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Current heterogeneous chip-multiprocessors (CMPs) integrate a GPU architecture on a die. However, the
heterogeneity of this architecture inevitably exerts different pressures on shared resource management due
to differing characteristics of CPU and GPU cores. We consider how to efficiently share on-chip resources
between cores within the heterogeneous system, in particular the on-chip network. Heterogeneous architec-
tures use an on-chip interconnection network to access shared resources such as last-level cache tiles and
memory controllers, and this type of on-chip network will have a significant impact on performance.

In this article, we propose a feedback-directed virtual channel partitioning (VCP) mechanism for on-chip
routers to effectively share network bandwidth between CPU and GPU cores in a heterogeneous architecture.
VCP dedicates a few virtual channels to CPU and GPU applications with separate injection queues. The
proposed mechanism balances on-chip network bandwidth for applications running on CPU and GPU cores
by adaptively choosing the best partitioning configuration. As a result, our mechanism improves system
throughput by 15% over the baseline across 39 heterogeneous workloads.
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1. INTRODUCTION

An on-chip heterogeneous architecture that integrates GPU cores on top of conventional
CPU-only chip multiprocessors (CMP) has become a popular architecture trend, as can
be seen in Intel’s Sandy Bridge [Intel Sandy Bridge] and Ivy Bridge [Intel Ivy Bridge],
AMD’s accelerated processing units (APU) [AMD 2011], and NVIDIA’s Denver project
[NVIDIA Denver]. In this architecture, various on-chip resources are shared between
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CPU and GPU cores, such as last-level cache (LLC), on-chip interconnection networks,
memory controllers, and DRAM memories.

This resource-sharing problem has existed since CMP was introduced. In CPU-GPU
heterogeneous architectures, however, we expect more shared resource contention,
especially interference suffered by CPU applications from GPGPU applications due to
the different nature of CPU and GPU cores. CPU cores typically employ 1- to 4-ways
of simultaneous multi-threading and rely on larger caches to tolerate memory access
latencies. On the other hand, GPU cores operate with tens of active threads to minimize
the penalty of the off-chip memory latency. The high degree of thread-level parallelism
(TLP) in GPU cores leads to more frequent network injections, which only exacerbates
the resource-sharing problem.

We tackle the resource-sharing problem of the on-chip network (NoC) in this article.
Sources of interference can be located in any shared resources, from shared last-level
caches (LLC) to memory controllers (MC). Nonetheless, the NoC is one of the most
important shared mediums because it connects all components and all communication
traverses through it. The management of the NoC significantly affects the performance
of each application as well as the system throughput. The baseline on-chip routers
favor applications with high network demands under the round-robin or oldest-first
arbitration policies. Consequently, GPGPU applications are naturally favored and CPU
applications face unfair network resource utilization in heterogeneous architectures.

To solve the resource-sharing problem in the NoC, researchers have proposed router
arbitration policies [Das et al. 2009, 2010; Lee et al. 2008; Grot et al. 2009] in the
homogeneous CMP domain. These policies consider different application characteris-
tics and prioritize critical packets or applications. However, these mechanisms may
not be used directly for heterogeneous architectures because they do not consider the
heterogeneity of cores. GPU cores inject packets much more frequently than CPU cores
because they are capable of running many concurrent threads with SIMD executions,
which leads to an unbalanced number of packets between the CPU and GPU in the net-
work. These characteristics of GPU cores increase the thread-level parallelism (TLP) of
cores, thereby making them more tolerant to latency and bandwidth than CPU cores.
Therefore, NoC mechanisms for heterogeneous architectures need to consider different
characteristics of GPU cores to be effective.

Here, we propose a virtual channel partitioning (VCP) mechanism, which is sim-
ple yet effective, to attack resource-sharing problems in the NoC for heterogeneous
systems. A router typically has multiple input and/or output virtual channels (VC)
that share physical links and thus bandwidth. By dedicating a number of VCs to CPU
and GPU applications, we can guarantee a minimum service in the network to each
type. Also, VCP naturally arbitrates packets that pass through the router because
VCP forces GPU packets to occupy only a part of VCs, thus CPU packets can find a
VC immediately upon arrival. To provide CPU and GPU packets according to their
VC availability, VCP requires separate injection queues for CPU and GPU packets.
Injection queues of shared caches and memory controllers have both types of packets.
If the shared queue with a first-come first-serve (FCFS) scheduler is used for the injec-
tion, even if available VCs of a certain type exist, packets cannot be injected until they
arrive at the head of the queue. VCP uses DAMQ-based injection queues [Tamir and
Frazier 1992] to maintain separate queues so that VCP can supply packets to their
corresponding partition with low overhead.

