
26

Power Modeling for GPU Architectures Using McPAT

JIEUN LIM, Seoul National University
NAGESH B. LAKSHMINARAYANA, HYESOON KIM, WILLIAM SONG,
and SUDHAKAR YALAMANCHILI, Georgia Institute of Technology
WONYONG SUNG, Seoul National University

Graphics Processing Units (GPUs) are very popular for both graphics and general-purpose applications.
Since GPUs operate many processing units and manage multiple levels of memory hierarchy, they consume
a significant amount of power. Although several power models for CPUs are available, the power consump-
tion of GPUs has not been studied much yet. In this article we develop a new power model for GPUs by
utilizing McPAT, a CPU power tool. We generate initial power model data from McPAT with a detailed GPU
configuration, and then adjust the models by comparing them with empirical data. We use the NVIDIA’s
Fermi architecture for building the power model, and our model estimates the GPU power consumption with
an average error of 7.7% and 12.8% for the microbenchmarks and Merge benchmarks, respectively.

Categories and Subject Descriptors: I.6.4 [Simulation and Modeling]: Model Validation and Analysis; C.4
[Performance of Systems]: Modeling Techniques

General Terms: Measurement, Experimentation

Additional Key Words and Phrases: Design space exploration, Fermi architecture, simulation, validation

ACM Reference Format:
Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalamanchili, and
Wonyong Sung. 2014. Power modeling for GPU architectures using McPAT. ACM Trans. Des. Autom. Elec-
tron. Syst. 19, 3, Article 26 (June 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2611758

1. INTRODUCTION

Graphics Processing Units (GPUs) have become increasingly popular. They are used
in mobile devices, desktops, and servers as well as in supercomputers for high-
performance computing. GPUs have wide single-instruction, multiple-data (SIMD)
units, and simplified microarchitecture dedicating most transistor budget to floating-
point operations, which are the essential component of applications for graphics, sci-
ence, engineering, and other various domains.

This research was supported in part by the National Science Foundation under grant CCF 1054830, CNS
085511, the Semiconductor Research Corportation (Task ID# 2084.001) and Sandia National Laboratories.
Jieun Lim and Wonyong Sung were partially supported by Brain Korea 21 Project and the National Re-
search Foundation of Korea under Grant 2012R1A2A2A06047297. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect those
of NSF, Sandia Lab or SRC.
Authors’ addresses: J. Lim, School of Electrical Engineering, Seoul National University San 56-1, Shilim-
Dong, Kwanak-Gu, Seoul 151-742, South Korea; N. Lakshminarayana, H. Kim (corresponding author),
W. Song, and S. Yalamanchili, Georgia Institute of Technology, Atlanta, GA 30332; email: hyesoon@cc.gat.edu;
W. Sung, School of Electrical Engineering, Seoul National University San 56-1, Shilim-Dong, Kwanak-Gu,
Seoul 151-742, South Korea.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1084-4309/2014/06-ART26 $15.00

DOI: http://dx.doi.org/10.1145/2611758

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:2 J. Lim et al.

Power is one of the key design constraints for computing systems, and processors (i.e.,
CPUs, GPUs, and other processing units) consume a significant portion of total system
power [Bircher and John 2012]. In the past couple of decades, great effort has been
put into developing useful CPU power models such as Wattch [Brooks et al. 2000] and
McPAT [Li et al. 2009], which brought about a surge of power-related research in the
computer architecture community. However, relatively few works are found regarding
GPU power modeling and analyses.

The difficulty of modeling and estimating GPU power is due to the following reasons.
First, insufficient information about the GPU microarchitecture and implementation is
known to the general research community. The GPU microarchitecture is substantially
different from CPU architectures, where the GPUs include new components such as
shared memory (scratchpad memory) and texture cache. GPUs specialize some compo-
nents such as register files and functional units but simplify other components such as
the instruction scheduler. The primary reason for the popularity of CPU power models
such as Wattch, CACTI [Muralimanohart et al. 2007], and McPAT lies in the fact that
they are configurable to explore several different microarchitectural designs. On the
other hand, few proposed GPU power models in the past were based on statistical es-
timation and empirical measurement from specific GPU architectures [Hong and Kim
2010; Choi et al. 2013; Goswami et al. 2013], which are inadequate for generic design
space exploration.

The contribution of our work is twofold: first, the GPU power model itself, and second
and more importantly the method to construct a GPU power model using both empirical
data and low-level power models such as McPAT. Please note that as a concurrent study,
GPUWattch has been recently presented by Leng et al. [2013], which is also based on
McPAT. The main difference between our work and GPUWattch is in the providing the
details of power model construction methods.

We built an initial model and configured it to predict the power consumption for a
NVIDIA GTX580 GPU. In this process, we utilized parameters available from NVIDIA
and research publications while making educated choices of other unknown microar-
chitectural parameters. In addition, we tested several McPAT design parameters and
models that were derived from empirical measurement of CPUs. The parameter adjust-
ments were made by comparing estimations from the model for microbenchmarks with
measured data from a GTX580 GPU running the same microbenchmarks. The models
were also updated with adjusted parameters, and this process was repeated until both
power models and design parameters converged to measured data of a GTX580. The
finalized model was validated against other general GPU benchmarks; we present var-
ious experimental results in this work to provide insight to the nature of GPU power
consumption.

The rest of the article is organized as follows. Section 2 provides background on Mc-
PAT and the GPU architecture. Section 3 introduces our methodology and the bench-
marks used. We describe the modeling process that evaluates various possible configu-
rations and adjusts McPAT parameters in Section 4. Section 5 presents the validation
results and discusses experimental results. We conclude this work in Section 7.

2. BACKGROUND

2.1. McPAT and Introspection Interface

In this work, we estimate GPU power consumption using McPAT [Li et al. 2009], an
architecture-level power modeling tool for CPUs. McPAT models a processor with a
CPU architecture hierarchy comprised of cores, shared caches, networks, memory con-
trollers, and other I/O controllers. Each component is broken into subcomponents such
as pipeline stages. For instance, a core is composed of five pipeline stages, and each

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:3

Fig. 1. Simulation framework for GPU power modeling through the introspection interface (left) and hier-
archical description of CPU architecture in McPAT (right).

pipeline stage includes architectural elements such as an instruction decoder and data
cache. Those architectural elements are the bottom-most components in the CPU ar-
chitecture hierarchy defined in McPAT. The architectural elements are associated with
appropriate circuit-level models. For example, instruction and data caches, translation
lookaside buffers (TLBs), and branch target buffer (BTB) are all cache models with dif-
ferent configurations. Thus, we note that McPAT is essentially a model library that is
a collection of various circuit-level models that can be rearranged to configure different
microarchitectures.

