
SimProf: A Sampling Framework for Data Analytic Workloads

Jen-Cheng Huang1, Lifeng Nai2, Pranith Kumar2, Hyojong Kim2, and Hyesoon Kim2

1Oracle Corporation
2Georgia Institute of Technology

{tommy24, lnai3, pranith, hyojong.kim, hyesoon.kim}@gatech.edu

Abstract— Today, there is a steep rise in the amount of data
being collected from diverse applications. Consequently, data
analytic workloads are gaining popularity to gain insight that
can benefit the application, e.g., financial trading, social media
analysis. To study the architectural behavior of the workloads,
architectural simulation is one of the most common approaches.
However, because of the long-running nature of the workloads,
it is not trivial to identify which parts of the analysis to simulate.

In the current work, we introduce SimProf, a sampling
framework for data analytic workloads. Using this tool, we are
able to select representative simulation points based on the phase
behavior of the analysis at a method level granularity. This
provides a better understanding of the simulation point and
also reduces the simulation time for different input sets. We
present the framework for Apache Hadoop and Apache Spark
frameworks, which can be easily extended to other data analytic
workloads.

Keywords—performance modeling; sampling; architectural
simulation;

I. INTRODUCTION

Data analytic workloads are gaining importance because

of the rapid increase in the volume of data being collected.

Enterprise companies are looking to gain valuable insights

using data analytics. For example, using social media analysis,

a company can adjust its pricing and promotion on the fly for

optimal results. To process the huge data volume, data analytic

workloads are typically built on top of a computing framework,

e.g., Apache Hadoop [1], Apache Spark [2] to scale out to

multiple nodes. In addition, the framework handles how the

workloads are scheduled onto multiple nodes and provides

reliability to tolerate node failures.

Architectural simulation is the most common approach to

understand the workload behavior. However, because of the

slow simulation speed, it is not possible to simulate entire

workloads. Therefore, various approaches have been proposed

to sample the instructions to be simulated [3], [4]. For server

workloads, so far mostly transaction-based workloads are as-

sumed, e.g., SpecWeb [5], which have a large number of short

and atomic transactions. To simulate this server workload, the

common practice is to simulate a time interval that covers a

sufficient number of transactions, e.g., 10 seconds [6], [7], [8].

However, simulating a single interval is not suitable for data

analytic workloads for various reasons.

From an accuracy perspective, a single interval cannot

represent the behavior of the entire workload. Data-analytic

workloads typically have several stages, each of which has

multiple tasks being executed. Furthermore, the task length

of the workload can be much longer than transaction-based

workloads because of the complexity of the queries being

processed. The duration of a task varies from few hundred

milliseconds to tens of seconds while more tasks are spawned

to process larger data sets.
From an efficiency perspective, even a 10-second interval

demands a long simulation time e.g., 20 days for simulating 10

seconds of a 64-core hadoop-based data analytic workload [9].

Other optimization techniques, such as check-pointing and

parallel simulation, help reduce the simulation time, but the

space overhead and the simulation complexity still remain as

challenges that need to be overcome.
In this work, we propose SimProf, which is the first sam-

pling framework to generate simulation points for data analytic

workloads based on phase analysis. SimProf has the following

key features: First, it runs natively on a real machine to achieve

high profiling speed. It uses the standard profiling interfaces,

such as Java Virtual Machine Tools Interface (JVMTI) [10]

and perf event kernel API, that can be easily integrated into

any functional simulator. Second, it identifies the phases using

call stacks and applies statistical sampling methods to select

the final simulation points, which can sample the phases that

do not have homogeneous performance. Third, it detects input-

insensitive phases, whose performance is not input dependent.

When simulating multiple inputs with different characteristics,

the simulation time can be further reduced by skipping input-

insensitive phases. Fourth, the simulation points contain the

method-level information making it easier for the architects

to analyze the program behavior. Finally, the validation is

done against the performance of a real machine rather than

a simulator to demonstrate the robustness of the proposed

SimProf technique.
Our contributions are as follows.

• We propose the first sampling framework, SimProf, based

on phase analysis for data analytic workloads, which are

built on top of the commonly used computing frameworks

like Apache Hadoop and Spark.

• We propose to apply stratified random sampling, a sta-

tistical sampling approach to select the representative

simulation points by taking into account the factors that

cause performance variation within a phase.

• We propose an input sensitivity test to reduce simulation

points when exploring multiple inputs. This helps elimi-

nate the simulation points whose performance is not input

sensitive.

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.118

595

Fig. 1. WordCount Example

• SimProf provides the method-level information of each

phase, which may help architects to understand the per-

formance bottlenecks of data analytic workloads with

managed runtime, e.g., Java.

II. BACKGROUND AND MOTIVATION

A. Apache Spark

Apache Spark is a computing framework for distributed

computing. It leverages in-memory computation to provide

performance up to 100 times faster than Hadoop for some

applications. Several libraries, such as Spark SQL and GraphX

are built on top of the core functionality in Spark to support

different types of workloads. We explain the various phases in

the execution of a data analytic workload.

Figure 1 shows how the benchmark wordcount is imple-

mented and executed in Spark. Figure 1(a) shows the source

code of WordCount written in Scala [11]. Line 1 is to read

the files from HDFS [1], which is a distributed file system,

and to put all lines into lines, which is a Resilient Dis-

tributed Dataset (RDD). An RDD is an immutable collection

of data elements. Multiple operations can be performed on an

RDD, such as map and reduce operations. After applying an

operation on every element in an RDD, the original RDD is

transformed to a new RDD. For example, each line between

lines 2 and 4 applies an operation, and each operation results

in a new RDD (words, words_map and result). Finally,

the final RDD, result, is saved to a text file.