However, VCP may result in significant performance degradation for bandwidth-
limited GPGPU applications. Without partitioning, bandwidth-limited GPGPU ap-
plications could utilize more bandwidth, but their performance may be degraded
because of the reduced bandwidth from partitioning. Therefore, the performance trade-
off between CPU and GPGPU applications should be carefully balanced. Moreover,
how different partitioning configurations affect performance varies by the workload
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characteristics. Also, they behave differently even in the same workload if different
phases exist. Therefore, partitioning should cope with the run-time behaviors of ap-
plications. This naturally leads us to study an adaptive partitioning mechanism. For
better adaptation, our proposed feedback-directed VCP uses a sampling technique to
dynamically compare different partitioning configurations and enforces the best per-
forming configuration.

We claim our contributions to be as follows.

(1) We propose a feedback-directed virtual channel partitioning (VCP) mechanism that
can arbitrate packets that pass through the local router while providing a more
balanced number of packets to the network.

(2) VCP considers different characteristics of GPU cores by directly collecting per-
formance metrics from the cores themselves, while coarse-grain control of virtual
channels in VCP enables us to use simple hardware control structures.

(3) VCP improves system performance by 15% across 39 heterogeneous workloads.
More importantly, results show at most a 2.5% performance degradation and only
two workloads show negative speedup, while VCP performs better than any static
configurations.

The rest of this article is organized as follows. Section 2 provides the background
on our target architecture and on-chip router microarchitecture. Section 3 describes
the motivation for our article. Section 4 introduces our proposal, VCP. We present the
evaluation methodology and results in Sections 5 and 6. We discuss related work in
Section 7, and Section 8 concludes the article.

2. BACKGROUND

2.1. On-Chip CPU-GPU Heterogeneous Architecture

As seen in recent processors [Intel Sandy Bridge; Ivy Bridge; AMD 2011; NVIDIA
Denver], incorporating a GPU architecture into CMP has become an architectural
trend. Although details may vary by vendor, many on-chip resources are shared
between both processors, such as on-chip interconnection, last-level cache, and
memory controllers. Although current on-chip GPUs are not as powerful as today’s
discrete GPUs such as NVIDIA’s Fermi and AMD’s Evergreen, more powerful GPUs
will be integrated in future heterogeneous architectures, as reported in Intel’s latest
Haswell [Intel Haswell].

Modern high-performance CPU cores are typically superscalar out-of-order cores
with a variety of speculative mechanisms. Many CPU applications are latency-
sensitive, so large private caches (L1 and/or L2) are often employed to avoid long-
latency access to off-chip memory. On the other hand, GPUs pack more processing
elements in each core; a core is an in-order SIMD processor. Multiple threads execute
the same instruction with different data sets per core. To tolerate memory latencies,
GPU cores utilize massive multi-threading. When a thread is stalled due to the memory
instruction, the execution is switched to other available threads. This latency-hiding
mechanism of GPUs essentially generates a high volume of memory requests per unit
time, thereby requesting massive bandwidth. When latency-sensitive CPU applications
and massive-bandwidth GPU applications share on-chip resources, the bandwidth re-
quirement and pressure from cores are different. Therefore, new heterogeneous archi-
tectures expose different aspects of problems, unlike conventional CMPs.

2.2. On-Chip Router Microarchitecture

This section provides a brief background on the on-chip router. A router has P input and
P output ports; P = 3 for a bidirectional ring network and P = 5 for a 2D-mesh/torus.
Each input port has one or more virtual channels (VC). Packets are inserted into one of
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Fig. 1. Router microarchitecture.

the VCs from the processing nodes, specifically from the injection buffer in the network
interface of a node. Then, packets go through the following pipeline stages to reach the
next router.

(1) Input buffering (IB). A packet received over a link of the source node is inserted
into a VC.

(2) Route computation (RC). The output port is determined.
(3) Virtual channel allocation (VA). A packet acquires a downstream VC if it wins VC

arbitration.
(4) Switch allocation (SA). A packet acquires an exclusive grant to access the crossbar

from its input buffer to the output port.
(5) Switch traversal (ST). Once a packet acquires switch access, it can traverse to the

output port over the crossbar.
(6) Link traversal (LT). A packet is moved to the next router through the link.

Packets compete in multiple stages to acquire resources. To coordinate resource allo-
cation between packets, a router has multiple arbiters, for example the VC and switch
arbiters. Arbiters typically use very simple policies, such as round-robin or oldest-first
arbitration policies. Figure 1 shows a microarchitecture of the on-chip router.

