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• We from the architectural perspective study behaviors of graph computing in real world use cases.
• We conduct comprehensive experiments to collect quantitative characteristics.
• Our characterizations include multiple architectural factors and data impact studies.
• Our explorations can deepen our understanding in graph computing.
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a b s t r a c t

Graph computing is widely applied in a large number of big data applications. Despite its importance,
high performance graph computing remains a challenge, especially for large-scale graphs. In this paper,
by analyzing from the architectural perspective, we study computational behaviors of graph computing
in real-world use cases. We benchmark a set of representative graph algorithms implemented on a
unified framework and conduct experiments to analyze comprehensive performance characteristics. In
the characterization, we observed multiple insights, including irregular memory patterns, significant
diverse behavior across different computations, highly data dependent behaviors, etc., using large-scale
synthetic and real-world graphs. To the best of our knowledge, this is the first comprehensive architectural
study on the full-scope of graph computing. It can improve our understanding on graph computing and
help high performance computing research for graph-based big data applications.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In many big data scenarios, information from various entities is
typically linked with others and forms a large-scale graph. Graph
computing has become one of the most important techniques for
processing, analyzing, and visualizing linked big data [31,37].

Graph computing explores graph topology and/or the attributes
associated with the vertices and edges. It leads to many research
topics, ranging from graph-oriented computer architecture design
to massive graph analytics and visualization. There are numer-
ous research efforts across multiple communities invested in this
discipline [26]. Although graph theory and graph analytic algo-
rithms are well studied in prior literature, much less attention is
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paid to the performance of graph computing [49,47]. To the best
of our knowledge, other than high performance implementations
of specific graph algorithms, the performance characteristics of a
wide selection of graph computing workloads are insufficiently
discussed [34,50]. Unlikemany priorwork that focus only on graph
structures, the attributes (a.k.a. properties) of graph vertices and/or
edges should be equally addressed, especially when rich/dynamic
properties are involved [5]. Besides, the computing platform is be-
coming heterogeneous. More than just parallel graph computing
on CPUs, there is a growing impact of graph computing on Graphic
Processing Units (GPUs).

To understand the characteristics of graph computing, wemust
investigate multiple key performance factors, such as frameworks,
data representations, computation types, and data sources [5].
First, in a graph computing system, elementary graph operations,
such as find-vertex and add-edge, shall be supported via a
unified underlying framework because of programmability and
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usability considerations. The separation of user program and
graph framework simplifies complexity of user programs and
ensures graph applications to be independent from framework
changes. These graphoperations contribute to a large portion of the
total execution time and thus, their implementation significantly
impacts the performance. Similarly, the data representations can
also affect multiple architectural features, especially the memory
sub-system behavior. Second, although graph traversals are
considered as representative graph applications, graph computing
has a much broader scope. Graph applications can involve
computations not only on graph structures, but also on the rich
vertex/edge properties or dynamic graphs (refer to Section 2 for
further details). Third, graph processing systems are also data-
dependent. Data sources may significantly impact its behavior.

There are some graph workloads in existing architectural
benchmark suites, demonstrating the inefficiency of graph com-
puting on conventional CPU/GPU architectures [12,45,32,4]. How-
ever,most of them target generic benchmarking purposes andhave
limited graph workload number. Besides, multiple recent research
efforts are ongoing for benchmarking existing graph processing
systems, such as LDBC [23], Graphalytics [7], and GraphBench [14].
They target system-level comparison and evaluation, and thus, are
less applicable when it comes to architecture-level analysis. Little
is known about the architectural characteristics of graph process-
ing systems with realistic frameworks.

To understand the behavioral characteristics of a wide scope
of graph computing applications, we propose a comprehensive
exploration of our previously proposedbenchmark suite,GraphBIG,
on contemporary hardware. GraphBIG is mainly inspired by the
IBM System G framework, which is a comprehensive set of
industrial graph computing toolkits used by many commercial
use case scenarios [17,43], but also partially considers Dato’s
GraphLab [27], Google’s Pregel [29], andMicrosoft’s Trinity [40]. By
utilizing the middleware design of System G, we ensure a realistic
framework and data representation in GraphBIG. Meanwhile, the
workloads are selected comprehensively from real-world use cases
of multiple application domains. In addition, GraphBIG provides
real-world datasets to cover major graph data sources and a
synthetic dataset for characterization purposes.

In our characterization, we observe the following behavior.
(1) On average, modern processors show extremely low IPC for
graph computing workloads because of significant inefficiencies
in memory sub-systems. (2) Diverse behavior is also observed
in different workloads and different computation types. Such
diversity exists in cache hit rate, DTLB miss, branch miss, and
overall performance. (3) Although low hit rates are observed in
L2 and L3 caches, the L1D cache still can get a significant amount
of hits from the meta data with small sizes. (4) Despite the
performance differences introduced by computation models, they
all share the same inefficiencies in the cache hierarchy. (5) Graph
computing with big graphs also shows similar behavioral trends as
medium-size graphs. (6) Graph data size, density, and connectivity
all have significant impact on multiple architecture features. Such
impact has complex correlations with workloads.

The main contributions of this paper are as follows:

• We present the first comprehensive architectural study on
the behavioral characteristics of a wide selection of graph
computing workloads using industrial graph frameworks.

• We analyze the irregularity of graph computing. Our results
indicate high L2/L3 cache miss rates. However, L1D cache and
ICache both show a relatively low miss rate because of the
locality of non-graph data and the flat code hierarchy of the
underlying framework respectively.

• We investigate the workload diversity and observe a signif-
icantly diverse architectural behavior across different graph
computation types.

• We explore the data sensitivity and observe that graph
workloads exhibit varying but consistently high degree of data
sensitivity.

The rest of this paper is organized as follows. In Section 2,
we discuss and summarize the key performance factors of
graph computing behavior. Section 3 introduces previous related
work. In Section 4, we characterize the workloads from multiple
perspectives on CPU. Then, in Section 5, we analyze the impact of
graph data. Finally, in Section 6, we conclude our work.

2. Graph computing: key performance factors

In real-world practices, graph computing contains a broad
scope of use cases, from cognitive analytics to data exploration.
The wide range of use cases introduces not only unique, but
also diverse features of graph computing, including frameworks,
data representations, computation types, and data sources. To
understand graph computing in a holistic way, we first analyze
these key performance factors of graph computing behavior in this
section.