Figure 1(b) shows the execution flow. For the first three

operations, the processing of a data element in an RDD can be

done in parallel, but for the fourth operation (reduceByKey),

the processing of a data element in words_map also involves

the data elements with the same key. So, it has to wait until

the first three operations are completed before proceeding.

Therefore, the first three operations form the first stage, while

the other two operations form the second stage. In each stage,

multiple tasks are spawned, as shown in Figure 1(c). Each

task processes a “subset” of an RDD and applies multiple

operations, e.g., three operations in stage 1. If stages have

dependencies as in this example, the tasks in different stages

are serialized although the tasks within the same stage can be

executed concurrently.

B. Phase Behaviors

We define “phase” as a set of sampling units that execute

similar code. A sampling unit is a fixed number (e.g., 100M) of

instruction interval within a thread. Non-contiguous sampling

units could belong to the same phase.1 We categorize the phase

behaviors into intra-stage and inter-stage.

• intra-stage: Multiple operations are executed within each

task. Depending on the duration of each operation, several

phases could be formed. One example is that data pro-

cessing and data IO can be in different phases. Initially,

a task may be busy processing the data and generate the

outputs to a memory buffer. When the memory buffer is

close to full, it flushes the data to the disk to be used by

the next stage. In addition, the framework operations used

for data movement between nodes- like data shuffling -

also occur within the stage.

• inter-stage: The tasks in different stages may belong

to different phases since they could execute different

operations, e.g., map and reduce operations.

Phase analysis is a commonly used technique for selecting

simulation points. The idea is to group the sampling units

that have similar execution into a phase. For each phase,

a simulation point is selected to represent the behavior of

the phase. However, the commonly-used tool of selecting

simulation points, e.g., SimPoint [4], is not suitable for data

analytic workloads for the following reasons.

First, most data analytic workloads are written in high-

level languages, such as Java, Python or Scala, which use

managed runtime to achieve platform independence. However,

SimPoint collects the basic block counts (BBC) as the code

signature while collecting BBC for Java applications is not

trivial and does not provide the method-level information.

The method-level information can provide useful insights

for the architects to understand the architectural behaviors.

Furthermore, collecting BBC incurs high profiling overhead,

the range of which causes anywhere from 100% to 400%

slowdown [12]. Finally, although porting the workloads to

other languages, such as C++, is possible, it requires nontrivial

porting effort and whether the behavior is similar to the Java-

based implementation is unknown.

Second, using the code signature solely to classify program

behavior is insufficient. We corroborate with the previous

study [13] that the performance of server workloads could be

dominated by other factors, such as the data access behaviors,

while the same code may have heterogeneous performance

because of different last-level-cache miss rates. Thus, without

being aware of the data-sensitive behavior within a phase, a

single simulation point is insufficient to represent the perfor-

mances of other points of the phase.

Third, the data diversity, which can be characterized, in

“4V” [14] , is significant for the data analytic workloads.

Previous tools did not consider the input data impact on

performance since only a few inputs exist for the conventional

benchmark suites, such as SPEC CPU and Parsec. However,

for the data analytic workloads, the data synthesizer is usually

used to synthesize data sets with different volumes based on

the real-world seed inputs while retaining the characteristics

1Essentially a phase is the same as a cluster in this paper, but we use the
term phase because it is commonly used in program profiling contexts.

596

Thread
Profiling

Phase
Formation

Phase
Sampling

Input-
sensitivity

test

Input-
sensitive
Phases

Simulation
Points

Call stacks
HW events, e.g., IPC

Threads
in JVM

Mean and variance of
IPC per phase

Fig. 2. SimProf Overview

of the inputs. Thus, it is important to understand how the

performance of a phase changes by inputs. We will show that

the number of simulation points can be reduced significantly

by simulating only the input-sensitive phases.

Our goal is to sample only one executor thread based on its

phase behavior. The design is based on the observation that in

each execution stage, executor threads are executing the same

code. On the other hand, since different computing frameworks

may adopt different programming models, the sampling frame-

work should be general enough to be applied to any computing

frameworks. For example, in Apache Hadoop [1], the users

define the map and reduce operations applied on the data while

in Spark, the users can define the types of data collections

(RDD types) as well as the operations, which are not limited

to map and reduce operations, e.g., union operation.

III. SIMPROF

Figure 2 shows an overview of the SimProf framework.

Thread Profiling profiles every executor thread within a JVM

to retrieve the call stacks and the hardware counter events.

Phase Formation vectorizes the call stacks and clusters them

into phases. Phase Sampling leverages the statistical sampling

approach, stratified random sampling, to select the simulation

points based on phases. Input-Sensitivity test uses the mean

and variance of the IPC measured of each phase to detect

input-sensitive phases and architectural behavior sensitive to

the inputs.

A. Thread Profiling

To detect the code executed in a sampling unit, the call

stacks within the unit are collected. A call stack is a record

of the active stack frames at a certain point in time during

the execution. Additionally, the hardware counters, such as

IPC and cache miss rate, are collected for validation and

sampling. To reduce the profiling overhead, we periodically

take snapshots of the call stacks in a sampling unit, as shown

in Figure 3.

Figure 4 shows the infrastructure for thread profiling. The

call stack collector retrieves the call stacks of JVM through the

JVM tool interface (JVMTI), which is the standard profiling

interface available in all Java implementations. The hardware

counter collector retrieves the hardware counter values through

the perf_event interface provided by the Linux kernel.

Both counters are controlled by the sampling manager, which

controls the sampling rate, e.g., the frequency of a snapshot.