3. MOTIVATION

3.1. Interference Experienced by CPU Applications

The interapplication interference problem has existed even in homogeneous CMPs.
However, as explained in Section 2.1, the problem becomes more complicated due to
the heterogeneity of cores. Since GPU cores are capable of running more concurrent
threads with SIMD executions, they will inject many more packets than CPUs. Since
CPU and GPU packets have to compete with shared resources, hotspots will appear
in shared caches and memory controllers. As a result, bandwidth-demanding GPGPU
applications will interfere more with CPU applications than with homogeneous CMP
workloads. Figure 2 shows the slowdown of CPU applications when they are running
with a GPGPU application.1

In this figure, we run all combinations of one CPU and one GPGPU application in
Table IV (i.e., 14 CPUs × 13 GPGPUs). Then, we measure the average and maximum
slowdown by GPGPU applications for low and high CPU groups in Table IV.2 We can
observe that a significant performance degradation exists due to the interference by the
GPGPU application, especially in more network-intensive benchmarks (high group).

1In Sections 3 and 4, we show data without prior description of the methodology. We use the same configu-
ration for all data, but workloads may vary. The detailed methodology is given in Section 5.
2We measure the speedup by comparing the performance of a CPU application when it is running alone and
with a GPGPU application.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 48, Pub. date: October 2013.



Adaptive Virtual Channel Partitioning for Network-on-Chip in Heterogeneous Architectures 48:5

Fig. 2. Slowdown (%) of CPU applications (running alone vs. running with a GPGPU application).

Fig. 3. Latency distribution of packets (x-axis: workloads).

3.2. Importance of NoC

All shared resources (last-level cache, interconnection network, memory controller and
DRAM memory) are important and can be a source of inter-application interference.
These resources are closely related to each other. For example, shared cache affects
network pattern and the number of DRAM accesses. Off-chip DRAM accesses consume
a significant amount of time, and different DRAM scheduling policies will affect cache
hit ratio and network pattern. Finally, how the on-chip network is coordinated will
change cache and DRAM access sequences. In this article, we consider only the inter-
connection network in heterogeneous systems to solve inter-application interference
since it plays a very significant role in the system by connecting all components and
governing access sequences in caches and DRAM controllers. Other than private cache
accesses, all communications are made through the NoC, so memory traffic spends a
significant amount of time in the NoC.

Figure 3 shows the latency distribution of packets of W-HH and W-LH workloads in
Table V. We estimate latencies in the following categories.

—CACHE: cycles to access the LLC including delays in a queue
—DRAM: cycles in DRAM controllers to access off-chip DRAM
—NOC QUEUE: queuing delay in the injection buffer
—NOC TRIP: traverse time to reach a destination after injection into the network from

the injection buffer

Although the DRAM waiting time accounts for a significant amount of time in some
workloads, the NoC usually consumes most of the time, in particular due to queuing
delays in shared routers (LLCs and memory controllers). We can expect that the time
spent on the network will scale with a higher number of cores because of increased hop
counts and traffic, so the importance of the NoC remains the same in the future.

3.3. Effectiveness of Previous Mechanisms in Heterogeneous Architectures

Many researchers studied various aspects of NoC, which is described in Section 7.1.
However, there are few reasons why previous proposals may be less effective in
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Fig. 4. Packet arbitration in VCP

CPU-GPU heterogeneous architectures compared to homogeneous systems due to GPU
cores. First, most mechanisms consider only arbitrations of packets in a router. This
is natural in homogeneous systems because we can expect that a similar number of
packets from each application exists in the injection queues. However, due to bursty
injections by GPUs, the occupancy of injection queues in shared resources is likely to be
skewed in favor of GPU packets. Therefore, the effectiveness of previous mechanisms
will be limited.

Previous mechanisms can be improved by having separate injection queues for a CPU
and GPU or an out-of-order packet scheduler, but this will increase schedule complexity.
The scheduler now needs to decide which queue (separate queues) or packet (out-of-
order scheduler) to schedule. The decision made by the scheduler should be incorporated
with arbitration decisions.

However, even if the previous mechanisms have separate injection queues, QoS for
NoC needs to consider different characteristics of CPU and GPU cores. Since GPU cores
can execute more concurrent threads, they have higher thread-level parallelism (TLP)
and their ability to tolerate latency and bandwidth is different compared to CPU cores.
As a result, the different nature of cores makes it difficult to use previous mechanisms.