Framework: Unlike standaloneprototypes of graph algorithms,
graph computing systems largely rely on specific frameworks to
achieve various functionalities because of programmability and
usability concerns. By hiding the details of managing graph data
and requests, the graph frameworks provide users primitives for
elementary graph operations. The separation of user program
and graph framework simplifies complexity of user programs
and ensures graph applications independent from framework
changes. The examples of graph computing frameworks include
GraphLab [27], Pregel [29], Apache Giraph [2], and IBM System
G. Although they have different management and synchronization
mechanisms, they share significant similarity in their computation
models and user primitives. First, unlike simplified algorithm
prototypes, graph systems represent graph data as a property
graph, which associates user-defined properties with each vertex
and edge. The properties can includemeta-data (e.g., user profiles),
program state (e.g., vertex status in BFS or graph coloring), and
even complex probability table (e.g., Bayesian inference). Second,
instead of directly operating on graph data, the user defined
applications achieve their algorithms via framework-defined
primitives, which usually include find/delete/add vertices/edges,
traverse neighbors, update properties, etc.

To estimate the framework’s impact on the graph system
performance, we performed profiling experiments on a series
of typical graph workloads with IBM System G framework. As
shown in Fig. 1, a significant portion of time is contributed by
the framework for most workloads, especially for graph traversal
based ones. On average, the in-framework time is as high as 76%.
This is because the key component of most workloads is graph
data accesses, which are supported by the framework-enabled
primitives and are implemented within the framework. Fig. 1
shows that the heavy reliance on the framework indeed results in
a large portion of in-framework execution time. It therefore can
bring significant impact on the architecture behavior of the upper
layer graph workloads.

Data representation: Within the graph frameworks, various
data representations can be incorporated for organizing in-
memory graph data. The differences between in-memory data
representations can significantly affect the architectural behavior,
especially memory sub-system related features, and eventually
impact the overall performance.

One of the most popular data representation structures is
Compressed Sparse Row (CSR). As illustrated in Fig. 2(a) (b),
CSR organizes vertices, edges, and properties of graph G in
separate compact arrays. (Variants of CSR also exist. For example,



L. Nai et al. / J. Parallel Distrib. Comput. ( ) – 3

Fig. 1. Execution time of framework.

Fig. 2. Illustration of data representations. (a) graph G, (b) its CSR representation, and (c) its vertex-centric representation.

Table 1
Graph computation type summary.

Graph computation type Feature Example

Computation on graph structures (CompStruct) Irregular access pattern, heavy read accesses BFS traversal
Computation on graphs with rich properties (CompProp) Heavy numeric operations on properties Belief propagation
Computation on dynamic graphs (CompDyn) Dynamic graph structure, dynamic memory footprint Streaming graph [10]

Coordinate List (COO) format replaces the vertex array in CSR with
an array of source vertices of each edge.) Comparing other dynamic
data structures with indices, the compact format of CSR saves
memory size and simplifies graph build/copy/transfer complexity.
It is widely used in multiple systems. However, the compact data
structure of CSR also brings significant data movement overhead if
structural updates happen. Many graph applications incorporate
only static graph structures. Nevertheless, in real-world graph
systems, there are also many cases that require high dynamicity in
both topologies and properties. Thus, flexible data representations
are more desirable in many graph systems. For example, IBM
System G, as well as multiple other frameworks, is using a vertex-
centric structure, in which a vertex is the basic unit of a graph. As
shown in Fig. 2(c), the vertex property and the outgoing edges stay
within the same vertex structure. Meanwhile, all vertices form up
an adjacency list with indices. Other graph representations also
exist in academic research literature, though not widely adopted
in industrial systems. Examples include the subgraph-centric [42]
and edge-centric framework [38].

Computation types: Numerous graph applications exist in
prior literature and real-world practices. Despite the variance
of their implementation details, generally graph computing
applications can be classified into a few computation types [48].
As shown in Table 1, we summarize the applications into three

categories according to their different computation targets: graph
structures, graph properties, and dynamic graphs. Because of the
differences in computation targets, they have diverse features. (1)
Computation on the graph structure traverses the graph through
structures, such as the Breadth-first Search. It incorporates a large
number of memory accesses and limited numeric operations.
Their irregular memory access pattern leads to extremely poor
spatial locality. (2) On the contrary, computation on graphs with
rich properties performs computation within each vertex/edge’s
property, which is the attributes attached to vertex/edge that
can be even as rich as a full stochastic table, such as in Gibbs
Inference. Triangle Count is also an example because in its typical
implementation, neighbor list is handled just as vertex property
and computation is only based on the properties with non-
traversal operations. This computation type introduces lots of
numeric computations on properties, which leads to behavior
similar as conventional applications. (3) For computation on
dynamic graphs, it involves dynamic graph structure updates as
well as graph traversals. Thus, it also shows an irregular pattern
as the first computation type. However, the updates of graph
structures lead to high write intensity and dynamic memory
footprint.

Graph data sources: As a data-centric computing tool, graph
processing systems heavily rely on data inputs. As shown in
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Table 2
Graph data source summary.

No. Graph data source Example Feature

1 Social(/economic/political) network Twitter graph Large connected components, small shortest path lengths
2 Information(/knowledge) network Knowledge graph Large vertex degrees, large small-hop neighborhoods
3 Nature(/bio/cognitive) network Gene network Complex properties, structured topology
4 Man-made technology network Road network Regular topology, small vertex degrees

Table 2, we summarize graph data into four sources [48]. The
social network represents the interactions between individu-
als/organizations. The key features of social networks include high
degree variances, small shortest path lengths, and large connected
components [33]. On the contrary, an information network is a
structure, in which the dominant interaction is the dissemination
of information along edges. It usually shows large vertex degrees,
and large two-hop neighborhoods. The nature network is used
for learning and interacting naturally with people. Examples in-
clude deep belief network (DBN) [3] and biological network [8].
They typically incorporate structured topologies and rich proper-
ties addressing different targets. Man-made technology networks
are formed by specific man-made technologies. A typical example
is a road network, which usually maintains small vertex degrees
and a regular topology.

3. Related work

Several graph computing frameworks have been proposed
previously. Examples include Pregel [29], Giraph [2], Trinity [40],
PEGASUS [20], GraphLab [27], and Cassovary [16]. There are
also multiple academic research efforts, such as GraphChi [22],
X-stream [38], Cusha [21], and Mapgraph [13]. They incorporate
various techniques to achieve different optimization targets on
specific platforms. For example, GraphChi utilizes a Parallel Sliding
Window (PSW) technique to optimize disk IO performance. Cusha
extends the similar technique on GPU platforms to improve data
access locality. For similar purposes, X-stream proposes a graph
system using an edge-centric programming model.

Multiple system-level benchmarking efforts are also ongoing
for evaluating and comparing existing graph systems. Examples
include LDBC benchmark, GraphBench, G. Yong’s characterization
work [15], and A. L. Varbanescu’s study [44]. To understand
the architectural behavior of graph computing, multiple graph
benchmarks exist. For example, as one of the most famous graph
benchmarks, Graph500 [32]was proposed for systemperformance
ranking purposes. Reference codes as graph generators exist
in Graph 500. However, because of its special purpose and
small workload number, it is less feasible for benchmarking
graph computing. CloudSuite [12] and BigDataBench [45] target
cloud computing and big data computing respectively. Graph
workloads are included in their packages. Similarly, PBBS [41]
targets evaluations of parallel programmingmethodologies. Graph
computing is also one of its components.