It is also responsible for flushing the outputs of the collectors

Method A

Method B

Method C

Main

25M instructions
Performance

counters+

Sampling Unit N (100M instructions)

Sampling Unit N-1 Sampling Unit N+1

Snapshot

Fig. 3. Snapshots in a sampling unit

Call Stack
Collector

HW Counter
Collector

Sampling
Manager

JVM JVMJVM

OS

Signal

Signal

JVM
TI

Perf_event

Rate
control

Data
FlushCall

stacks

HW
events

Fig. 4. Thread profiler in SimProf

to the files since the collectors initially output to the memory

for fast collection speed.

The profiling infrastructure is attached to each JVM while

SimProf profiles on a per-executor-thread basis in the JVM.

Depending on the execution model of the profiling target

framework, the lifetime of an executor thread can be different.

In Spark, the lifetime of an executor thread is equal to the

total time of a job. Profiling only one executor thread can

cover different stages. However, in Hadoop, the lifetime of

an executor thread is equal to the lifetime of a task that it

executes. So, the executor thread dies when its task is finished.

In this case, the profiler merges the profiled results from the

executor threads running on the same core to mimic a long

running executor thread in Spark.

Our design leverages the standard profiling interfaces so

that it is applicable to any Java-based computing framework,

not limited to Spark or Hadoop. The sampling unit size

and the frequency of a snapshot can be tuned based on the

users’ need. Empirically, we use a large sampling unit size,

100M instructions to avoid the simulation start-up effect, e.g.,

cold cache. The frequency of a snapshot affects the profiling

overhead. The high frequency can slow the application and

skew the results of hardware counters while the low frequency

may miss important call stacks executed in a sampling unit.

We take snapshots every 10M instructions to have negligible

profiling overhead while having a sufficient number of call

stacks.

B. Phase Formation

Phase formation groups the sampling units into a phase if

they have similar call stacks. Phase formation contains two

steps. First, it converts the call stacks in one sampling unit

into a feature vector. Second, it clusters the feature vectors

into phases.

Figure 5 shows an example call stack that represents the

IO routine commonly seen in Spark. From levels 1 to 4, it

represents the starting methods of an executor thread. Then

it is followed by the task routine, which indicates that a

597

LV 1 Thread::run
LV 2 ThreadPoolExecutor$Worker::run
LV 3 ThreadPoolExecutor::runWorker
LV 4 Executor$TaskRunner::run
LV 5 Task::run
LV 6 ShuffleMapTask::runTask
LV 7 ShuffleMapTask::runTask
LV 8 HashShuffleWriter::write
LV 9 AppendOnlyMap$$anon$1::foreach
LV 10 Iterator$class::foreach
LV 11 HashShuffleWriter$$anonfun$write$1::apply
LV 12 HashShuffleWriter$$anonfun$write$1::apply
LV 13 DiskBlockObjectWriter::write
LV 14 JavaSerializationStream::writeObject
LV 15 ObjectOutputStream::writeObject

Executor
Thread

Task

IO

ݒ =< ݂1, ݂2, ݂3,… .>
LV 1 Thread::run

LV 2 ThreadPoolExecutor$Worker::run

LV 3 ThreadPoolExecutor::runWorker

Vectorization

Fig. 5. Convert call stacks into a feature vector

map task is currently executed. Finally, several IO-related

methods, such as object serialization and disk writing, are

called. Note that the figure only shows only one call stack

while one sampling unit typically contains multiple call stacks.

All methods appearing in the call stacks in one sampling unit

need to be counted and converted into a feature vector. Each

dimension of the vector represents a method while the value

of the dimension is the frequency of the method appearing in

the sampling unit. In addition, the number of dimensions in a

feature vector is equal to the number of unique methods in the

entire job execution so that all feature vectors have the same

number of dimensions.

However, this type of feature vector has the following

problems. First, a feature vector can easily have thousands

of dimensions because a large number of methods are called,

which often results in a high clustering time. Second, the

high dimensions often have challenges in identifying the hot

functions that have the most impact on performance.

To select the important methods (features), we use a linear

regression to identify the methods that are highly correlated

with performance i.e., IPC. The univariate linear regression

test [15] selects highly correlated top K methods. We set K

as 100 to balance the clustering speed while still capturing

important methods. For example, in Figure 5, the starting

methods of the executor thread and the tasks are eliminated

in the feature vector since those are common in most feature

vectors and have no significant impact on performance.

We use the k-means clustering algorithm to group the

sampling units into clusters (phases). To determine the number

of phases k, we score the fitness of each k between 1 and 20

using the silhouette coefficient. Then, we choose the smallest

k, which has at least 90% of the highest score among all k.

1) Phase Homogeneity Analysis: To understand how simi-

lar the performance is in each phase, we calculate the coeffi-

cient of variation (CoV) of cycles-per-instruction (CPI). The

CoV is a good metric to indicate how homogeneous (i.e., how

much the performance is uniform in a phase) the collection

of sampling units is. A higher CoV means that the sampling

units have a higher CPI variation.

Figure 6 shows that the population/weighted/maximum CoV

of CPIs. We calculate the weighted CoV, which is the CoV

of each phase weighted by the number of sampling units in

the corresponding phase. The maximum CoV is the CoV of

the phase that has the highest CoV. The population CoV is

the CoV of all sampling units. The purpose of the figure is

to demonstrate how well the phase formation performs. In an

0

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f v
ar

ai
tio

n

Population Maximum

Fig. 6. Coefficient of variation of CPIs

ideal case, the phase formation results in a low performance

variation of each phase. In this case, the weighted CoV is

low even if the population CoV is high. By contrast, if

the phase formation is not useful, it cannot separate high-

performance phases from low-performance phases. In this

case, the weighted CoV remains high when the population

CoV is high. The figure shows that the weighted CoVs from

all benchmarks are always lower than the population CoVs,

so we can safely conclude that our phase formation separates

phases with distinct performances. However, phase formation

does not necessarily construct all phases to be homogeneous,

as we see from the maximum CoV. We summarize the reasons

for non-homogeneous phase behavior as follows.