We use a simulation interface [Song et al. 2012] to rearrange the circuit-level models
into a GPU architecture. Figure 1 depicts the idea of configuring a microarchitecture
via the introspection interface. The microarchitecture is viewed as a list of functional
components instead of using a hierarchical description. Therefore, the simulation in-
terface does not model upper-level components (e.g., cores, pipeline stages) in the hi-
erarchy that have no effects on the power result. The introspection interface creates
pseudo components [Song et al. 2012] that are the counterparts of the microarchitecture
components whose power would be estimated. Each pseudo component is identified
by a unique ID. The pseudo components are the abstract entities in the simulation
environment to represent matching microarchitecture components. The introspection
interface collects statistical data (i.e., access counters for each microarchitecture com-
ponent) from timing/functional simulators. The interface differentiates four types of
access counts for each component: read, write, tag-read, tag-write accesses. Read and
write are typical read or write accesses to storage units such as arrays, buffer, caches,
etc. When tag arrays are present in the modeled components, tag-read/write accesses
are used to represent tag-array-only accesses. For logical components such as execu-
tion units whose access types are ambiguous, either read or write counts are used to
indicate an architectural usage of the component. The energy consumption at a com-
ponent is mainly broken into dynamic and leakage dissipations. The dynamic energy
of a component is represented as the sum of energies spent on different types of ac-
cesses, and the energy of each access type is calculated as the product of access count
and per-access energy. This calculation does not take the number of switching bits
into account to calculate dynamic energy, but typical architecture simulations also do

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:4 J. Lim et al.

Fig. 2. NVIDIA’s Fermi architecture. (Memory controller and global memory are off-chip components.)

not capture bit-level activities due to simulation complexity. The access counts can be
acquired from functional simulations, and the energy per access can be estimated from
circuit-level models linked via pseudo components. Clock frequency and execution time
are used to convert the energy to power, and the total processor power is represented
as the sum of the power of all modeled components.

2.2. GPU Architecture

In this section, we describe the GPU architecture used for the power modeling and
compare it with CPU cases. As shown in Figure 2, a GPU consists of several cores called
streaming multiprocessors (SMs), each of which performs multithreaded execution of
warps. A warp is a group of 32 threads that execute in lockstep. A thread dispatcher
located outside the SMs is responsible for assigning threads to SMs at block granular-
ity. In every fetch cycle, the dispatcher unit in an SM fetches an instruction for one or
more selected warps. The instruction is then decoded, and its readiness for execution is
tracked using a scoreboard. Among the ready instructions, the scheduler selects one or
more instructions and issues them for executions. Although recent CPUs also contain
multiple cores with multithreaded executions, the degree of multithreading is typically
between two to eight and much less than GPUs. CPUs primarily target the serialized
executions of threads and dedicate considerable hardware resources to improve the
performance by deploying complex architectural techniques and components such as
branch prediction, register renaming, out-of-order execution, etc. On the other hand,
GPUs do not exploit these mechanisms and perform simpler in-order execution.

An SM consists of multiple functional units of three types: streaming processor
(SP), special functional unit (SFU), and load/store unit (LSU). In the Fermi archi-
tecture [NVIDIA 2009], each SM has 32 SPs that execute floating-point and integer
instructions such as ADD, SUB, MAD, and so on. There are four SFUs in the Fermi to
execute complex functions such as sine, cosine, and reciprocal. The LSUs are used for
memory load and store instructions. A coalescing unit in LSUs is used to reduce the
number of requests sent out to the memory system. The register file system is heavily
banked, and the source operands of instructions are read before starting executions.
The SPs, SFUs, and LSUs all operate in an SIMD mode. On the contrary, CPUs con-
tain fewer functional units that mostly operate on scalars. Memory instructions are
also scalar, and thus CPUs do not require coalescing units.1 The execution width of

1CPUs with a wide vector width also have coalescing units.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:5

Fig. 3. Overview of the modeling framework.

SIMD units in CPUs is smaller than in GPUs, and register files are also significantly
smaller and support only a few threads.

An SM includes a constant cache and a texture cache. A local scratchpad memory
called shared memory is also available in each SM. Shared memory can be used for
exchanging data between the threads within a block, while it also serves as low-latency
memory. GPUs are distinguished from CPUs by a large degree of multithreading. GPU
cores are kept busy by switching warps and thus are less reliant on caches, while CPUs
dedicate more resources to caches to improve performance.

3. METHODOLOGY

3.1. Simulation Methodology

Figure 3 shows the simulation framework for timing, area, and power modeling. It con-
sists of two major software component interactions: architecture/timing and power sim-
ulators. The architecture/timing simulator is comprised of MacSim [MacSim 2012] and
DRAMSIM2 [Rosenfeld et al. 2011]. MacSim, a trace-driven and cycle-level simulator,
models the behavior of the microarchitecture, tracks timing information, and interacts
with DRAMSIM2, which simulates GPU device memory. The main memory is mod-
eled as GDDR5 SGRAM with parameters obtained from the JEDEC standard [JEDEC
2014] and Hynix [Hynix 2006]. The power consumption of the main memory is directly
computed from DRAMSIM2. The MacSim generates the access counts of all architec-
tural components in the GPU to compute the power consumption via the introspection
interface. The circuit-level models in McPAT that are reorganized by the introspection
interface in accordance with GPU microarchitecture are used to estimate area and
power dissipation.

3.2. Methodology for Measuring Empirical Power

The validation of the proposed model was performed by measuring the power of NVIDIA
GTX580 with the Fermi architecture. The hardware specifications of NVIDIA GTX580
are listed in Table I. The Extech 380801 AC/DC Power Analyzer [Extech 2014] is used
for measuring the power. We first measure the power consumption of the entire system
when a GPU application is running (Pa). We also identify the idle power of the entire
system (Pb). We then measure the CPU idle power dissipation by turning off the GPU
modules and rendering the CPU into an idle state (Pc). With the GPU modules still
off, we measure the power consumption when running the GPU application with the
CUDA-related function calls removed (Pd); this value gives the CPU power. Conse-
quently, Pb-Pc is the GPU idle power and Pa-Pd-(Pb-Pc) equals the GPU runtime power.
Please note that the idle power and the static power are different. During idle time,
some components are still active even though they are not doing any useful work. If

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:6 J. Lim et al.

Table I. Hardware Configuration of the Modeled GPU
Architecture (NVIDIA GTX580)

Model GTX580

Architecture Fermi
Clock freq. 1.544GHz
Feature size 40nm
Thermal design power (TDP) 244W
#SM 16
#SPs, #SFUs, #LSU/SM 32, 4, 16
#registers/SM 32,768
L1 cache 48KB
L2 cache 768KB
Shared memory 16KB
Constant cache 8KB
Texture cache 8KB
Memory bandwidth 192.4GB/s

the system has a perfect clock gating, idle power would be similar to static power, but
this is not the case for the evaluated systems.

3.3. Benchmarks

We also used a set of benchmarks that are similar to those used in the previous GPU
power model paper [Hong and Kim 2010], namely, the microbenchmarks and the Merge
benchmarks [Linderman et al. 2008], to validate and simulate the proposed model.
The characteristics of all the benchmarks are detailed in Table II. Note that misses
per kilo-instructions (MPKI) represents the degree of memory intensiveness. The mi-
crobenchmarks are a set of synthetic kernels with loops that heavily access specific
hardware units. Since the access patterns of microbenchmarks are easily character-
izable, seven microbenchmarks are used to evaluate McPAT parameters. The rest of
the microbenchmarks and the Merge benchmarks are employed for prediction bench-
marks. The microbenchmarks for prediction are more complicated than the training
microbenchmarks. The Merge benchmarks represent real-world kernels.