As one of the representative industrial graph solutions, IBM
System G is another example. It is a comprehensive set of graph
computing software systems for Big Data portfolio. It includes
a wide range of toolkits, use cases, and graph data sources.
Meanwhile, by utilizing System G’s framework and use case
resources, a comprehensive benchmarking effort, GraphBIG [35],
was also proposed. It covers the whole scope of graph computing
and provides a rich support for architectural studies.

Most prior benchmarking and characterization efforts focus
on the system level analysis, in which only system performance
factors are analyzed, lacking in-depth study from architectural
perspective. Besides, the architectural benchmarks with graph
workloads target generic benchmarking purposes. They are less
focused on revealing the comprehensive characteristics of graph

Table 3
Test machine configurations.

Processor

Type Xeon E5-2670
Frequency 2.6 GHz
Core # 2 sockets × 8 cores × 2 threads
Cache 32 kB L1, 256 kB L2, 20 MB L3
MemoryBW 51.2 GB/s (DDR3)

System
Memory 192 GB
Disk 2 TB HDD
OS Red Hat Enterprise Linux 6

computing. Moreover, most of existing benchmarks are biased to
graph traversal related workloads (CompStruct). The other two
graph computation types, computation on dynamic graphs and
on rich properties, are less emphasized. Comparing with prior
efforts, our proposed study provides a comprehensive analysis on
the architectural behavior of graph computing. It covers the wide
scope of graph computing unbiasedly and further incorporates
the analysis of graph data impact. The study enables an in-depth
understanding of graph computing from architectural perspective.

4. Graph computing characterization

4.1. Characterization methodology

In this study, our exploration focuses on single node architec-
tural behavior. Although real-world big graphs can contain enor-
mous amount of data on a cluster of machines, the graph structure,
which is the main focus of most graph applications, still mostly
stays within the capacity of one single node [22]. Meanwhile, the
memory capacity of a single node keeps increasing over the past
years. For an instance, the newly released graph system fromNeo4j
with IBM POWER8 incorporates 56 TB memory in one node [36].
Moreover, as illustrated inGraphChi [22], because of the significant
communication overhead, the performance of hundreds of nodes
can be even worse than one optimized single node because of the
communication overhead. Therefore, even in a distributed com-
puting environment, it is still critical to scale-up the single node
performance before scale-out computations.

Hardware configurations: In our characterization, we perform
our experiments on a single node Intel Xeon machine with 2
sockets and 8 cores in each. The hardware andOS details are shown
in Table 3. Our target framework, GraphBIG (further explained in
the later subsection), is following Bulk Synchronous Parallel (BSP)
with symmetric parallel threads on one single node. To avoid the
context switch overhead introduced by OS thread scheduling, the
threads are pinned to different hardware cores with Simultaneous
Multithreading (SMT) disabled. In addition, the thread-pinningwill
prioritize the full-utilization of cores in one socket to reduce cross-
socket communication.

Workloads: To address the key factors of graph computing
behavior in our characterization, we use benchmarks from
GraphBIG [35], which is a comprehensive benchmark suite with
both CPU and GPUworkloads. By utilizing an industrial framework
design, GraphBIG incorporates a modern graph framework and
data representation. Moreover, to ensure representativeness and
coverage, GraphBIG selects workloads from real-world use cases
and covers three major graph computation types.
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Table 4
Characterization workloads.

Category Workload Computation type

Graph traversal Breadth-first search (BFS) CompStruct
Depth-first search (DFS) CompStruct

Graph update
Graph construction (GCons) CompDyn
Graph update (GUp) CompDyn
Topology morphing (TMorph) CompDyn

Graph analytics

Shortest path (SPath) CompStruct
K-core decomposition (kCore) CompStruct
Connected component (CComp) CompStruct
Triangle count (TC) CompProp
Gibbs inference (GI) CompProp

Social analysis Degree centrality (DCentr) CompStruct
Betweenness centrality (BCentr) CompStruct

In our experiments,we select 12CPUworkloads fromGraphBIG.
The workload details are shown in Table 4. They cover multiple
usage types, from conventional graph traversal to graph update,
and three graph computation types. Most workloads, except for
Graph update workloads, are performing parallel processing with
fully-utilization of hardware platform resources. In addition, for
iterative workloads with dynamic working set size, GraphBIG
incorporates a task queue for each thread. The task queue of next
iteration will be generated dynamically according to the hashing
outcome of new task vertices’ id.

As summarized in Table 4, the workloads are grouped into
four categories according to their high level usage. The details are
further explained below.

• Graph traversal: Twoworkloads—Breadth-first Search (BFS) and
Depth-first Search (DFS) are selected. Both are widely-used
graph traversal operations.

• Graph construction/update: Graph update workloads are per-
forming computations on dynamic graphs. Threeworkloads are
included as follows. Graph construction (GCons) constructs a di-
rected graph with a given number of vertices and edges. Graph
update (GUp) deletes a given list of vertices and related edges
from an existing graph. Both GCons and GUp achieve the ver-
tex/edge add/delete operations via the underlying framework,
in which a vertex-centric data representation with extra in-
dexes is used. Topologymorphing (TMorph) generates an undi-
rected moral graph from a directed-acyclic graph (DAG) [6]. It
involves graph construction, graph traversal, and graph update
operations.

• Graph analytics: There are three groups of graph analytics,
including topological analysis, graph search/match, and graph
path/flow. Since basic graph traversal workloads already cover
graph search behavior, here we focus on topological analysis
and graph path/flow. As shown in Table 4, five chosen
workloads cover the two major graph analytic types and two
computation types. In their implementations, the shortest
path is following parallel Bellman–Ford algorithm. The k-core
decomposition is using Matula & Beck’s algorithm [30]. The
connected component is implemented with BFS traversals.
The triangle count is based on T. Schank’s algorithm [39].
Besides, the Gibbs inference is performing Gibbs sampling for
approximate inference in Bayesian networks.

• Social analysis: Due to its importance, social analysis is listed
as a separate category in our work, although generally social
analysis can be considered as a special case of generic graph an-
alytics. We select graph centrality to represent social analysis
workloads. Since closeness centrality shares significant similar-
ity with shortest path, we include the betweenness centrality
with Brandes’ algorithm [28] and degree centrality [19].

Table 5
Graph data in the experiments.