• Data access pattern: For these key-values applications,

if the reduce stage exists, it involves the sorting algorithm,

which sorts the key-value pairs by the key since the

reducer needs to process the data in the per-key basis.

The common sorting algorithm used is quicksort, which

sorts the keys recursively from small to large partitions.

Although the sampling units execute the same sorting

algorithm, some of them have a lower cache miss rate

because of sorting the small partitions, while others have

a higher miss rate because of sorting the large partitions.

For example, wc_hp spends a significant amount of time

in sorting keys (words) before the count of each word can

be calculated. Thus, the non-homogeneous sorting phase

results in a high weighted CoV.

Another type of changing data access pattern is the reduce

operation, which combines the values of the same key.

For all key-value pairs, the values with the same key may

not be next to each other leading to random accesses.

Thus, for sort and reduce operations, the LLC cache miss

rates could affect the overall IPC.

• OS scheduling: We observe that sometimes the executor

thread can be scheduled to other cores by the OS. For the

sampling units that involve the newly scheduled threads,

higher D-cache misses could occur leading to a higher

CPI.

• Phase Interleaving: The phase behavior of executor

threads can be interleaved in a random order depending

on how tasks are scheduled within threads. Even though

the same phase behavior is observed in two different

sampling units, they may have diverse performances

since they are interleaved with different phases of other

executor threads.

• Executed code difference: To make a phase have homo-

598

geneous behavior, the sampling units in a phase need to

have nearly identical call stacks to ensure that they have

similar behavior. However, in some cases, since the large

size of code is executed, a phase could have sampling

units that have different code leading to performance

differences.

Because non-homogeneity can occur within a phase, instead

of assuming that all phases have homogeneous behavior and

selecting one sampling unit for each phase, we need a reliable

way to select a set of simulation points within a phase to better

represent the behavior of the entire phase.

C. Phase Sampling

The phase sampling selects a number of sampling units

within each phase as the final simulation points. To deal with

the performance variation within a phase, we use the optimal

allocation [16] to determine the sample size of each phase

and use simple random sampling to select sampling units for

each phase. This is a statistical sampling approach, known as

stratified random sampling [16]. We refer to the “sample” as

the set of selected sampling units (simulation points) and the

“sample size” as the number of these units.

The idea behind optimal allocation is to have a larger sample

in the phase that has a higher IPC variance. Since the hardware

counter events of every sampling unit, such as IPC, can be

obtained from the frontend data collector (Section III-A), the

variance of each phase also can be measured.

Eq. 1 shows the sample size of a phase h determined by

the optimal allocation. n is the overall sample size. For each

phase h, Nh is the total number of sampling units, nh is the

sample size and σh is the standard deviation of phase h. The

sample within each phase is randomly selected. We call the

selected sampling units the final “simulation points.” We use

the sampling unit ID to represent each simulation point. On

the other hand, the cluster center of each phase is also saved

and will be used for the input sensitivity test.

nh =
n× (Nh ×σh)

∑i∈phases(Ni ×σi)
, h ∈ phases (1)

The sampling error of the simulation points is represented

as the confidence interval, which can be calculated as follows.

Eq. 2 shows how the confidence interval is computed. Eq. 3

shows the margin of an error defined by the confidence level

(1 – α) and the standard error (SE). Users can specify the

required the confidence level while the standard error depends

on the sampling technique. We assume the distribution of the

means (the average CPI of the simulation points of a phase

(CPIh)) is normal because of the central limit theorem. In this

case, α can be expressed in z-score form.

CI = sample mean±margin of error (2)

margin of error = α×SE (3)

Eq. 4 shows the standard error (SE) of stratified sampling.

Eq. 5 shows sh, which is the standard deviation of the phase.

We use the collected CPIs of each sampling unit to get sh.

SE =
1

N
∗
√√√√ ∑

h∈phases

[N2
h × (1 –

nh

Nh
)× s2

h

nh
] (4)

sh =

√
1

nh – 1

nh

∑
i=1

(CPIi – CPIh) (5)

Based on the above analysis, first, users choose the sample

size n that fits in their simulation time budget. Second, SimProf

picks the simulation points based on the sample size. Third,

users simulate the simulation points and estimate the sampling

error. If the error is higher than their requirement, they can

increase the sample size and repeat the procedure until the

sampling error is acceptable.

Since SimProf uses the large size of sampling units, the

simulation time can still be significant, users can combine

other sampling approaches, e.g., systematic sampling [3] to

reduce the simulation time of each simulation point. Exploring

the reduction of the simulation time by combining SimProf and

systematic sampling will be our future work.

D. Input Sensitivity Test

Algorithm 1 shows the procedure of the input sensitivity

test of reference inputs. Initially, one input is assigned as

the training input and then the rest of the inputs become the

reference inputs. For each reference input, the unit classifica-

tion classifies the sampling units of the reference input into

phases. For each phase, we perform the input sensitivity test of

the corresponding phase by comparing their performances and

determining whether the performance of the phase changes by

inputs.

A s s i g n one i n p u t as t h e base i n p u t , and t h e o t h e r s
are r e f e r e n c e i n p u t s

a s s i g n i n p u t s ()
f o r i n p in r e f e r e n c e i n p u t s :

C l a s s i f y s a m p l i n g u n i t s i n t o p h a s e s
t o t a l p h a s e s = p h a s e c l a s s i f i c a t i o n ()

f o r phase in t o t a l p h a s e s :
Check i f t h e phase i s i n p u t s e n s i t i v e
i f phase not in i n p u t s e n s i t i v e p h a s e s and

p h a s e s e n s i t i v i t y t e s t (phase) i s True :
i n p u t s e n s i t i v e p h a s e s . add (phase)

Algorithm 1. Input sensitivity Test

1) Unit Classification: The unit classification classifies the

sampling units from a reference input into phases using the

cluster (phase) centers of the training input. Even though the

program takes different inputs, similar methods are still exe-

cuted, resulting in the same set of phases. However, because

of the different length of phases and/or input-sensitive phases,

the performance of the program varies by inputs.