4. GPU ARCHITECTURE POWER MODELING

This section explains the process of building the GPU power model, as shown in
Figure 4. Our approach is a combination of empirical modeling and McPAT’s analytical
modeling. The major difficulty of modeling the GPU power is lack of detailed informa-
tion about GPUs such as hardware structure of SFUs and the detailed cell information
of register files. In addition, McPAT has to be modified to reflect GPU designs. Thus,
the following steps are iterated to find appropriate McPAT parameters to represent
GPU implementation. Step 1 specifies known design parameters of McPAT according
to the GPU architecture. In step 2, unknown design parameters such as the number of
EXUs in SFUs and the number of ports in L1 cache are determined by testing different
configurations and selecting the minimal-error designs compared with reference data
from measurement and other published documents explained in the next sections. In
the final step, the McPAT configuration and parameters are adjusted based on the
results in the previous steps. Steps 2 and 3 are iterated so that the result converges to
the empirically measured data.

4.1. Describing GPU Components in McPAT Format (step 1)

The configurable input parameters to McPAT are largely composed of general
technology parameters (i.e., transistor size, clock frequency, etc.) and architecture

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:7

Table II. Characteristics of the Benchmarks

Micro Description MPKIa Purpose

fp FMAD operations 0.013 training
int Integer Multiplication 0.017 training
const Access Constant Memory 0.122 training
mb10same Series of single dependent load, accesses L1 0.111 training
mb11same Series of 4 dependent loads, accesses L1 0.411 training
mb12same Series of 8 dependent loads, accesses both L1 and L2 0.817 training
mb14same Series of 8 dependent loads, accesses both L1 and L2 0.817 training

shared Access Shared Memory 0.013 prediction
mb11diff Series of 4 dependent loads, mainly accesses memory 11.00 prediction
mb12diff Series of 8 dependent loads, mainly accesses memory 10.11 prediction
mb14diff Series of 8 dependent loads, access L1, L2, and memory 9.226 prediction
dotp Matrix dot product 5.026 prediction
dmadd Matrix double memory multiply add 17.89 prediction
madd Matrix multiply-add 19.89 prediction
mmul Matrix single multiply 19.93 prediction
cmem Matrix add FP operations 0.751 prediction

Merge Description Type Purpose
Binomial Option pricing using Binomial algorithm 0.713 prediction
Blackscholes Option pricing using BlackScholes algorithm 0.654 prediction
Convolve 2D Separable image convolution 11.57 prediction
Nmat Naive matrix multiplication 6.751 prediction
Sepia Filter to artificially age image 25.94 prediction
SVM SVM-based face classifier 1.275 prediction

aMPKI: misses per kilo-instruction.

Fig. 4. Process of modeling GPU power.

component-level values such as cache-line size, decoder width, etc. These McPAT pa-
rameters are dynamically adjustable through the simulation interface. Table III lists
the input technology parameters used by McPAT to define device-level characteris-
tics of the chip and the values assigned to these parameters in this work. Several

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:8 J. Lim et al.

Table III. McPAT Design Parameters

Parameter Available Options GPU Xeon in McPAT

clock frequency in unit of Hz 1.544e9 3.4e9
feature size 16nm to 180nm 40e-9 65e-9
core type Out-of-Order, in-order in-order Out-of-Order
embedded true, false false false
wire type global, global 5, global 10, global 20,

global 30, low swing, semi global, trans-
mission, optical

global global

device type hpa, lstpb, lopc hp hp
interconnect projection aggressive, conservative aggressive aggressive
wiring type local, semi global, global global global
component type core, llcd, uncoree core, llc core, llc
opt local true, false false false
longer channel device true, false true true

The parameters in the available options are the parameters in McPAT.
ahp: high-performance type.
blstp: low standby power type.
clop: low operating power type.
dllc: last-level cache.
euncore:any logic except for core and LLC.

Table IV. Description of Modeled GPU Hardware Structure

Hardware structure Model type Model parameters

Block/Warp States, Fetch Queue,
Instruction Queue, Register File

array (RAM) input line width, output line width,
associativity, #banks, #entries, tag
width, #ports(R, W, RW), cycle time,
access time

Instruction TLB, Instruction Cache,
Scoreboard, Data TLB, L1 Cache, L2
Cache, Cache Buffers, Shared
Memory, Constant Cache, Texture
Cache

array (Cache) input line width, output line width,
associativity, #banks, #entries, tag
width, #ports(R, W, RW), cycle time,
access time

Instruction Decoder instruction decoder decoded opcode width
Instruction Issue Selection Logic selection logic selection input size, selection output

size
SP, SFU, LD/ST units functional unit -
Memory Controller memory controller buffer line size, request window

entries, I/O buffer entries, #memory
channels, peak transfer rate, #ranks,
data bus width, address bus width

NoC network router or bus, flit bits, #ports (in, out),
#virtual channels, duty cycle, link
throughput, link latency, chip
coverage, percentage of pipelining

Pipeline Latches pipeline pipeline stages, width

Model parameters are the parameters in McPAT.

known parameters (Table I) such as clock frequency, feature size, core type, and com-
ponent type are defined as the target GPU model, but the rest of the parameter values
are left the same as for Intel Xeon, which is the latest processor model provided by
McPAT. Table IV summarizes all the hardware structures modeled for the GPU ar-
chitecture along with the model types used and the module parameters supported for
each structure. The first column in Table IV lists all the functional components that

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:9

Table V. Description of Architectural Differences between CPUs and GPUs

Module name GPU-specific characteristics

Dispatcher outside SMs Not modeled
Block/Warp states Modeled by array (ram) type (8B/warp)
Branch Predictor, Branch
Target Buffer, Return
Address Stack

No branch predictor modules

Decode No pre-decoder, sequencer
Scheduler Scoreboard, output signal * #SP per SM
EX - SP 1 ALU + 1 FPU (determined in Step 3)
EX - SFU 6 MULs (determined in Step 2)
Register file 1r1w/bank, 32 banks
Shared memory newly added module, 16/48 KB per SM
Constant cache newly added module, 8KB per SM
Texture cache newly added module, 8KB per SM
TPC Texture unit leakage is included in the new parameter

for the clock network

are assumed to be in the target GPU. Each module is described by using circuit-level
model type and model parameters, as explained in Section 2.1.

Table V shows the list of distinctive GPU components. A global thread block dis-
patcher is not modeled in this work since it is comparably smaller than other compo-
nents and it is rarely executed, such as 1 out of 1 million cycles.2 Also, CPU-specific
components such as branch predictors, instruction pre-decoder, and micro-op sequencer
are disregarded. An instruction scheduler in an SM has an extended width of control
and output signals to support SIMT execution features. The output signal widths are
equal to the number of SPs connected to scheduler units. Extra GPU-specific compo-
nents such as shared memory and texture cache are newly added since the original
McPAT does not have them.