Experiment dataset Vertex # Edge #

Bitcoin graph 72M 182M
LDBC synthetic graph 1M 28.82M
Twitter graph 11M 85M
IBM knowledge Repo 154k 1.72M
IBMWatson gene graph 2M 12.2M
CA road network 1.9M 2.8M
MUNIN graph 1041 1397

Datasets: In the characterization experiments, we first use
synthetic graph data to enable in-depth analysis for multiple
architectural features. The LDBC synthetic graph is selected
because it represents social network behavior and offers flexibility
in graph size. Four other datasets are then included for real-world
data studies (see Table 5). To analyze the large graph behavior,
the Bitcoin graph is included in characterization. In addition,
because of the special computation requirement of Gibbs Inference
workload, the Bayesian network MUNIN [1] is used. It includes
1041 vertices, 1397 edges, and 80592 parameters.

Profiling method: In our experiments, the hardware perfor-
mance counters are used for measuring detailed hardware statis-
tics [51,12,45]. In total, around 30 hardware counters are collected
by following the guideline of Intel Manual [18]. We designed our
own profiling tool embedded within the benchmarks instead of
using existing profiling tools. This is because instead of profiling
the whole workload with sampling, we want to profile only the
particular code sections of interest and avoid inaccurate results
caused by sampling error ormultiplexing of performance counters.
Our profiling tool is utilizing the perf_event interface of Linux ker-
nel [46] for accessing hardware counters and the libpfm library for
encoding hardware counters from event names [11].

Metrics: In the experiments, we are following a hierarchical
profiling strategy. Multiple metrics are utilized to analyze the
architectural behavior as shown in Table 6. Execution cycle
breakdown is first analyzed to understand the bottleneck of
workloads. The breakdown categories include frontend stall,
backend stall, retiring, and bad speculation [18]. The frontend
represents the processor stalls because of frontend issues, which
include instruction fetch, decode, and allocate. Similarly, the
backend represents the stalls because of backend issues, which
include instruction rename, schedule, execution, and commit. The
bad speculation in the wasted cycles is because of wrong branch
prediction. Hence, except for retiring, which is the actual efficient
execution time, the other three categories are all corresponding to
wasted processor cycles. Cache MPKI (miss per kilo instructions)
is then analyzed to understand memory sub-system behavior.
It reflects the cache hierarchy performance. We estimated the
MPKI values of L1D, L2, and LLC (last-level cache). In addition, we
also measured multiple other metrics, including IPC (instruction
per cycle), branch miss rate, ICache miss rate, and DTLB penalty
[51,12,45]. These metrics cover major architectural features of
modern processors.

4.2. Workload characterization

In this section, we characterize GraphBIG workloads with a
top-down characterization strategy. The results are explained as
follows.

Execution time breakdown: The execution time breakdown is
shown in Fig. 3 and grouped by computation types. As explained
in previous section, the Frontend and Backend represent the
frontend bound and backend bound stall cycles respectively. The
BadSpeculation is the cycles spent on wrong speculations, while
the Retiring is the cycles of successfully retired instructions. It is a
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Table 6
Architectural metric summary.

Metric Description

Frontend Frontend stall cycles caused by instruction fetch/decode/allocate
Backend Backend stall cycles caused by instruction rename/schedule/execution/commit
BadSpeculation Wasted cycles because of wrong branch prediction
Retiring Actually efficient execution cycles

Cache MPKI Cache miss per kilo instructions.
Higher MPKI brings more memory related backend stalls

ICache miss Instruction cache miss.
Higher ICache Miss brings more frontend stalls

DTLB penalty Penalty cycles caused by DTLB misses. It also includes page-table walking and page-fault handling time.
IPC Instruction per cycle. It represents the efficiency of processor execution
Branch miss Wrong prediction of branches. It brings wasted execution cycles on wrong branch path.

Fig. 3. Execution time breakdown of GraphBIG CPU workloads.

Fig. 4. DTLB penalty, ICache MPKI, and branch miss rate of GraphBIG CPU workloads.

common intuition that irregular data accesses are themajor source
of inefficiencies of graph computing. The breakdown of execution
time also supports such intuition. It is shown that the backend
indeed takes dominant time for most workloads. In extreme cases,
such as kCore and GUp, the backend stall percentage can be even
higher than 90%. However, different from the simple intuition,
the outliers also exist. For example, the workloads of computation
on rich properties (CompProp) category show only around 50%
cycles on backend stalls. The variances between computation
types further demonstrate the necessity of covering different
computation types.

Core analysis: Although execution stall can be triggered by
multiple components in the core architecture, instruction fetch

and branch prediction are usually the key inefficiency sources. In
previous literature, it was reported that many big data workloads,
including graph applications, suffer from high ICache miss rate
[12,45]. However, in our experiments, we observe different
outcomes. As shown in Fig. 4, the ICache MPKI of each workload
all show below 0.7 values, though small variances still exist. We
believe the different ICache performance values result from the
design differences of the underlying frameworks. Open-source big
data frameworks typically incorporate multiple external libraries
and tools. Meanwhile, the included libraries may further utilize
other libraries. Thus, it eventually results in deep software stacks,
which lead to complex code structures and high ICache MPKI.
However, such behavior is highly implementation dependent. In
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Fig. 5. Cache MPKI of GraphBIG CPU workloads.

GraphBIG, the underlying framework is following the design of IBM
System G, in which minimum external libraries are included and a
flat software hierarchy is incorporated. Hence, a low ICache MPKI
is observed.

The branch prediction also shows low miss prediction rate in
most workloads except for TC, which reaches as high as 10.7%. The
workloads from other computation types show a miss prediction
rate below 5%. The difference comes from the special intersection
operations in TC workload. It is also in accordance with the above
breakdown result, in which TC consumes a significant amount of
cycles in BadSpeculation.

The DTLB miss penalty is shown in Fig. 4. The cycles wasted
on DTLB misses are more than 15% of total execution cycles
for most workloads. On average, it still takes 12.4%. The high
penalty is caused by two sources. One is the large memory
footprint of graph computing applications, which cover a large
number of memory pages. Another is the irregular access pattern,
which incorporates extremely low page locality. Diversity among
workloads also exists. The DTLB miss penalty reaches as high as
21.1% for Connected Component and as low as 3.9% for TC and
1% for Gibbs. This is because for computation on properties, the
memory accesses are centralized within the vertices. Thus, low
DTLB-miss penalty time is observed.