The procedure of classifying a sampling unit is as follows.

• A sampling unit is vectorized into a feature vector based

on the profiled call stacks. (Section III-B)

599

TABLE I
EVALUATED BENCHMARKS

Benchmark Abbrev. Type Input
Size

Frameworks

Sort sort
Microbench

10G text
Hadoop, Spark

WordCount wc
Grep grep
NaiveBayes bayes Machine

Learning
Connected
Components

cc Graph
Analytics

224 nodes

PageRank rank

• The feature vector is classified into the phase where the

center of the phase has the minimum distance to the

feature vector.

The unit classification ensures that sampling units that

execute similar program methods are belong to the same phase

between the training and the reference inputs.

2) Phase Sensitivity Test: The mean and standard deviation

tests are used for the phase sensitivity test. For each phase, we

collect the mean and standard deviation of the sampling units

within the phase. Then, we compare the mean and standard de-

viation between those of the reference inputs and those of the

train inputs respectively. If any of them are larger than 10%,

then the phase is considered as input sensitive, as shown in

Eq. 6. For a given phase, if all the reference inputs do not pass

the input sensitivity test, then the phase is considered input
insensitive. When exploring the micro-architectural behavior

of multiple inputs, one can skip the input-insensitive phases

while focusing on simulating the input-sensitive phases.

if(|μtrain –μrefi

μtrain
|> 10% or |σtrain –σrefi

σtrain
|> 10%); then Pass (6)

Note that the input sensitivity test does not select the inputs

for the test. As the number of inputs is infinite, it is impossible

to select the representative inputs. However, one can use the

knowledge to reduce the simulation space by categorizing

the inputs and selecting one input from each category. For

example, if an input is a graph, the categories can be based

on the number of vertices and their connectivity. Selecting

inputs is based on one’s need and is out of the scope of this

paper.

After the input sensitivity test, we can easily trace the

methods that show input-sensitive/input-insensitive behavior

using the information of the method encoded in the phase

centers. For example, we can analyze the phase centers and

retrieve the methods (features) that have the highest weight,

indicating that the method is the most commonly seen in this

phase.

IV. EVALUATION

A. Platform and Benchmarks

Our testbed is the machine with Intel(R) Core(TM) i7-

4820K and 40G DDR3-1333 MHz memory.

Table I shows the evaluated benchmarks from Big-

DataBench [17]. Each workload has implementations on two

frameworks: SPARK and Hadoop. We use “ [hp]” and “ [sp]”

to represent the Hadoop and Spark frameworks respectively.

The purpose of evaluating both frames is to test the robustness

of SimProf and analyze how phase behavior looks on different

frameworks. Since Hadoop is disk-IO intensive when the

default configuration is used, we apply common optimizations,

such as increasing the memory buffer size of mappers and

compressing the output of the mappers before writing to the

disk, to improve the performance and make it closer to the

real-world settings. The inputs are generated using the data

synthesizer provided in BigDataBench.

B. Comparisons

We evaluated the following sampling approaches. Note that

SRS and SimProf are probabilistic sampling techniques for

which the range of the CPI error can be quantified as the

confidence interval.

• Single N-second simulation point (SECOND): This is

one of the most common approaches used for simulating

data center workloads. The original use was for the

transaction-based workloads, such as OLTP [18] and

SpecWeb [5]. In those workloads, only a few type of

transactions exist and each has a short running time. In

that case, when N is sufficiently large, e.g., 10 seconds,

it is able to cover the entire transaction behaviors.

• Simple Random Sampling (SRS): SRS randomly selects

sampling units into the sample in which each sampling

unit has an equal chance to be selected. The advantage

is that SRS does not need to know the running code in

each sampling unit so it can save the profiling overhead.

• Single point for each phase (CODE): This is a

SimPoint-like approach that uses only call stacks to

cluster phases and selects the sampling unit closest to

the center of the cluster as the simulation point.

• SimProf: This uses the stratified random sampling ap-

proach. The maximum number of phases is 20 and the

threshold of the Silhouette coefficient is 90%.

C. Accuracy and Sample Size Results

To evaluate the sampling accuracy. We run each workload

until its completion to collect the CPI of each sampling unit.

Oracle CPI is the average CPIs of all sampling units. The

sampling errors are computed by comparing the differences

between the predicted CPIs with sampling and the oracle CPIs.

Figure 7 shows a comparison of sampling errors of the

different sampling approaches. The sample size is 20 for

SRS, CODE and SimProf, while SECOND uses the 10-second

interval as the sample size. SRS sometimes has a higher errors

than SECOND since different sampling units have higher CPI

variations. Although SECOND may not have high CPI errors,

in most cases, the sample is not representative since it does

not cover all the execution stages. For example, SECOND is

not able to cover the reduce stage for all Hadoop workloads.

CODE also has a higher error than SimProf since purely

using the code signature does not reduce the CPI variation

of each phase because of other factors that could affect

the performance. The average errors of SECOND, SRS, and

600

0%
5%

10%
15%
20%
25%
30%

CP
I E

RR
O

R

SECOND SRS CODE SimProf

Fig. 7. The sampling errors of CPI of different sampling approaches

0
200
400
600
800

1000
1200

SA
M

PL
E

SI
ZE

 (#
 O

F
SA

M
PL

IN
G

U

N
IT

S)

SimProf_0.05 SimProf_0.02 SECOND

Fig. 8. The comparison of the sample size (number of sampling units)
between SimProf and SECOND.