4.2. Choosing and Evaluating Configurations (step 2)

GPUs have a distinct architecture compared to CPUs, and detailed microarchitectural
information is not exposed. Therefore, several possible configurations are tested to
identify unknown architectural parameters such as the number of execution units for
modeling SFUs and the number of ports and banks for describing the register file and
the caches. Although the number of execution units and SFU units can be inferred
from the performance, modeling those numbers using McPAT is not straightforward.
McPAT itself also used empirical power data to model execution units because execution
units are heavily dependent on circuit designs. The following shows the identified
configurations of SFUs, register file, L1 and L2 caches, clock network, and texture
unit. Please note that some parameters do not necessarily correspond to the actual
number in the modeled GPU system such as the number of execution units. These
numbers are the modeled numbers that result in power numbers from empirical data.

4.2.1. Special Functional Units (SFUs). The Fermi architecture has four SFUs per SM
for the efficient execution of special functions. Special functions are also one of the
highly customized structures similar to execution units. SFU is beyond a collection
of simple lookup tables [Lindholm et al. 2008]. Since it is even harder to find the
detailed hardware structure information about the SFU, we use multipliers (MUL type

2The thread block dispatcher is executed when a thread block is finished.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:10 J. Lim et al.

Table VI. Parameters to Estimate the Number of MULs for
SFU (Equations (2)–(5))

Parameter Value
#SP per SM GTX280 8
#SFU per SM GTX280 2
PeakPowerFP GTX280 0.2 [Hong and Kim 2010]
PeakPowerALU GTX280 0.2 [Hong and Kim 2010]
PeakPowerINT GTX280 0.25 [Hong and Kim 2010]
PeakPowerSFU GTX280 0.5 [Hong and Kim 2010]

Table VII. Peak Power of the
Execution Units from McPAT

Component Peak Power (mW)
ALU 145
MUL 309
FPU 504

in McPAT) to model the SFU and search for the most reasonable number based on
empirical data.

The basic method to estimate the number of SFU units is to isolate the SFU power
consumption from empirical data. However, instead of naively matching the absolute
SFU power values, we measure the relative power ratio of an SP to an SFU in the
empirical data and search for the appropriate number of SFU units, since matching
the absolute values can easily skew the results. Hence, as shown in Eq. (1), it is assumed
that the peak power ratio of an SP to an SFU modeled with McPAT is the same as that
from the empirical data. In these equations, PP denotes Peak Power in Hong and Kim’s
work [2010]. Note that the numbers of SPs and SFUs in GTX280 are different from
those in GTX580; thus we use per-unit peak powers (i.e., per-SP, per-SFU) to equally
compare the units in GTX280 and GTX580. Each term in Eq. (1) can be computed as
Eqs. (2)–(5). Eqs. (2) and (3) compute the peak powers for FPU and ALU using the
McPAT model. Eqs. (4) and (5) compute the empirical peak powers. These equations
are used to compute #MUL per SFU.

All the parameters for the empirical data are selected from GTX280 specifica-
tions [NVIDIA 2014a] and are listed in Table VI.

After substituting Eqs. (2)–(5) by Eq. (1), the number of MULs to model an SFU can
be calculated. Based on the reference values in Table VI and the peak power of each
execution unit of McPAT in Table VII, we found that six MULs are suitable to model
an SFU. The total number of MULs used to model an SFU is a bit more than the count
mentioned by NVIDIA [Lindholm et al. 2008] due to the discrepancy of execution unit
models between NVIDIA implementation and McPAT models. Note that the execution
unit models in McPAT are based on the empirical data of embedded processors from
Sun Microsystems [Leon et al. 2006].

PPSP model : PPSFU model = PPSP emp : PPSFU emp (1)

PPSP model = PPFPU McP AT + PPALU McPAT (2)
PPSFU model = #MUL per SFU × PPMUL McPAT (3)

PPSP emp = PPFP GTX280 + PPALU GTX280 + PPINT GTX280

#SP per SM GTX280
(4)

PPSFU emp = PPSFU GTX280

#SFU per SM GTX280
(5)

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:11

Table VIII. Possible Register File Configurations for a 128-Bit Access

Gebhart’s hp lstp lop
Parameter worka 1r/1w 2r/1w 3r/1w 1r/1w 2r/1w 3r/1w 1r/1w 2r/1w 3r/1w

bank area (μm2) 38,000 57,883 107,615 149,087 98,968 187,081 248,353 98,960 187,104 248,759
unit energy. 8 5.1 12.8 19.7 10.7 27.9 42.1 3.8 9.9 14.9

read (pJ)
unit energy. 11 5.4 13.2 20.1 10.8 27.9 42.2 3.8 9.9 14.9

write (pJ)
unit energy. - 4.1 7.5 10.1 0.002 0.003 0.004 0.7 1.3 1.7

leakage (pJ)

a[Gebhart et al. 2011].

4.2.2. Register File. The register files in GPUs differ from those in CPUs in that there
are tens of thousands of registers to hold the register state of all the threads running
on an SM. Moreover, the register file has to support many concurrent accesses (reads
and writes by different warps in the same cycle). This heavily accessed register file
can be implemented using 32-bank dual-ported RAM blocks (1 read and 1 write) as
explained by Gebhart et al. [2011]. Various port configurations, including the dual-port
architecture described before, are explored along with different device-type options for
the purpose of verifying the configuration recommended in Gebhart et al. [2011] with
McPAT parameters shown in Table VIII. As can be seen in the table, configurations
having more than 1r/1w ports consume very large area when compared to the reference
data from Gebhart et al.’s paper. For the configuration employing 1r/1w ports, the lstp
option provides unit energy values that are quite similar to those of reference data,
but small leakage energy does not seem to be reasonable because the register file is
expected to have fast and large hardware dissipating a certain amount of leakage power.
Therefore, based on the data in Table VIII, we choose the 1r/1w port configuration with
the hp (high-performance) option, which produces reasonable results when considering
both area and energy consumption.

4.2.3. L1 and L2 Caches. In order to model caches with the models provided by McPAT,
we need to know configuration details such as the size, the number of banks, and the
number of ports. However, only the sizes of the various caches are known and no other
configuration information is available. Therefore, we explore various configurations to
find a combination that minimizes the error between the modeled and the measured
total power. First, four configurations for the L1 cache and eight configurations for the
L2 cache, which have either 1r/1w or 2r/2w ports and consist of one to eight banks, are
considered. We then measure the total power of all the possible combinations of the
configurations of the two caches for the mb10same, mb11same, mb12same, and mb14same
benchmarks and normalize them to the measured power, as shown in Figures 5 and 6.
As a result, two combinations show less than 5% errors for all the benchmarks, as
highlighted in Figure 6. In order to choose between the two candidates with low error,
we consider the area of an SM, which is known to be 16mm2 [Gebhart et al. 2011], and
the throughput of the L2 cache. The area of the L1 cache (listed in Table IX) has to
be smaller than the area of one SM, and the L2 cache should have enough ports or
banks to support concurrent requests from all the SMs. Based on these criteria, we
choose the configuration employing 1r/1w port and two banks for the L1 cache and
2r/2w ports and eight banks for the L2 cache. This final configuration results in a
smaller L1 cache area and a higher L2 cache throughput. Please note that the timing
simulator already models memory request coalescing units to aggregate requests from
all execution units within an SM and broadcasting units that send a memory request

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:12 J. Lim et al.