Cache performance: As shown in previous sections, cache
plays a crucial role in graph computing performance. In Fig. 5,
the MPKI of different levels of caches are shown. On average,
a high L3 MPKI is shown, reaching as high as 48.77. Degree
Centrality and Connected Component show even higher MPKI,
which are 145.9 and 101.3 respectively. For computations on
the graph structures (CompStruct), a generally high MPKI is
observed. On the contrary, CompProp shows an extremely small
MPKI value compared with other workloads. This is in accordance
with its computation features, in which memory accesses happen
mostly inside properties with a regular pattern. The workloads
of computation on dynamic graphs (CompDyn) introduce diverse
results, ranging from 6.3 to 27.5 in L3 MPKI. This is because of
the diverse operations of each workload. The GraphConstruct adds
new vertices/edges, while the GraphUpdate mostly deletes them.
The TMorph involves both operations. Meanwhile, unlike other
workloads, TMorph includes no small size local queues/stacks,
leading to a high MPKI in L1D cache. However, its graph traversal
pattern results in relatively good locality in L2 and L3.

Computation type behavior: By averaging the architectural
behavior from Figs. 4 and 5 by computation types, we can
observe significant diversity across computation types as shown
in Fig. 6. Although variances exist within each computation
type, the average results demonstrate their diverse features.
The CompStruct shows significantly higher MPKI and DTLB miss

penalty values because of its irregular access pattern when
traversing through graph structures. Low and medium MPKI and
DTLB values are shown in CompProp and CompDyn respectively.
Similarly, the CompProp suffers from a high branchmiss ratewhile
other two types do not. In the IPC results, CompStruct achieves
the lowest IPC value due to the penalty from cache misses. On the
contrary, CompProp shows the highest IPC value. The IPC value of
CompDyn stays between them. Such feature is in accordance with
their access patterns and computation types.

Real-world dataset characterization: To compare the charac-
teristics of different input datasets, we performed experiments on
four real-world datasets from different types of sources and the
LDBC synthetic data. (We excluded the workloads that cannot take
all input datasets and redundant workloads that show same archi-
tectural behavior.)

Despite the extremely lowL2/L3 hit rates, Fig. 7 shows relatively
higher L1D hit rates for almost all workloads and datasets. This
is because graph computing applications all incorporate multiple
small size structures, such as task queues and temporal local
variables. The frequently accessed meta data, such as small-size
local variables and task queue, introduces a large amount of L1D
cache hits except for DCentr, in which there is only a limited
number of meta data accesses. From the results in Fig. 7, we can
also see that twitter data shows highest DTLBmiss penalty in most
workloads. Such behavior eventually turns into lowest IPC values
in most workloads except SPath, in which higher L1D cache hit
rate of the twitter graph helps performance significantly. Triangle
Count (TC) achieves highest IPC with the knowledge dataset,
because of its high L2/L3 hit rate and low TLB penalty. The high L3
hit rate of theWatsondata also results in a high IPC value. However,
the twitter graph’s high L3 hit rate is offsetted by its extremely high
DTLB miss cycles, leading to the lowest IPC value. The diversity is
caused by the different topological and property features of the
real-world data sets. It is clearly shown that significant impact is
introduced by the graph data on overall performance and other
architectural features.

FrameworkComparison: As illustrated in Fig. 1, the underlying
framework of graph system can bring significant impact on the
overall performance. In our study, we focus on the GraphBIG
benchmark suite, which is using an IBM System G-like framework.
To understand and compare the impact of different computation
models of various frameworks, we also performed a series
of experiments to compare architectural features of multiple
computation models, including GraphBIG, Pregel, and GAS. Pregel
is a BSP-based framework and programming model proposed by
Google [29]. As one of the first graph frameworks, it is widely
adopted in multiple industrial and academic systems. GAS is a
graph framework first utilized in GraphLab [27] project. It follows
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Fig. 6. Average behaviors of GraphBIG CPU workloads by computation types.

Fig. 7. Cache hit rate, DTLB penalty, and IPC of GraphBIG CPU workloads with different data sets.

a gather-apply-scattermodel, which supports asynchronous graph
processing. Since our focus in this comparison is to understand
the impact of each computation model’s design methodology,
not implementation details or graph data layouts, we choose to
implement both Pregel and GAS models by utilizing the GraphBIG
data representation. Meanwhile, by implementing all models on
the same supporting data management library from GraphBIG, we
can better control other sources of variances, such as language,
compiler, system library, and data layout.

The comparison results are shown in Fig. 8. We analyzed
three selectedworkloads, Breadth-first Search (BFS), Single-source
Shortest Path (SPath), and Triangle Counting (TC). This is because
computation model variations can be better illustrated by graph
traversal workloads with dynamic working-set size. BFS and SPath
are both representative ones among such workloads. On the other
hand, TC contains static working-set size and can illustrate the
architectural behaviors when computation model brings limited
impact. In the experiments, we characterized multiple architec-

tural metrics, including instruction per cycle (IPC), execution cy-
cle breakdown, cache hit rate, and execution time. For TC, we
can observe that it is insensitive to computation model variations.
Both the performance and architectural behaviors show similar re-
sults across all computation models. From the results of BFS and
SPath, we can see that the GAS model is utilizing the hardware
resources more efficiently. It is showing higher IPC values than
both GraphBIG and Pregel, even though the IPC value is low in
general. However, in the execution time analysis, we can observe
an interestingly opposite result, in which the GAS consumes more
execution time than GraphBIG. This is because the asynchronous
programming model of GAS brings complex task scheduling and
fine-grained lock management. Although the scheduling part can
be executed more efficiently comparing with graph traversal op-
erations, it increases overall execution time significantly. Thus, we
can observe that GAS shows higher IPC, while longer execution
time at the same time. From the execution cycle breakdown re-
sult, we can see that despite the differences in computation mod-
els, they all share the similar bottleneck in backend. Meanwhile,
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Fig. 8. Comparison between multiple graph frameworks.

as illustrated in the cache hit rate results, it can be inferred that
the backend bottleneck is caused by thememory sub-system. Sim-
ilar as previous GraphBIG analysis, the extremely low L2/L3 cache
hit rate leads to inefficient memory sub-system processing, which
then brings the high stall cycles in processor backend. Therefore,
from the results, we can conclude that the inefficiency in memory
sub-system remains one of the key bottlenecks for graph comput-
ingworkloads, nomatter for GraphBIG, Pregel, or GAS computation
models. Such bottleneck is because of the inherent irregular graph
connectivity, which brings poor data locality during graph traver-
sals.

4.3. Big graph characterization

To further explore graph computing with big graphs, we
perform characterization experiments on Bitcoin graph. Bitcoin
a peer-to-peer payment system, in which users can transact
directly without needing an intermediary. The Bitcoin graph
is a network of Bitcoin accounts and transactions. In Bitcoin
graph, vertices represent Bitcoin accounts, while edges represent
Bitcoin transactions. It contains 72M vertices and 182M edges,
representing 72M accounts and 182M transactions between them.
Because of the nature of currency accounts, Bitcoin graph shows
highly unbalanced degree distributions similar as power graphs.