Therefore, QoS mechanisms for heterogeneous architectures need to have separate
queues/out-of-order packet schedulers and to take into consideration the nature of GPU
cores to be more effective.

4. FEEDBACK-DIRECTED BANDWIDTH PARTITIONING

In this section, we describe the details of our proposed mechanism: a feedback-
directed partitioning-based bandwidth control (VCP) for the NoC in heterogeneous
architectures.

4.1. Virtual Channel Partitioning

To orchestrate bandwidth more effectively in heterogeneous systems, we propose a
virtual channel partitioning (VCP) mechanism. VCP dedicates a number of VCs for
CPU and GPU cores, similar to cache partitioning mechanisms. By splitting VCs,
VCP naturally arbitrates packets that pass through the router (i.e., an intermediate
node, not a destination). Since VCP forces GPU packets to occupy only a part of VCs,
CPU packets can occupy a VC upon arrival. Therefore, CPU packets are prioritized as
compared to unpartitioned VCs. Figure 4 shows the simplified VC arbitration. The VC
arbiter is able to identify the type of available VC and tries to select a packet with the
same type from input VCs.

To feed CPU and GPU packets based on the corresponding VC availability, VCP
requires separate injection queues for CPU and GPU packets in the network interface.
Even though dedicated VCs exist for CPU packets by VCP, until a CPU packet arrives
at the head of the injection queue, none of the CPU packets can be injected into the
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Fig. 5. Packet injection from the network interface.

NoC under the FCFS scheduling. Under the VCP, a packet can be sent to a router if an
available CPU VC exists. To reduce the overhead of having two separate queues, VCP
uses dynamically allocated multi-queue (DAMQ) buffers [Tamir and Frazier 1992].
DAMQ buffers can maintain separate virtual linked lists for each type of packet with
very low overhead, so that the header packet of each type can easily be selected.
Therefore, the injection scheduler needs to check only the availability of each VC type
and send the corresponding type of VC from its queue; thus the scheduler is as simple
as the baseline FCFS policy. Figure 5 shows the injection queue and the scheduler
of the network interface. DAMQ enables a physically shared, but virtually separate,
queue for CPU and GPU packets. The packet scheduler is simple FCFS, but it needs
to check the availability of each type of VC, thereby sending a corresponding type of
packet.

In this way, VCP can effectively arbitrate packets based on the partitioning configu-
ration, while a more balanced number of packets are provided to the network from the
injection queue. Moreover, VCP manages VCs in a very coarse-grain (CPU or GPU parti-
tion) manner, which makes the hardware very simple regardless of the number of cores.

4.1.1. Where Should VCP Be Applied? Virtual channel partitioning does not have to apply
to routers that have only CPU or GPU packets since VCP aims to coordinate routers
where CPU and GPU packets compete. However, in this case, we have to design routers
with/without VCP, which may increase design cost. An alternative is for all routers to
have enabled VCP by default, but VCP can be disabled by monitoring the number of
CPU and GPU packets in a router.

4.2. VCP with Different Mixture of Workloads—Need For Adaptability

VCP can have N different partitioning configurations, where N is the number of VCs
per port in a router. For example, if a router has six VCs per port, six partitioning
configurations are possible: no-partitioning, 1:5 (1 CPU VC and 5 GPU VCs), 2:4, 3:3,
4:2, and 5:1. Since 0:6 or 6:0 configurations will only accept one type of packet, we
exclude these configurations. Although VCP can effectively partition on-chip network
bandwidth, the exact behavior will be affected by the partitioning configuration as well
as by the mixture of workloads running on the heterogeneous system. For example,
when CPU applications are running with non-network-intensive GPGPU applications,
CPUs will not experience severe interference. Without partitioning, CPUs utilize more
network bandwidth, but partitioning will decrease the bandwidth and degrade the
performance of CPU applications. Therefore, partitioning should not be used in this
case. On the other hand, with network-intensive GPGPU applications, partitioning
must be applied to prevent interference. However, the ideal configuration (for example,
2:2 vs. 1:3 with 4 VCs) can vary for different workloads. To be effective with this type
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Table I. The Length of Each Period in VCP

Length of initial period 500K cycles
Length of each training period 200K cycles
Length of main period 4M cycles

of workload, the performance trade-off between CPU and GPGPU applications should
be carefully balanced. Also, the behavior will be affected by the run-time phase as well.
Therefore, VCP needs to identify the ideal configuration and adapt run-time behavior.