Fig. 5. Normalized total power for various L1 and L2 configurations.

L1

L2

Fig. 6. Normalized total power for various L1 and L2 configurations.

Table IX. Estimated L1 Area for Various
Cache Configurations

Configuration L1 area per SM (mm2)
1r/1w, 1banks 3.194
1r/1w, 2banks 7.754
2r/2w, 2banks 10.235
2r/2w, 2banks 45.035

to individual threads. This is the main reason to have fewer read and write ports for
caches.

4.2.4. Clock and Texture Unit. The power dissipation on the clock network contributes to
a considerable fraction of the total power. For example, the power consumptions of the
clock network reported by Wattch and McPAT are 8%, 34%, 16%, and 20% of the total
power for Pentium Pro, Alpha 21264, Alpha 21364, and Niagara2, respectively [Brooks
et al. 2000; Li et al. 2009]. However, the publicly available version of McPAT does not

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:13

support a separate clock network model. To model core gating (i.e., applications use
only a few number of cores and the remaining cores become idle/power gated), we also
need to model the clock power.

Modeling leakage power for the texture unit is critical in the GPGPU power model
because of the unique characteristics of texture units. Texture units mainly work on
the graphics applications, but signals from the EXUs to the texture cache go through
the texture unit and dissipate a small amount of the leakage power [NVIDIA 2014c].
Although GTX580 seems to employ an aggressive power-gating technique, which will be
described later, the texture cache still incurs a leakage cost for graphics processing and
is accessed by general-purpose workloads as well. Wattch suggests that the power cost
of the clock network be at least 8% of the total power, and we need to consider the texture
unit as well. Therefore, we assume that 10% of the thermal design power (TDP)3 of
GTX580 [NVIDIA 2014b] is consumed by the clock network and the texture unit, which
corresponds to 24.4W and approximately 15% of the measured total power. Accordingly,
this constant value for modeling the clock power and texture unit consumption is
included in all of our results.

4.3. Evaluation of Parameters (step 3)

After determining the configurations for all the components, we adjust the internal
McPAT parameters such as the power ratio between ALUs and FPUs and the scal-
ing factor for the constant cache to make our power model suitable for the GPU
architecture.

Eq. (6) represents the total power as a sum of the power consumption of all the
components. In order to focus on the modules that need to be adjusted, in this section
we decompose a GPU into the evaluated components, such as SPs and the constant
cache, and the others, as shown in Eq. (7). Since one approach is applied separately to
the dynamic and the leakage power of the EXUs, Eq. (7) is more detailed in Eq. (8).
Finally, Eq. (9) represents the adjusted total power with the scaling factors α, β, γ , δ,
and ε and will be discussed next.

TotalPower =
∑

Pcomponent (6)

= PSP f pu + PSP alu + PConstMem + POthers (7)
= PSP f pu dyn + PSP fpu lkg + PSP alu dyn + PSP alu lkg (8)

+ PConstMem + POthers

Total Poweradjusted = α · PSP fpu dyn + β · PSP f pu lkg + γ · PSP alu dyn

+ δ · PSP alu lkg + ε · PConstMem + POthers
(9)

The SP, which is the main execution unit that performs arithmetic operations, con-
tains functional units. NVIDIA [Lindholm et al. 2008; NVIDIA 2009] explains that each
SP includes a scalar multiply-add (MAD) unit in Tesla, and one ALU and one FPU in
Fermi. Because McPAT provides only fixed-width ALU, MUL, and FPU types for EXUs,
we model one SP using one ALU and one FPU. However, using the McPAT types without
any modifications may not be suitable for GPUs because EXUs are highly customized
hardware with their structure varying from one vendor to another. Moreover, NVIDIA
GPUs have many execution lanes, from 8 to 32, meaning a high possibility of hardware
optimization. The estimated SP area provides evidence that the EXUs in GPUs are
considerably different from those of McPAT. The area of 32 SPs in an SM modeled with
the original EXU types of McPAT is 61mm2, whereas the estimated area of an SM from

3TDP is the maximum power that can be dissipated by a device when applications are running.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:14 J. Lim et al.

Fig. 7. Comparison of various configurations for the training benchmarks.

available die shots is approximately 16mm2 [Gebhart et al. 2011]. This overestimation
is largely due to the modeling method employed by McPAT, which is based on empiri-
cal models using published data [Mathew et al. 2005; Leon et al. 2006]. McPAT takes
the area of EXUs from actual designs by Intel [Mathew et al. 2005] and Sun [Leon
et al. 2006], estimates leakage power consumption to be proportional to the area, and
scales the power values to different technologies. Figure 7 shows the total power of
all the possible implementations modeled with various parameter values. The result
labeled “Original McPAT EXUs” shows the estimated power consumption when the
original EXUs of McPAT are used without any modifications. The light-gray bars show
much larger power variation among benchmarks and a considerably different trend
compared to the measured data, supporting our claim that EXUs need to be adjusted.

In order to enhance the approach of McPAT, we reduce the area of EXUs while
maintaining the size ratio of all the units until the total SM area becomes around
16mm2. Because in McPAT’s model, a leakage power is dependent on an area; this
approach only reduces the scaling factors (β and δ in Eq. (9)) for the leakage power of the
EXUs. After this modification, the total power consumption shown by the result labeled
“Scaling for SM area” in Figure 7 decreases due to the reduced leakage power. However,
the trend of the estimated results still does not match well with measured data because
reducing the area does not affect the dynamic power, which is related to the variations
among the power consumption of the applications. The other possible source of error
is the power ratio of ALUs to FPUs in McPAT’s modeling. We can see this problem by
comparing the total power of int and fp benchmarks, which have the same behavior
except for accessing the integer or the floating-point part of the SP unit. In Figure 7,
the gap between the two benchmarks for the result labeled “original McPAT EXUs”
and “Scaling for SM area” is much larger than that of the real data because the FPUs
in McPAT are modeled with much larger parameters than the ALUs, and this might
overestimate the FPU power for the GPU hardware. To adjust this overestimation,
assuming ALUs in McPAT are modeled correctly, we reduce the power ratio between
ALUs and FPUs until the power difference of the two benchmarks is close to that
from the measured data. This adjustment only modifies the scaling factors for FPUs, α
and β in Eq. (9). Note that we assume the difference in the measured data for the two
benchmarks is due to the difference in the power consumption of FPUs and ALUs and is
not due to the use of a specific instruction such as add.cc instead of another instruction
such as addc (or vice versa)4. As can be seen in Figure 7, the result labeled “Adjusted
power ratio between ALUs and FPUs” gives the closest results to the measured data.

Since constant memory is only used by the const benchmark, scaling for the constant
cache is performed after EXUs are tested. In other words, ε in Eq. (9) is adjusted until
the estimated power is the same as the measured power for the const benchmark.