Because of the huge size of Bitcoin graph and the longworkload
execution time,we select four representativeworkloads,which are
BFS, SSSP, kCore, and TC. We exclude computations on dynamic
graphs here because those workloads are mostly populating or
modifying graphs, and therefore are less sensitive to graph data
changes.

The performance results as well as execution time breakdown
are shown in Fig. 9. As same as previous analysis, backend is
still the dominant factor for BFS, SSSP, and kCore. Because of the
inefficiencies in memory sub-systems, extremely low IPC values
are observed. Meanwhile, TC shows quite different breakdown
behavior and has relatively better performance. Differences with
previous LDBC experiments also exist. First, BFS, SSSP, and kCore
all show performance degradation comparing with previous LDBC
graph experiments. This is because of the more irregular access
pattern introduced by the huge data size of Bitcoin graph.
However, TC’s IPC value shows only negligible changes. It is in
accordance with its computation pattern, which involves mostly
graph property accesses. The memory sub-system features are

shown in Fig. 10. Similarly, the results are also of consistent trends
with previous characterization. All workloads have relatively high
L1D cache hit rates because of their meta data accesses and
extremely low L2/L3 cache hit rates because of the irregular
graph structures. Because of the huge graph size, decrements in
L2/L3 cache hit rates are observed. However, large graph size
also brings less irregularities in task queue scheduling, leading to
significant performance improvement in L1D caches. For Bitcoin
graph, intuitively, its hugememory footprint sizemakesDTLB issue
even more severe. However, our experiments show only similar
DTLB penalty cycles. This is because the irregular access pattern of
graph workloads already achieves a large number of DTLB misses.
Therefore, even when data size increases, the DTLB miss penalty
cycle does not increase as much as expected.

4.4. Observations

In the characterization experiments, by measuring several
architectural factors, we observed multiple graph computing
features. The key observations are summarized as follows.
• Backend is the major bottleneck for most graph computing

workloads, except CompProp category. Such bottleneck is
caused by cache performance issues. Hence, it is important to
optimize data access pattern of graph computing in framework
and architecture designs.

• The ICache miss rate of GraphBIG is as low as conventional
applications, even though many big data applications are
known to have high ICache miss rate. This is because of the
flat code hierarchy of the GraphBIG framework. High ICache
miss rate brings significant frontend stalls that cannot be
hidden via out-of-order execution mechanisms in modern
architectures. Thus, the design of frameworks should not only
consider usability, but also the code complexity and the ICache
performance.

• Graph computing is usually considered to be cache-unfriendly.
L2 and L3 caches indeed show extremely low hit rates in
GraphBIG. However, L1D cache hit rate is comparable as
conventional applications. This is because of the locality of non-
graph data, such as temporal local variables and task queues.
The results demonstrate that despite the irregular pattern of
graph data, it is infeasible to simply disable cache for the whole
graph applications because of the significant amount of L1D
cache hits.
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Fig. 9. Performance and execution time breakdown of Bitcoin graph.

Fig. 10. Memory sub-system characteristics of Bitcoin graph.

• Although typically DTLB is not an issue for conventional
applications, it is a significant source of inefficiencies for graph
computing. In GraphBIG, a high DTLB miss penalty is observed
because of the large memory footprint and low page locality.
This result motivates the utilization of page optimization
techniques, such as superpage.

• Graph workloads from different computation types show
significant diversity in multiple architectural features. The
study on graph computing should consider not only graph
traversals, but also the other computation types.

• Input graph data has significant impact on memory sub-
systems and the overall performance. The impact is from both
the data volume and the graph topology.

• Computation models bring impact on multiple architectural
characteristics and overall performance. Despite the differ-
ences, a general cache performance issue is shown in all compu-
tation models because of the irregular data pattern introduced
by graph connectivity.

• The experiments with big graph show similar trends in
architectural behavior as medium size graphs. It has lower
overall performance and cache hit rates, but the similar DTLB
patterns.

The unique and diverse features of graph workloads and data
sets together form the broad scope of graph computing, leading to
multiple complex challenges for future CPU architecture research.

4.5. Discussion

The optimization of graph computing performance can be
achieved via multiple ways, such as algorithm innovations,
faster system implementations, and better hardware platforms.
Although algorithm usually is the most important factor for
performance, its optimization usually is application-specific and
therefore difficult to be generalized. For more generic approaches,
efforts should be invested in software and hardware platform
optimization. By examining a rich set of architectural features of
graph computing applications, we have demonstrated a series of
key observations, which can help both software and hardware
optimization for graph computing.

First, significant inefficiencies exist in graph computing systems
on contemporary hardware architectures. Thus, unlike highly
optimized scientific computing applications, graph computing
still contains promising opportunities for further architectural
optimization. Second, since the key bottleneck of graph computing
lies within memory sub-system, it is critical to optimize the cache
performance first. The optimization can be achieved via software
methods and hardware methods. For software implementation,
the graph system needs a cache-conscious task scheduling and
data management technique. Although the accesses of graph
traversal are commonly considered as irregular, locality still may
exist across multiple tasks or in non-graph data. From hardware
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Table 7
Generated synthetic graphs.

Feature Configuration

Graph type Kronecker graph
Graph vertex number 64k, 128k, 256k, 512k, 1M, 2M, 4M, 8M
Graph density 4, 8, 16, 32, 64, 128, 256, 512
Graph connectivity 120 random parameter matrices, Facebook-like (1, 0.589, 0.625, 0.368)

perspective, a hardware platform that can tolerate a large number
of cache misses is more desirable. For example, the cache
miss tolerance can be contributed by the rich hardware thread
resources, such as many-core/many-thread system and GPGPU.
Third, because of the diverse behavior of different computation
types, the evaluation of design choices should be correlated with
the target applications. For a generic graph platform, it is important
to consider all graph computation types in a holistic way.
Moreover, the library and runtime code structure can significantly
affect not only software design productivity, but also system
performance. Graph systems should use a flat code hierarchy with
limited external dependencies.

In this work, we performed experiments on a real machine
by collecting hardware performance counters to characterize
graph computing workloads. Although the discussion of general
characterization techniques using performance counters is beyond
the scope of this paper, our characterization methodology can also
be applied on other graph applications. In our experiments, we
follow a top-down analysis strategy, in which we first analyze
the breakdown of execution cycles to understand the bottleneck
components in the architecture. After determining that backend
is the major issue, we further analyze the memory sub-system
by collecting relevant architecture metrics, such as cache MPKI,
cache hit rate, and DTLB penalty. The same workflow can also be
utilized for the characterization and optimization of other graph
applications.

5. Understanding data impact

5.1. Methodology

Workloads: We select four representative workloads from
GraphBIG, including BFS, SPath, kCore, and TC. They cover two
major computation types, computation on graph structure and
graph properties. We exclude computation on dynamic graphs
because it is highly related to graph structure updates and
therefore is less feasible for data impact evaluations.