CODE are 6.5%, 8.9%, and 4.0% respectively, whereas the

average error of SimProf is only 1.6%.

Another advantage of SimProf is having the bound of sam-

pling errors thanks to the stratified random sampling. Figure 8

shows the required sample size of SimProf for the 99.7%

confidence interval with sampling errors of 5% and 2%. Since

SECOND uses the time duration as the sample size, the actual

number of sampling units may differ by benchmarks. (Each

sampling unit has 100M instructions.) In most benchmarks,

the required sample size is less than SECOND while achieving

much lower CPI errors except cc_sp and rank_sp. These

two workloads have more phases and the CPI variations of

these phases are also high. The average sample sizes of

SimProf 0.05, SimProf 0.02 and SECOND are 85, 244 and

611 respectively. This demonstrates that SimProf not only

selects more representative samples that leads to a higher

accuracy, but also has a smaller sample size that leads to higher

efficiency.

D. Phase Analysis

Figure 9 shows the number of phases in each category of the

workloads. It is interesting to see that the number of phases

of Spark-based workloads has a much wider range (1 for grep

and 9 for cc) than that of Hadoop-based workloads. Some

benchmarks, such as cc and rank, have many more phases

since they use more operations and data collection types for the

optimization purpose, e.g., GraphX libraries, while in Hadoop

implementations, only one to two map and reduce operations

are defined, leading to fewer phases.

Since we use the workloads that operate on key-value pairs,

we can categorize the phase types based on the dominant

operations of the phase: (1) map, (2) reduce, (3) sort, and

(4) IO types. Sort indicates the key-sorting operation, such as

quicksort while the IO includes the operations that read/write

to the HDFS due to insufficient memory space. Since oper-

0

2

4

6

8

10

bayes cc rank sort wc grep

N
um

be
r o

f P
ha

se
s

Hadoop Spark

Fig. 9. Number of phases

0%

20%

40%

60%

80%

100%

Br
ea
kd
ow

n

Map Reduce Sort IO

Fig. 10. Phase Type Distribution

ations are often very tightly coupled, the boundary between

them is sometimes blurred. For example, a phase may have

both map and IO operations active since each sampling unit

in the phase contains both operations. In this case, the type of

the phase depends on the dominant operation.
Figure 10 shows the breakdown of different phase types,

while the weight depends on the number of sampling units

in the type of the phase. Sort operations appear in all

Hadoop-based workloads, except grep_hp and sort_hp.

The purpose of the sort operations is to reduce the number

of mapper outputs for the optimization purpose. Before the

mapper outputs are flushed to the disk, they are sorted and

merged by keys so that a reducer receives only one copy

instead of N copies where N is equal to the number of mappers

on the node. By default, Spark-based workloads do not enable

this option so the sorting operations are not seen. In general,

Hadoop-based workloads spent more time on IO operations

instead of doing actual work than Spark-based workloads,

which could be one of the reasons Hadoop-based workloads

have a lower performance than Spark-based workloads.
Figure 11 shows how the optimal allocation distributes

the simulation points between phases. The sample size ratio

of a phase represents the number of simulation points in

the phase divided by the total number of simulation points.

The figure also shows the CoV of CPI, and the weight of

the phase. All three numbers as the range between 0 and

1. Phase 0 has the highest phase weight (29.1%) and the

sample size ratio in which 35% of the simulation points

belong to this phase. The high CPI variation is caused by the

aggregateUsingIndex operation, defined in the GraphX

library, which performs a reduce operation. By contrast, al-

though Phase 1 has the second-highest phase weight (18.9%),

only 5% of the simulation points belong to this phase since

the CPI variation of the phase is low. The phase is dominated

by the mapPartitionsWithIndex operation, which se-

quentially converts the lines from an input file to the key-

601

0%

20%

40%

60%

80%

0 1 2 3 4 5 6 7 8

PE
RC

EN
TA

G
E

PHASE ID

sample size ratio CoV weight

Fig. 11. The sample size ratio of each phase of cc_sp distributed based
on the optimal allocation. (The phases are sorted by the weight)

TABLE II
EVALUATED INPUTS

Input Name Input Type

Google Web graph training input

Facebook Social Network

reference inputs

Flickr Online communities
Wikipedia Online encyclopedia

DBLP Computer science bibliography
Stanford Web graph
Amazon Product co-purchasing networks

Road Road Networks

value pairs. The nature of sequential accesses leads to a

low CPI variation. Thus, the optimal allocation allocates the

simulation points based on both CPI variations and phase

weights. Since SimProf captures both performance and call

stacks, the information is used by the optimal allocation to

determine the best partition of the simulation points.

E. Input Sensitivity Analysis

Table II shows the graphs downloaded from the SNAP

website [19] that we use to analyze how phase behaviors

change by inputs. Since most of the original graphs are small

and have a different number of nodes, we synthesize the

Kronecker graphs [20] that have connectivity similar to the

original graph. The resulting graphs have a number of nodes

between 220 and 224. One input is selected as the training

input, while the rest are the reference inputs. To select the

representative inputs, we try to select the ones that are likely to

lead to distinct performances of the workloads to cover a wide

range of inputs. For graph-analytic workloads, we can select

the graphs with diverse topology as the representative inputs.

For text-based workloads, it is more challenging to identify the

representative inputs since it is more benchmark-dependent.

For example, for WordCount, the inputs with different fre-

quencies of words should be used, while for Sort, the inputs

with different ordering between words should be used. Since

the criteria of representative inputs for text-based workloads

requires more analysis on the content of the documents, we

evaluated the graph analytic workloads for now, leaving the

text-based workloads for future work.