4add.cc:add two values with carry-out, addc:add two values with carry-in and optional carry-out.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:15

Fig. 8. Total power vs. varying the number of active SMs.

4.4. Introducing Activation Power

In this section, we introduce an additional term that is not modeled in McPAT. This is
just a conceptual term to model the constant increase in power consumption shown in
the empirical data. Figure 8 shows the total power consumption when the number of
active SMs grows. We measure the idle and the runtime power by repeating a process
that turns on a few cores and then put the cores into an idle state to cool down the
system, as indicated in Hong and Kim [2010]. Although the idle power is greater than
the leakage power, we used leakage power outcomes from the power model for first order
comparisons because we cannot exactly measure the leakage power. For GTX580, the
real GPU consumes only 27W in the idle state, and Xbitlabs [Stepin and Lyssenko
2014] also measured the idle power as 26.5W. However, our model predicts that the
leakage power of GTX580 is 100W. On the other hand, for GTX2805, the measured idle
power is 83W and our leakage estimate is 94W, which is an error of 13%. While our
model can guess the idle power of GTX280 with an acceptable error by estimating the
leakage power of the system, there is a huge gap between the measured idle power and
modeled leakage power of GTX580. We consider that this gap is caused by the power-
gating technology applied to GTX580, which is not modeled in McPAT but significantly
affects the power dissipation on GTX580. Since GTX580 is known to be more power
efficient and to have more power control, we expect that only active SMs are turned
on and the unused SMs are turned off. When we activate the first SM, the power
consumption of the GPU system in Figure 8 becomes 92W, which is 65W higher than
the idle power of 27W. To model this, we introduce an additional term of 65W, called
activation power. We can use this term when predicting the actual idle or the runtime

5The focus of this article is GTX580 but just for the idle power comparisons, we also compare GTX280.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:16 J. Lim et al.

Table X. Summary of Changes in McPAT to Model GPUs

Unit Changes Process
Activation power 65W estimated Experimental
Clock & Texture unit 24.4W modeled Experimental
SP Power adjustment between ALUs and FPUs (α, β:

0.27, γ , δ:1)
Experimental

SFU Model using six MULs Experimental
Register file Design space exploration for the port configuration

(1r/1w with hp option)
Design space
exploration

L1/L2 caches Design space exploration for the port and bank
configuration (L1: 1r/1w ports and two banks,
L2:2r/2w ports and eight banks)

Design space
exploration

Constant cache Scaling (ε:5.4) Experimental

Fig. 9. Total power for the prediction benchmarks.

power. In other words, when there is no active core, the idle power is 65W less than the
leakage power of our model.

The summary of changes for a more consistent match between the model and the
measured data is listed in Table X.

5. EVALUATION

5.1. Validation and Discussion

Sixteen workloads are used for the prediction benchmarks to validate the correctness of
the power model: ten from the microbenchmarks and six Merge benchmarks. Figure 9
compares the output of our model against the measured total power for the prediction
benchmarks. It shows that the power estimates for the microbenchmarks correlate
very well with the measured data with satisfactory accuracy—the geometric mean of
the error is 7.7%. Looking at the errors between the modeled and measured data in
Figure 9, the power model is not systematically overestimating nor underestimating
the total power. The relative accuracy in predicting the power consumption of Merge
benchmarks is lower than that of the microbenchmarks, as seen by the right side of
Figure 9. The average error for these kernels is 12.8%. Although the predicted data
tracks moderately with the actual power data, the gap between the measured and the
modeled data for Merge benchmarks tends to be larger than that for the microbench-
marks. The explanation of this discrepancy comes from the performance errors in the
timing simulator, mainly due to the complicated behavior of the workloads. In fact,
this mismatch is an expected result because there is unknown logic on the real hard-
ware that is not included in the known architecture. For example, modeling is limited
by the lack of information on the memory hierarchy such as the specification of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:17

Fig. 10. Distribution between dynamic and leakage power.

Fig. 11. Breakdown of dynamic power.

interconnection among caches and inside SMs. The reason for the errors also can be at-
tributed to the extra power that is not modeled but is included in the empirical data, for
example, the fan power and the power variations caused by the temperature increases.
The cold-state temperature of the typical GPU is measured as 57◦C [Hong and Kim
2010], and we use 340K (67◦C) by considering the temperature increase during the op-
eration. However, different benchmarks have different saturating temperatures; thus
the leakage power delta due to this temperature difference can be an additional error.

5.2. Power Analysis Details

This section reports a set of experimental results aimed at demonstrating the usage
of the model and understanding the nature of GPU power consumption. In general,
there is little information about detailed power data such as power breakdown between
components and the absolute numbers even for CPUs. Therefore, we believe that the
revealed data in this work will be useful for research on Fermi and other GPU systems.
Figure 10 shows the distribution between the dynamic and the leakage power in the to-
tal power consumption. Most benchmarks consume more leakage power than dynamic
power, but dmadd has more dynamic power consumption than leakage power due to the
high power consumption at memory. Figure 11 shows the dynamic power distribution
between the components. SPs generally consume the most power, as they are the main
execution units. On the other hand, for the memory-intensive benchmarks, the power

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:18 J. Lim et al.

Fig. 12. Breakdown of dynamic and total power for fp and mb12diff benchmarks.

consumed by the modules related to the memory system, such as the memory controller,
caches, and memory, is remarkably increased when compared to power consumption of
the same modules for computer-intensive benchmarks, while the core power is low be-
cause of the idle time waiting for the memory transfers. According to these results, the
big contributors to the dynamic power are SPs, register file, memory, and clock network.

To compare one compute-intensive benchmark (FP) and one memory-intensive bench-
mark (mb12diff), Figure 12 presents the breakdown of the dynamic and the total power,
and Table XI summarizes the number of accesses to major modules for the workloads.
Obviously, for the compute-intensive benchmark, most dynamic power comes from SPs
and the register file, but for the memory-intensive benchmark, SPs also consume a
significant amount of dynamic power (42%) because arithmetic instructions were used
to process the results of the memory instructions and prevent the memory operations
from being removed by the compiler.

Figure 13 shows the effect of temperature on leakage power consumption. As the
temperature increases, the leakage power increases exponentially. As shown in this

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:19

Table XI. The Number of Accesses to the Main Modules for Figure 12, per SM

fp mb12diff

Statistics Count Percentage Count Percentage

Instruction count 368,509 100% 1,072,883 100%
ALUs in SP 32,407 8.79% 672,665 62.7%
FPUs in SP 336,052 91.2% 272,041 25.4%
Register File 368,459 100% 944,706 88.1%
L1 Cache 19 0.01% 128,162 12.0%
L2 Cache 66 0.02% 2,114 0.20%
Memory 751 0.20% 2,570 0.24%

Fig. 13. Leakage power vs. temperature.

figure, the leakage power at the maximum operating temperature (97◦C, 370K) is
theoretically twice that at 340K. In order to prevent this unnecessary power dissipation
and to guarantee the normal operation of the processor, GPUs usually have their own
cooling system.