Dataset generation: To study the impact of input datasets on
graph and computing, we performed experiments with generated
synthetic graphs. In the experiments, we use Kronecker graph,
which is a widely used graph generation technique [24]. We
exclude the previous LDBC dataset or real-world datasets because
our experiments require the flexibility of various graph size,
density, and connectivity features. Kronecker graph can generate
synthetic graphs with given vertex/edge number and connectivity
structure according to the 2 × 2 parameter matrix. Its model
recursively sub-divides the adjacencymatrix of the graph into four
equal-sizedpartitions anddistributes edgeswithin these partitions
with the probabilities determined by the parameter matrix.

We generated Kronecker graphs with various graph vertex
numbers, graph densities (a.k.a. average vertex degree), and
graph connectivities via a Kronecker graph generator from SNAP
library [25]. As shown in Table 7, the generated graphs cover 8
different sizes, 8 different densities, and 120 sets of connectivity
parameters. To study the impact of graph data, we perform three
groups of experiments. For graphdensity analysis,we select graphs
with the same size and connectivity parameters to mimic the

social graphs, but with different densities. Similarly for graph size
study, we vary graph vertex numbers, while keep other factors the
same. In both cases, the connectivity parameterswere set tomimic
the Facebook graph. For the analysis of graph connectivity, we
generated 120 parametermatrices by performing uniform random
sampling on the parameter hyper-plane.

Architectural characteristics: Similar as Section 4.1, we
collected around 30 hardware performance counters to generate
11 architectural characteristics, which include IPC, execution time
breakdown, L1D/L2/L3 cache hit rate, DTLB miss cycle, ICache
MPKI, and branch miss prediction rate.

Statistical data analysis: For connectivity impact studies,
our experiments involve 11 architectural characteristics, multiple
workloads, and a large number of datasets. The architectural
characteristics of different combinations ofworkloads anddatasets
form up a large number of high dimensional feature vectors. It is
unfeasible to manually analyze the data, especially when studying
connectivity impact. Therefore, we utilize multivariate statistical
data analysis techniques, including Principal Component Analysis
and Kmeans Clustering, to process the data.

Principal components analysis (PCA) [9] is a conventional data
analysis technique that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables. We use PCA to
remove the correlation between architectural characteristics and
reduce the dimensionality of the experiment data.

After PCA processing, we perform Kmeans clustering on the
generated reduced-dimension data to find the correlation between
various graph configurations. The feature vectors will be grouped
into multiple clusters. Each cluster represents graphs with similar
architectural behaviors.

5.2. Impact of graph density

To analyze the impact of graph density, we perform exper-
iments with different graph densities (a.k.a. average vertex de-
gree). As summarized in Table 7, the density values vary from 4 to
512, while the vertex number remains to be 1 million. Meanwhile,
each graph also has the same connectivity parameters, which are
selected specifically to mimic the connectivity features of social
graphs. As shown in Fig. 11, the graph workloads show diverse
correlations between overall performance and graph densities. For
example, BFS and SPath both show close to 2x performance degra-
dation when graph density increases from 4 to 512. On the con-
trary, TC’s performance increases with higher density. Its speedup
with density-512 can be as high as 4.4. kCore generally has an in-
creasing trend except for density-32, which shows a significant
performance drop.

As explained in previous section, the major bottleneck of
graph computing workloads comes from inefficiencies in memory
sub-systems. To estimate the impact of memory sub-system, we
analyzed the hit rate of each cache level and the percentage
of DTLB miss time. The results are shown in Fig. 12. From the
cache performance results, we can observe diverse behavior of
different cache levels. As an example, with the increment of graph
density, BFS and SPath both show decreasing hit rate in L1D and
L2. However, their L3 hit rates are increasing instead. Similar
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Fig. 11. Performance of different graph densities: Lines (left y-axis) represent the instruction per cycle (IPC); Bars (right y-axis) represent the speedup over the density-4
case.

Fig. 12. Memory sub-system behavior of different graph densities, including L1D/L2/L3 hit rate and DTLB miss rate.

behavior also exists in kCore. In kCore, the cache hit rate outlier
happens at density-32 in L1D, while in L3, the outlier point shows
up at density-16. Meanwhile, DTLB miss time also shows diverse
behavior. TC stays at a low penalty level with a small variance for
all graph densities, while significant variances are observed in the
other three workloads.

The diverse cache behavior is caused by each workload’s
memory access patterns. In graph workloads, because of the huge
size of graph data and irregular graph structure, L1D cache hits are
mostly generated by the accesses ofmeta data, such as task queues.
Meanwhile, local graph properties may be cached by L2 cache. L3
cache likely holds graph structure data. In BFS and SPath, the task
queues are formed up dynamically in each iteration. The irregular
task allocation process may bring more L1D misses with larger
vertex degrees. Thus, the L1D hit rate of BFS and SPath shows a
decreasing trend.Meanwhile, denser graph usually leads to shorter
re-reference distances of graph data. Hence, L3 cache shows an
increasing trend for BFS and SPath. On the contrary, TC has static
task queues and performs computations on the neighbor sets
in vertex properties. Higher vertex degree brings more accesses
within vertices. Such behavior exists in all cache levels, leading

to significant hit rate increments. Unlike BFS and TC, kCore does
not showmonotonic trends in L1D/L3 cache or DTLB penalty time.
This is because its computation tasks are highly sensitive to vertex
degrees. Such sensitivity is reflected in meta data and graph data
accesses, leading to high variances in L1D and L3 hit rates.

From the cache hit rate profiling results, we can also observe
significant correlations between L1D cache hit rate and overall IPC
value. This is because graph computing workloads generally have
extremely low L2/L3 cache hit rate, leading to a high average L1D
miss penalty time. The large performance penalty of L1D misses
makes IPC value highly sensitive with L1D hit rates.

5.3. Impact of graph size

In general, it is a usual case that increment of data footprint
hurts system overall performance. The experiments of graph
workloads also support such intuition. The experiment resultswith
different graph vertex numbers are shown in Fig. 13. From the
results, we can see that although variances exist, BFS, SPath, and
kCore indeed show performance degradation with larger graphs.
However, TC’s performance stays at the same level, showing an
interestingly weak correlation with graph vertex numbers.
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Fig. 13. Performance of different graph vertex numbers: Lines (left y-axis) represent the instruction per cycle (IPC); Bars (right y-axis) represent the speedup over the
vertex-64k case.

Fig. 14. Memory sub-system behavior of different graph vertex numbers.