Figure 12 shows the percentage of simulation points that

are in input sensitive phases. This indicates the sample size for

reference inputs. For training inputs, all simulation points need

to be simulated, but for the reference inputs, the simulation

points in the input insensitive phases can be skipped. Using the

proposed input sensitivity analysis, the sample size is reduced

0%

20%

40%

60%

80%

100%

cc_hp cc_sp rank_hp rank_sp average

In
pu

t S
en

sit
iv

e
Si

m
ul

at
io

n
Po

in
ts

 (%
)

Fig. 12. The input-sensitive sample size

0
2
4
6
8

10
12

cc_hp cc_sp rank_hp rank_sp

N
um

be
r o

f p
ha

se
s

Sensitive insensitive

Fig. 13. The number of input-sensitive and input-insensitive phases

from 20% up to 45%. On average, 33.7% of the sample size

can be reduced.

Figure 13 shows the number of input sensitive and insensi-

tive phases. For most workloads, the number of input insensi-

tive phases is at least 40% of the total number of phases. We

found that the input sensitive phases are likely to have some

operations that have time-varying performance. For example,

in cc_sp, the phase with the aggregateUsingIndex
operation have different performances at different execution

stages. The performances of the phase change by inputs as

well. In addition, a high CPI variation within a phase is not

necessarily an input sensitive phase since the variation could

exhibit some pattern while the pattern does not change by

inputs, e.g., the quicksort algorithm.

F. Framework Comparisons

Here, we compare the phase behaviors of the WordCount

benchmark on the Hadoop and Spark frameworks. In the

following figures, the sampling units are sorted by phase IDs.

Blue dots correspond to the left y-axis and represent the CPI

of the sampling units while the red lines correspond to the

right y-axis and represent the phase IDs of the sampling units.

Figure 14 shows the Spark implementation of WordCount.

From programmers’ view, the reduce operation should occur at

the second stage, as shown in Figure 1. However, by analyzing

the call stacks, we found that the majority of the reduce opera-

tion occurs in the first stage. The phase with the majority of the

sampling units is dominated by the combineValuesByKey
operation of the Aggregator class, which calls not only the

reduce operation, but also the map and IO operations, e.g., the

first three operations in Figure 1. Then the reduce operation

is performed as hashing the key and inserting the key-value

pairs into a large in-memory map. If the key already exists

in the in-memory map, the newly inserted value is merged

with the value in the map. This is the so-called map-side
reduce optimization used to reduce the size of the mapper

602

Fig. 14. WordCount - Spark implementation

output. Since these operations are tightly coupled, they belong

to the same phase. Finally, the second phase reduces the output

from the first phase and saves the output to the HDFS. Since

the map-side reduce already takes care of the majority of the

reducer work, the second phase occupies only 1% of the total

sample size. In terms of CPI variations, we expect the first

phase, which has the reduce operation, to have a high CPI

variation; however, it shows fairly stable performance. This

is likely due to multiple operations being merged together,

e.g., map, IO, while the reduce operation is not the dominant

operation of the phase. The second phase, which contains

the HDFS IO operations, has a higher CPI variation because

of different data types being accessed. Figure 15 shows the

Hadoop implementation of WordCount. The first phase is

dominated by the map operation of the TokenizerMapper
class, which generates the key-value pairs where the key is

a word, and writes them to the memory buffer. Since the

map operations have a good cache locality, the phase has

a high performance and a relatively low CPI variation. The

second phase is dominated by the combine operation of the

NewCombinerRunner class, which performs the map-side

reduce operation. Different from the Spark implementation,

the combine operation is not coupled with other operations;

therefore, the CPI variation is higher in this phase. The third

phase is dominated by the sort operation, which uses the

quicksort algorithm. The purpose is to reduce the number of

mapper outputs sent to a reducer. Because of the recursive

nature of the function, the CPI variation is high.

V. RELATED WORK

Sampling Methodology: The sampling approaches can be

divided into phase-based sampling and statistical systematic

sampling. For phase-based sampling approaches, the most

popular one is SimPoint [4] (or PinPoint [21] with Pin

tool), which uses basic blocks (BBVs) to form a phase.

Perelman [22] et al. used statistical analysis to determine

the number of phases. Annavaram et al. [13] found fuzzy

correlation between the code signatures and the performances

for server workloads.

Fig. 15. WordCount - Hadoop implementation

The fundamental difference between SimProf and the other

phase-based sampling is in the basic assumption about phase

classifications and performance. Others assume that perfor-

mance differences between sampling units can be classified

with only executed code information. Thus, with a sufficient

number of phases, the performance within a phase is homo-

geneous. However, since the others did not account for the

memory access patterns and other factors, which could have

more dominant impact than code for data center workloads,

simply increasing the number of clusters does not result

in having more homogeneous performance in each phase,

which becomes the over-fitting problem. In SimProf, we use

hardware counters to detect the performance variance of a

phase resulting from the non-captured features, such as random

access patterns. Then, we use simple random sampling within

each phase based on the degree of variance.

For statistical systematic sampling, Wunderlich et al. [3]

proposed systematic sampling, SMARTS, which periodically

includes a sampling unit into the sample, and Wenisch et

al. [6] applied the technique for server workloads. Ardestani

et al. [23] and Carlson et al. [24], [25] use the systematic pro-

gramming for multi-threaded applications. They periodically

sample the execution regarding progressed time rather than

the instruction count. Compared to SimProf, the advantage

of systematic sampling is that the profiling overhead can be

saved since the executed code does not need to be captured.

However, the code executed in each sampling unit is not con-

sidered, which could result in a higher error than SimProf with

the same sample size. In addition, SMARTS [3] uses much

smaller sampling unit sizes, e.g., 10K instructions, making

functional simulation between sampling units (i.e., functional

warning) necessary to alleviate the cold cache impact. Because

the functional warming is slow, the small sampling unit size

is not suitable for simulating large scale applications.

