, loads and stores are all performed in
the memory directly (by either operating on a non-cached
memory location or invalidating the data in cache), at a first
glance, it seems like HMC atomic instructions are free from
any consistency violations. However, there are no studies
supporting this.

1Here, CPU means an architecture that implements x86
ISA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2016 October 3–6, 2016, Washington, DC, USA
c© 2016 ACM. ISBN 978-1-4503-4305-3. . . $15.00

In this paper, we show the consistency violations that will
happen by considering HMC atomic instructions as a regular
store instruction on the processor side. The paper will also
present the scenarios where the consistency violations are
not likely to occur.

2. BACKGROUND
HMC is composed of vaults, each of which contains multi-

ple banks and a single logic layer which is managed by a vault
controller. Each vault controller may have a queue that is
used to buffer references to that vault’s memory. The vault
controller can execute references in that queue in any order.
The only ordering guarantee provided is that references from
a single serial I/O link to the same vault are executed in ar-
rival order. Requests from different serial links to the same
vault/bank address are not guaranteed to be executed in a
specific order and must be managed by the host controller.

Let us consider two different architectures, in each of which
we discuss how the host controller needs to handle consis-
tency.

Architecture 1: There is no coherence support between
HMC and the host. HMC atomics operate only on non-
cached memory regions. We need to allocate memory in
non-cacheable memory region and execute PIM atomic in-
structions to access that memory address.

Architecture 2: Coherence support for HMC memory
regions. Bringing the cache line into local cache is useful
in applications with high locality of reference. Updates to
the memory still happen only using PIM commands. The
CPU should broadcast an invalidate message for the cache
line before sending the HMC command.

2.1 CPU Atomic Operations
Executing atomic instructions on the CPU involves costly

operations [3]. On x86 processors, some instructions will
be atomic when using the lock prefix. All such instructions
also guarantee to ensure sequential consistency (SC) of the
memory accesses. Employing techniques like draining the
write buffer, disabling ILP and locking the target cache line
on scheduling an atomic instruction help in achieving this
consistency guarantee. Most of the x86 atomic instructions
can functionally map directly to the available HMC atomic
operations.

ARMv7 processors use LL/SC instructions to implement
their atomic operations. The main difference with x86 is
that these instructions do not guarantee any consistency.
We need to use additional memory barrier instructions to
ensure consistency. Mapping such atomic instructions fromDOI: 10.1145/ 2989081.2989104

ARMv7 to HMC commands is not straightforward.

2.2 HMC Atomic Operations
HMC atomic commands execute in three steps: reading

data from DRAM, performing an operation on the data in
the logic die, and then writing back the result to the same
DRAM location. These steps occur atomically; the corre-
sponding DRAM bank is locked during the atomic request
so that no other requests to the same bank can be inter-
leaved. Besides, all commands include only one memory
operand. Memory requests that are operating on different
banks can execute in any order to maximize the memory
bank parallelism. Furthermore, if memory requests to the
same address are issued through different serial I/O links
that connect between HMC and processors, the order be-
tween these two memory requests is also not preserved [1].

3. HMC OPERATIONS FROM CPUS
The question that we address in this paper is when HMC

atomic instructions are executed from a processor, should
the processor treat them as just like other atomic instruc-
tions in CPUs or regular store or even load instructions?
Treating them as atomic instructions means that the pro-
cessor has to drain the write buffer before executing HMC
atomic instructions. However, if the processor treats them
as regular stores, multiple HMC atomic instructions will be
issued to the memory system in-order regardless of whether
the previous store instructions completed. So multiple stores
and HMC atomics can be concurrently updating the mem-
ory.

3.1 Example of a Consistency Violation
If the processor treats the stores as regular stores even

when the processor sends HMC atomic commands in-order,
since HMC can execute commands to different addresses
in any order, there is a possibility of a consistency viola-
tion. Consider the independent-reads of independent-writes
(IRIW) scenario where initially A and B are 0. Using lock
instructions on CPU ensures that the increment to A is or-
dered before the increment to B. If the increment to A and
B from CPU 0 are performed using HMC atomics, and CPU
1 is able to read values of 0 and 1 for A and B respectively,
it violates SC.

Table 1: CPU atomic instructions offloaded to HMC

CPU 0 CPU 1 CPU 0 CPU 1

lock inc A, 1; read B; HINC8(A); HRead(B);
lock inc B, 1; read A; HINC8(B); HRead(A);

In order to offload such atomic instructions without con-
sistency violations, we need the following: First, the CPU
should receive a response from the HMC controller when
an HMC atomic operation is completed such as HINC8(A)
in this example. Second, The CPU should drain the write
buffer and wait without scheduling any further instructions
until responses for all the previous issued HMC commands
are received. The drawback in this approach is that the CPU
needs to wait for the write buffer drain and completion of all
HMC atomic instructions. If there are series of HMC atomic
instructions in the code, these will all be serialized and on
top of that, they will have a long latency waiting to get a
response from the memory controller.

3.2 Atomicity vs. Consistency
Table 2: Operations of typical graph applications

Program Phases Operation

loop:
foreach vertex in task queue:
read property /* HMC-Read */
fetch neighbor list
foreach neighbor:
update neighbor property /* HMC-atomic */
update next-iter task queue

barrier

There are also applications which only require atomicity,
not strict SC when using atomic operations. For example,
most graph computing applications need to perform both
regular read and atomic operations on graph property in an
iterative way. However, as shown in Table 2, the read com-
mands and atomic operations happen at different execution
phases. These phases are separate and hence this naturally
avoids consistency issues. Here, we assume that the barrier
operation guarantees that all previous HMC atomic instruc-
tions are complete. Besides, graph computing applications,
as well as most machine learning applications, are iterative
convergent and can converge to the same result even if the
consistency of intermediate values is relaxed [2]. Therefore,
the consistency concerns of HMC atomic operations are less
applicable for such applications.

4. FUTURE WORK
Hence, to reduce the HMC atomic serialization execu-

tion overhead, it is important to identify situations when
both consistency and atomicity are required and when only
atomicity is sufficient. Also, hardware support to provide
consistency with low overhead is important. An explicit se-
rialization operation similar to the memory fence operation
or enforcing a wait for responses for all issued HMC atomic
instructions are examples of such support. From a program-
mer’s perspective, the serialization instruction is similar to
existing memory barrier instructions which ensures ordering.
The programmer or compiler can utilize this serialization in-
struction in cases where ordering needs to be explicitly en-
sured. Our future work will investigate such software and
hardware optimizations.

5. ACKNOWLEDGEMENT
The authors would like to thank the anonymous review-

ers for their valuable comments. We gratefully acknowledge
the support of National Science Foundation (NSF) XPS-
1533767.

6. REFERENCES
[1] H. M. C. Consortium. Hybrid memory cube

specification 2.0. 2014.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.
Gibbons, G. A. Gibson, G. Ganger, and E. Xing. More
Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server. In NIPS ’13. 2013.

[3] H. Schweizer, M. Besta, and T. Hoefler. Evaluating the
Cost of Atomic Operations on Modern Architectures.
ACM, Oct. 2015. Proceedings of the 24th International
Conference on Parallel Architectures and Compilation
(PACT’15).