Similar as previous graph density studies, we also perform
analysis on memory sub-system behavior. As shown in Fig. 14,
TC’s L1D hit rate is stable at almost the same value. This is in
accordance with its computation type, which has static work-set
and involves mostly property accesses, not structure traversals.
Other workloads all show significant variances in L1D cache hit
rates because of their dynamic task queues, which are affected
by graph sizes. Most workloads’ L2 cache hit rate decreases
slightly except for TC. In L3 cache, all workloads have significant
decrements in hit rates. This is because of the change of graph
sizes. With the increment of graph size, only a small portion of the
full graph can fit into L3 cache. Thus, L3 cache accesses have much
smaller chance to get re-referenced in a short period. Similarly, the
DTLB accesses show more irregular pattern with the increment of
graph size. The percentage of DTLB miss cycles increases from less
than 10% to more than 20% for BFS, SPath, and kCore. For TC, the
DTLB penalty varies between 1.4% and 8.2%.

5.4. Impact of graph connectivity

In this subsection, we analyze the impact of graph connectivity
on architectural behavior of graph workloads. Unlike previous

graph size/density studies, graph connectivity is a complex feature
that cannot be represented as one simple parameter. Therefore, to
analyze the impact of graph connectivity, we perform experiments
on a large set of connectivity samples. With the architectural
results of each sample, we then try to cluster them in the
architectural feature space. The clustering outcomes indicate: (1)
the correlation between connectivity feature and architectural
behavior. (2) the representative connectivity samples that can
be used for analyzing the architectural behavior of particular
workloads on various graph connectivity.

In our experiments, we use 120 Kronecker graphs. As explained
previously, the Kronecker graphs are generated by recursively sub-
dividing the graph into four equal-sized partitions and distributing
edges within each partition with the possibility given by the
connectivity parameters. All of the generated graphs have the
same size and density, but different connectivity parameters. The
Kronecker graph parameters are generated by performing uniform
random sampling on the hyper-plane of parameters. In each
experiment, we collect 20 hardware counters and then generate
11 architectural features from them. To reduce feature dimension
number and remove redundancies, we utilize PCA technique to
process the results. The eigenvalue outcomes of each workload
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Fig. 15. Clustering of 120 graphs’ experiment results according to the two-dimensional PCA outcomes of architectural features: Each dot represents the experiment of one
graph; Three different dot shapes/colors represent three different clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

all show a highly coalesced distribution, which demonstrates that
two dimensional data vectors can already cover most necessary
information. With the two-dimensional data after PCA process,
we perform kmeans clustering on the data points. For illustration
purposes, we use 3 clusters in the clustering processing. In further
analysis, the cluster number can be changed according to dataset
knowledge or determined by techniques like AIC and BIC.

Because the feature vector after PCA has only two dimensions,
we are able to visualize them in 2D charts. The experiment
data after PCA process and kmeans clustering is shown in
Fig. 15. Different colors and dot shapes represent different
kmeans clusters. From the results, we can see that BFS and
SPath have similar non-uniform distributions. Both of them have
much higher density in blue areas. kCore shows less biased
distribution and TC has a unique correlation with specific feature
dimensions. Our experiment results demonstrate that although
we generate parameter matrices randomly with a uniform
distribution, different parameter samples have different sensitivity
for architectural features, leading to a non-uniform distribution
in feature space. Moreover, the correlation is highly workload
dependent. Therefore, to understand graph connectivity’s impact
for specific platforms,we should select representative connectivity
parameter matrices according to its distribution in architectural
feature space.

By utilizing the clustering results, we can select the represen-
tative graphs from each cluster according to their size and sparse-
ness. For new workloads, the selection procedure can be done via
the same profiling workflow. The steps include connectivity pa-
rameter sampling, architectural profiling, PCA dimension reduc-
tion, and kmeans clustering.

5.5. Observations

The key observations of our data impact analysis can be
summarized as follows.

• Graph density, size, and connectivity all have significant impact
on graph computing behaviors. The impact can be reflected in
overall performance, cache hit rate, and DTLB miss penalty.

• The impact of graph data is workload dependent. Different
workloads show diverse correlations between graph data
factors and architectural features.

• L1D cache performance is more sensitive to graph density,
while L3 cache is more sensitive to graph size.

• DTLB miss penalty increases with the increment of graph size.
Graph density has muchmore complex impact on DTLBmisses.

• Graphs with randomly sampled connectivity parameters show
non-uniform distribution in architectural feature space. The
selection of representative graphs can be achieved via the PCA
and clustering process on experiment results.

5.6. Discussion

A variety of graph computing features shows significant
dependence on the input graph. It is a common case that one
specific optimization technique may become unsuitable when
applied on a different graph. Therefore, in general, it is crucial
to understand the potential target graph data before performing
specific optimization techniques. Besides, because DTLB miss
penalty increases with larger graphs, it is necessary to incorporate
DTLB optimization methods, such as superpage, for big graph
processing. Moreover, the impact of graph size and density is
workload dependent. Thus, workload-specific optimization should
be adopted for different input graphs. For example, BFS shows
performance degradation with higher graph density. Techniques
like vertex-cut [27] can be helpful. To optimize graph system
implementation,we should perform tests on a set of representative
input graph samples. The sample graphs can be selected from
randomly sampled connectivity parameters based on kmeans
clustering on the architectural feature space after PCA processing.

6. Conclusion

In this paper, we discussed and summarized the key perfor-
mance factors of graph computing, including frameworks, data
representations, graph computation types, and graph data sources.
We analyzed real-world use cases to summarize the computation



L. Nai et al. / J. Parallel Distrib. Comput. ( ) – 15

types, and graph data sources. We also demonstrated the impact
of framework and data representation.

To understand graph computing, we utilized our proposed
benchmark suite, GraphBIG. GraphBIG addressed all key factors
simultaneously by utilizing System G framework design and
following a comprehensive workload selection procedure. With
the summary of computation types and graph data sources, we
selected representative workloads from key use cases to cover all
computation types. In addition, we provided real-world datasets
from different source types and synthetic social network data for
characterization purposes.

By performing experiments on a realmachine,we characterized
GraphBIG workloads comprehensively. From the experiments, we
observed the following behavior. (1) Significant inefficiencies in
contemporary architectures are observed for graph computing.
The major bottleneck is coming from memory sub-systems and
is affected by multiple factors, such as data representation and
workload algorithm. (2) Significant diverse behavior is shown
across different workloads and different computation types. Such
diversity involves multiple architectural features, from cache
performance to branch prediction. (3) Graph computing is highly
data sensitive. Graph size, density, and connectivity all have
significant impact on multiple architecture features. The data-
workload correlation is complex and diverse. Based on the
architectural observations from our characterization, we also
discussed and proposed suggestions for potential software and
hardware optimization for graph computing.

As a comprehensive architectural study on graph computing,
our work can help researchers achieve in-depth understanding of
graph computing from the architectural perspective. It can also
be served for future architecture and system research of graph
computing.
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