Several works evaluated the phase-based and systematic

sampling approaches. Yi et al. [26] compared the SimPoint and

SMARTS and found that SMARTS provides better accuracy,

while SimPoint is faster. Annavaram et al. [13] proposed

603

Extended Instruction Pointer Vector (EIPV), a sampled code

signature to identify phases, but found that the correlation

between the code and the performance is not strong. Wun-

derlich et al. [27] applied stratified random sampling using

BBVs and found that it does not provide much benefit over

simple random sampling when the sampling unit size is small.

However, they did not account for the cost of functional

warming using small sampling unit sizes. In SimProf, we

identified that stratification using code can help separate the

methods with high CPI variance from those with low variance

and the sample size can be smaller than in simple random

sampling. Furthermore, SimProf is a real machine based pro-

filing tool with a fast speed in selecting simulation points. Such

information can help simulators to decide where to simulate,

making the phase-based sampling approach a viable option for

studying data center workloads.

Input Set Selection: Prior work on input sets focused on

selecting the representative input sets. Eeckhout et al. [28] used

PCA to select the representative program-input pairs. They

characterize each program-input pair using 20 program charac-

teristics, such as instruction mix and cache miss rates. Breughe

et al. [29] used BBV to select the representative inputs for

microprocessor design space exploration. Hsu et al. [30] found

that the procedure coverage and microarchitecture behavior is

different between the training and reference sets in SPEC. In

SimProf, the input-sensitive test is an orthogonal approach.

With the representative inputs, using the input sensitive test

can reduce the simulation time further by skipping the phases

whose performance does not change by inputs.

VI. CONCLUSION

SimProf is the first sampling framework for data analytic

workloads based on modern computing frameworks, such as

Apache Spark and Hadoop. It identifies phases using call

stacks and applies statistical sampling methods to select the

final simulation points, which can sample the phases that

do not have homogeneous performances. It achieves a 1.6%

sampling error of CPI with only 20 simulation points, each of

which has 100 million instructions. This sample size is less

than 5% of that of single 10-seconds interval. In addition,

it detects input-insensitive phases, whose performance does

not change by inputs. When simulating multiple inputs with

different volumes, the number of simulation points can be

further reduced by 33.7% on average as a result of skipping

input-insensitive phases.

ACKNOWLEDGMENT

We gratefully acknowledge the support of National Science

Foundation (NSF) CAREER CCF 1054830. We would like to

thank HPArch members and the reviewers for their comments

and suggestions. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect those of NSF.

REFERENCES

[1] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud’10, 2010.

[3] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in ISCA ’03, 2003.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS X, 2002.

[5] R. Hariharan, N. Sun, and S. Microsystems, “Workload characterization
of specweb2005,” 2006.

[6] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, Jul. 2006.

[7] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” in ISCA ’12, 2012.

[8] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with footprint cache,”
in ISCA ’13, 2013.

[9] E. PARSA, Rigorous and Practical Server Design Evaluation, Georgia
Institute of Technology, 2015.

[10] Oracle, “JVM TI Reference,” WWW page, 2007.
[11] M. Odersky and M. Zenger, “Scalable component abstractions,” in

OOPSLA ’05, 2005.
[12] M. Bach, M. Charney, R. Cohn, T. Devor, E. Demikovsky, K. Hazel-

wood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal, “Analyzing
parallel programs with pin,” vol. 43, no. 3, pp. 34–41, March 2010.

[13] M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hankins,
and B. Davies, “The fuzzy correlation between code and performance
predictability,” in MICRO-37, Dec 2004, pp. 93–104.

[14] “The four v’s of big data,” in IBM big data & analytics hub.
[15] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[16] S. Wikipedia and L. Books, Sampling (Statistics): Census, Sample, Strat-
ified Sampling, Sampling Bias, Statistical Unit, Opinion Poll, Statistical
Survey, Margin of Erro. General Books LLC, 2011.

[17] L. W. et al., “Bigdatabench: A big data benchmark suite from internet
services,” in HPCA, 2014.

[18] C. A. Curino, D. E. Difallah, A. Pavlo, and P. Cudre-Mauroux,
“Benchmarking OLTP/Web databases in the cloud: The OLTP-bench
framework,” in CloudDB ’12, 2012.

[19] J. Leskovec and R. Sosič, “SNAP: A general purpose network analysis
and graph mining library in C++,” http://snap.stanford.edu/, Jun. 2014.

[20] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” J. Mach.
Learn. Res., vol. 11, pp. 985–1042, Mar. 2010.

[21] H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large Intel
Itanium programs with dynamic instrumentation,” in MICRO-37, 2004.

[22] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid and
early simulation points,” ser. PACT ’03, 2003.

[23] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in HPCA, 2013.

[24] T. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of multi-
threaded applications,” in ISPASS, 2013.

[25] T. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout, “Barrier-
point: Sampled simulation of multi-threaded applications,” in ISPASS,
2014.

[26] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins,
“Characterizing and comparing prevailing simulation techniques,” in
HPCA, 2005.

[27] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “An
evaluation of stratified sampling of microarchitecture simulations,” in
WDDD, 2004.

[28] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload
design: Selecting representative program-input pairs,” in PACT, 2002.

[29] M. B. Breughe and L. Eeckhout, “Selecting representative benchmark
inputs for exploring microprocessor design spaces,” ACM Trans. Archit.
Code Optim., vol. 10, no. 4, pp. 37:1–37:24, Dec. 2013.

[30] W. C. Hsu, H. Chen, P. C. Yew, and H. Chen, “On the predictability
of program behavior using different input data sets,” in InterACT, 2002,
pp. 45–53.

604