5.3. Case Study: Varying Register File Size

To demonstrate how our model can be used for the design and analysis of a microar-
chitecture, we evaluate the effect of the register file size on the system, as shown in
Figure 14. Since current GPUs manage a heavy register file even larger than the L1,
it is important to select an appropriate size to achieve the best performance. Although
we refer to these variations as register file size changes, we vary the maximum number
of active blocks that can be simultaneously executed on one SM because the number
of active blocks determines the effective register size used. In addition, since directly
varying the register file size affects the whole microarchitecture because of the in-
terdependence between components, we vary the maximum number of active blocks
per SM. To reflect the reduced effective register size, we change the register file size
in the power simulation at the same time. In this experiment, we use blackscholes,
for which the maximum number of active blocks per SM is calculated to be eight
using the CUDA occupancy calculator. In Figure 14, a register file size of 32k corre-
sponds to the baseline. From the IPC and power curves, it can be seen that there is
a large performance gain and power increase at first by increasing the register file
size, but the curves remain fairly flat for sizes greater than 24k, showing diminishing
returns.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:20 J. Lim et al.

Fig. 14. Effect of varying register file size.

6. RELATED WORK

Modeling power consumption of CPUs has been widely studied. Wattch and McPAT
are well-known systematic frameworks to predict the per-module power based on an-
alytical and empirical models. Except for these two tools, other works utilize per-
formance counters or empirical data to build a linear regression model. Joseph and
Martonosi [2001] and Isci and Martonosi [2003] proposed using performance counters
to examine power-relevant events and to present per-unit power estimates, respec-
tively. Bellosa et al. [2003] similarly used processor events to determine the energy
consumption; moreover, the temperature characteristics are estimated for power and
thermal management of the system. Wu et al. [2006] search the component unit power
of the Pentium 4 by using a K-means-based method to correct inaccuracy resulting
from manual tuning using empirical data. Peddersen and Parameswaran [2007] mod-
ified a processor for self-prediction at runtime by adding counters capturing power-
related events. CAMP [Powell et al. 2009] presented simple equations to provide in-
sight into the relationship between processor parameters and per-structure power as
well as estimated power based on microprocessor utilization statistics. Jacobson et al.
[2011] built various levels of abstract models and proposed a systematic way to find a
utilization metric for estimating power numbers and a scaling method to evaluate new
microarchitectures.

Power estimation for other systems such as CMPs and mobile architectures was also
conducted. Flores et al. [2007] built an architecture-level power-performance simula-
tor for CMP architectures and validated their work with existing simulators such as
Wattch, HotLeakage [Zhang et al. 2003], and Orion [Kahng et al. 2009]. Kanev et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:21

[2012] developed a simulation framework to model the power and performance of mo-
bile x86 cores by integrating Zesto [Loh et al. 2009], an x86 simulator, with McPAT.
A few existing studies [Gurumurthi et al. 2002; Bircher and John 2012] conduct the
estimation and the profiling of the complete system power including CPU, memory
hierarchy, and disk subsystem.

While the study of architecture and performance improvement with GPUs has been
explored widely, power modeling of GPUs has received little attention. Wang [2010]
extended GPGPUSim [Bakhoda et al. 2009] with Wattch and Orion to analyze the
GPU power consumption but did not validate his results. PowerRed [Ramani et al.
2011], a modular architectural power estimation framework, combined both analytical
and empirical models, and the authors also simulated interconnect power dissipation
by employing an area cost. On the other hand, they did not provide the absolute
values and validation results. A few GPU power modeling works used a statistical
linear regression method rather than an analytical model. Ma et al. [2009] dynamically
predicted the runtime power of NVIDIA GeForce 8800 GT using recorded power data
and a trained statistical model. Nagasaka et al. [2010] used the linear regression
method by collecting the information about the application from performance counters.
Some statistical-method-based works used the random forest model to provide insight
into understanding the correlation between metrics. Chen et al. [2011] built a high-
level power consumption model using a tree-based random forest method to achieve
better accuracy than regression-based methods and to study the correlation between
individual performance metrics. Zhang et al. [2011] also utilized random forest methods
for ATI GPUs and analyzed the power consumption along with performance. Pool
et al. [2010] adopted a different approach that built the energy and power model
from the unit energy consumed by each instruction. Although past studies employing
the regression method have a very small error because they built the model from
empirical data obtained from existing hardware, these methods are not applicable for
power estimation at the early-design stage. Although our work also utilizes empirical
data, our work can be extended to brand new architectures as long as they maintain
characteristics of the current GPUs such as the memory hierarchy and three types
of GPU-specific execution units. As a concurrent study, GPUWattch has been recently
presented [Leng et al. 2013]. Their work also models GPU power using McPAT but the
main difference is that our work focuses more on the methodology of developing power
models, whereas their work focuses on the GPU power model itself. GPU-PowerSim was
also released recently [Goswami et al. 2012], which also uses McPAT and GPGPU-Sim.
And GPU-PowerSim is used to evalute GPU regislter files [Goswami et al. 2013].

7. CONCLUSIONS

In this article, we developed a GPU power model using McPAT, a CPU power simu-
lation tool, and also presented steps to develop the model. Our model estimates the
power consumption of different GPU components by using configuration parameters
that are obtained from published papers in some cases and determined experimentally
by exploring all the possibilities provided by McPAT in other cases. Our work exposes
undocumented information that is related to the performance and power consump-
tion of the GPU architecture. We focused on identifying appropriate internal McPAT
parameters to model GPUs accurately. Through experiments we demonstrate that our
model achieves results that are comparable with those measured empirically, with an
average error of 12.8% for Merge benchmarks, and that our model tracks the shape
of the variation trend relatively well. In other words, these validation results indi-
cate that our power model is an effective solution for both relative and absolute ac-
curacy. Notwithstanding its limitations, this model may offer some insight during

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:22 J. Lim et al.

microarchitecture trade-off studies by allowing users to understand the effect of differ-
ent microarchitecture design options on power consumption.

REFERENCES

A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. 2009. Analyzing CUDA workloads using a detailed
GPU simulator. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’09). 163–174.

F. Bellosa, S. Kellner, M. Waitz, and A. Weissel. 2003. Event-driven energy accounting for dynamic thermal
management. In Proceedings of the Workshop on Compilers and Operating Systems for Low-Power.

W. Bircher and L. John. 2012. Complete system power estimation using processor performance events. IEEE
Trans. Comput. 61, 4, 563–577.

D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: A framework for architectural-level power analysis
and optimizations. In Proceedings of the 27th Annual International Symposium on Computer Architecture
(ISCA’00). ACM Press, New York, 83–94.

J. Chen, B. Li, Y. Zhang, L. Peng, and J. Kwon Peir. 2011. Tree structured analysis on GPU power study. In
Proceedings of the 29th IEEE International Conference on Computer Design (ICCD’11). 57–64.

J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. 2013. A roofline model of energy. In Proceedings of the 27th

IEEE International Symposium on Parallel Distributed Processing (IPDPS’13). 661–672.
Extech. 2014. http://www.extech.com/instrument/products/310 399/380801.html.
A. Flores, J. Aragon, and M. Acacio. 2007. Sim-powercmp: A detailed simulator for energy consumption

analysis in future embedded CMP architectures. In Proceedings of the 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW’07), vol. 1. 752–757.

M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and K. Skadron. 2011. Energy-
efficient mechanisms for managing thread context in throughput processors. In Proceedings of the 38th

Annual International Symposium on Computer Architecture (ISCA’11). ACM Press, New York, 235–246.
N. Goswami, B. Cao, and T. Li. 2013. Power-performance co-optimization of throughput core architecture

using resistive memory. In Proceedings of the 19th IEEE International Symposium on High Performance
Computer Architecture (HPCA’13). 342–353.

N. Goswami, A. Verma, and T. Li. 2012. Gpu-powersim. http://www.ideal.ece.ufl.edu/main.php?action=gpu-
powersim.

S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir, T. Li, and L. K. John.
2002. Using complete machine simulation for software power estimation: The softwatt approach. In
Proceedings of the 8th International Symposium on High-Performance Computer Architecture (HPCA’02).
IEEE Computer Society, 141.

S. Hong and H. Kim. 2010. An integrated GPU power and performance model. In Proceedings of the 37th

Annual International Symposium on Computer Architecture (ISCA’10). ACM Press, New York, 280–289.
Hynix. 2006. 512M (16mx32) GDDR3 SDRAM hy5rs123235fp. http://www.hynix.com/datasheet/pdf/dram/

HY5RS123235FP(Rev1.3).pdf.
C. Isci and M. Martonosi. 2003. Runtime power monitoring in high-end processors: Methodology and empir-

ical data. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’03). IEEE Computer Society, 93.

H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and R. Eickemeyer. 2011. Abstraction and microarchitec-
ture scaling in early-stage power modeling. In Proceedings of the 17th International Symposium on High
Performance Computer Architecture (HPCA’11). 394–405.

JEDEC. 2014. JEDEC standard GDDR5 SGRAM. http://www.jedec.org/sites/default/files/docs/JESD212.pdf.
R. Joseph and M. Martonosi. 2001. Run-time power estimation in high performance microprocessors. In

Proceedings of the International Symposium on Low Power Electronics and Design (ISPLED’01). 135–
140.

A. Kahng, B. Li, L.-S. Peh, and K. Samadi. 2009. Orion 2.0: A fast and accurate NoC power and area model
for early-stage design space exploration. In Proceedings of the Design, Automation, and Test in Europe
Conference and Exhibition (DATE’09). 423–428.

S. Kanev, G.-Y. Wei, and D. Brooks. 2012. Xiosim: Power-performance modeling of mobile x86 cores. In Pro-
ceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED’12).
ACM Press, New York, 267–272.

J. Leng, T. Hetherington, A. Eltantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J. Reddi. 2013. GPUWattch:
Enabling energy optimizations in GPGPUs. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA’13). 487–498.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

Power Modeling for GPU Architectures Using McPAT 26:23

A. Leon, J. Shin, K. Tam, W. Bryg, F. Schumacher, P. Kongetira, D. Weisner, and A. Strong. 2006. A power-
efficient high-throughput 32-thread sparc processor. In Proceedings of the IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC’06). 295–304.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT: An integrated
power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.

M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. 2008. Merge: A programming model for heteroge-
neous multi-core systems. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’08). ACM Press, New York.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. Nvidia Tesla: A unified graphics and computing
architecture. IEEE Micro 28, 2, 39–55.

G. Loh, S. Subramaniam, and Y. Xie. 2009. Zesto: A cycle-level simulator for highly detailed microarchitecture
exploration. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’09). 53–64.

X. Ma, M. Dong, L. Zhong, and Z. Deng. 2009. Statistical power consumption analysis and modeling for GPU-
based computing. In Proceedings of the ACM SOSP Workshop Power Aware Computing and Systems
(HotPower’09).

MacSim Simulator. 2012. http://code.google.com/p/macsim/.
S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. Krishnamurthy, and S. Borkar. 2005. A 4-GHz 300-mW

64-bit integer execution ALU with dual supply voltages in 90-nm CMOS. IEEE J. Solid-State Circ. 40,
1, 44–51.

N. Muralimanohart, R. Balasubramonian, and N. Jouppi. 2007. Optimizing NUCA organizations and wiring
alternatives for large caches with CACTI 6.0. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’07). 3–14.

H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka. 2010. Statistical power modeling of GPU
kernels using performance counters. In Proceedings of the International Green Computing Conference.
115–122.

NVIDIA. 2009. Fermi: Nvidia’s next generation CUDA compute architecture. White paper. http://www.
nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf.

NVIDIA. 2014a. Geforce GTX280 specification. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
280.

NVIDIA. 2014b. Geforce GTX580 specification. http://www.geforce.com/hardware/desktop-gpus/geforce-
gtx-580/specifications.

NVIDIA. 2014c. Nvidia GF100. http://www.hardwarebg.com/b4k/files/nvidiagf100whitepaper.pdf.
J. Peddersen and S. Parameswaran. 2007. Clipper: Counter-based low impact processor power estimation

at runtime. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’07).
890–895.

J. Pool, A. Lastra, and M. Singh. 2010. An energy model for graphics processing units. In Proceedings of the
IEEE International Conference on Computer Design (ICCD’10). 409–416.

M. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh, and S. Yardi. 2009. Camp: A technique to estimate per-
structure power at run-time using a few simple parameters. In Proceedings of the 15th IEEE International
Symposium on High Performance Computer Architecture (HPCA’09). 289–300.

K. Ramani, A. Ibrahim, and D. Shimizu. 2011. Powerred: A flexible power modeling framework for power ef-
ficiency exploration in GPUs. In Proceedings of the Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU’11).

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator.
Comput. Archit. Lett. 10, 1, 16–19.

W. Song, S. Yalamanchili, S. Mukhopadhyay, and A. Rodrigues. 2012. Energy Introspector User Manual.
Georgia Tech Research Corporation.

A. Stepin and Y. Lyssenko. 2014. Natural born winner: Nvidia Geforce GTX580 review. page 5. http://www.
xbitlabs.com/articles/graphics/display/geforce-gtx-580 5.html.

G. Wang. 2010. Power analysis and optimizations for GPU architecture using a power simulator. In Proceed-
ings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE’10),
vol. 1. V1–619–V1–623.

W. Wu, L. Jin, J. Yang, P. Liu, and S.-D. Tan. 2006. A systematic method for functional unit power estimation
in microprocessors. In Proceedings of the 43rd ACM/IEEE Design Automation Conference (DAC’06).
554–557.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

26:24 J. Lim et al.

Y. Zhang, Y. Hu, B. Li, and L. Peng. 2011. Performance and power analysis of ATI GPU: A statistical
approach. In Proceedings of the 6th IEEE International Conference on Networking, Architecture and
Storage (NAS’11). 149–158.

Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. 2003. Hotleakage: A temperatureaware
model of subthreshold and gate leakage for architects. Tech. rep. University of Virginia, VA.

Received January 2013; revised March 2014; accepted March 2014

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 3, Article 26, Pub. date: June 2014.