4.3. Feedback-Directed VCP Using Sampling

To estimate the ideal partitioning configuration on heterogeneous workloads, we use
a sampling technique for VCP, a feedback-directed VCP (F-VCP), as opposed to static
VCP (S-VCP). We sample different VC partitioning configurations across periods and
compare the performance of different configurations. F-VCP has the following sampling
periods.

—Initial warm-up. To stabilize performance metrics, we idle and disable VCP during
this period.

—Training period. To see the performance effect of each configuration, we maintain a
configuration for a period. The training period consists of N sub-periods, each with
a different configuration. For example, T1 uses the baseline unpartitioned configu-
ration. T2 can be a 1CPU-3GPU partitioning configuration. Once a period is over,
we collect the number of retired instructions from 1) all CPU applications and 2) a
GPGPU application and calculate the speedup over the unpartitioned baseline (T1)
as in Equation (1).

—Main period. Once the training period is over, if the speedups of all configurations
are less than 1, which means partitioning hurts performance, partitioning will be
disabled for the main period. Otherwise, we choose the best performing configuration
and apply it for the main period. Once a main period is over, T1 of the training period
will begin.

speedupi = geomean
(
speedupi

C PU , speedupi
GPU

)
(1)

speedupi
C PU = #inst retiredi

ALL C PU

#inst retiredbase(nopartition)
ALL C PU

(2)

speedupi
GPU = #inst retiredi

GPU

#inst retiredbase(nopartition).
GPU

. (3)

We set period lengths as in Table I from empirical data. With four VCs in the baseline,
we test three partitioning configurations (unpartitioned, 1:3, and 2:2), so the training
period resumes every 4.6 M cycles.

4.3.1. Central Decision Logic. To collect performance metrics from cores, VCP requires
a central decision logic (CDL), which is located at the central node of the mesh. We use
a similar approach in previous work [Das et al. 2009, 2010]. When a training period is
over, CDL broadcasts to all cores a message that includes the configuration for the next
period. Cores maintain the previous policy until they receive the message from CDL.
Once they receive the message, they change the policy and send a performance metric
during the last period to CDL. Once CDL collects messages from all cores, it will store
the results. After all training periods are over, CDL decides the best configuration based
on Equation (1) and broadcasts the decision to all routers. These processes may take
up to a few hundred cycles. Since the length of periods is much longer, the overhead is
not significant.
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Fig. 6. Phases in a heterogeneous workload (Sum: sum of CPU retired instructions).

4.3.2. Why Sampling Works. This sampling mechanism can be viable since both CPU and
GPGPU applications have shown a similar periodic progress in terms of the number of
retired instructions. This is because 1) the GPGPU application is running in a single-
program multiple-data (SPMD) manner. Although each thread has a different behavior
at a time, this phase behavior becomes blurred by the other hundreds of concurrently
running threads and 2) each CPU application has its own phase behavior. However,
if we treat all CPU applications as a whole, the phase behavior of each application
becomes unnoticeable as well. Figure 6 shows a phase example of a heterogeneous
workload.

The GPGPU application (GPU line) shows similar progress across the entire du-
ration. Although CPU applications show some fluctuations, the sum of all CPU ap-
plications (Sum line) maintains a similar progress for a sufficient time, so that our
sampling mechanism can successfully differentiate the effect of different partitioning
configurations.

4.3.3. Drawbacks and Improvements of Sampling. Sampling may have the following weak-
nesses: 1) effect of length of training period and 2) running non-optimal configurations
during training periods.

First, for each training period, our F-VCP requires the collection of performance
information as well as network injection information from cores. If the training period
is too short, the overhead of communicating information will be too high. Also, we
cannot acquire precise performance information due to a performance variation during
a short duration. On the other hand, if the period is too long, we lose opportunities
for improving performance of the system since F-VCP cannot adapt well to runtime
behavior changes. To find the optimal period length, we have to identify the phase
behavior and adjust the period length accordingly.

Second, during the training period, F-VCP will use N-1 non-optimal configurations,
where N is the total number of configurations. However, N is very small in F-VCP
since on-chip routers usually have very limited buffer space (only 4 to 6 VCs). Even
if many VCs exist, since we observe that the overall system performance is linearly
increasing, decreasing, or has its peak in the middle across consecutive configurations,
we can employ existing on-line training techniques to reduce the overhead of having
many non-optimal configurations. Moreover, we can linearly lengthen the main period
if the same configuration is chosen consecutively after the training periods. If two
consecutive decisions are different, then we reset the length of the main period to the
original length.

In order to reduce the overhead of sampling, we can also consider on-demand sam-
pling. As explained in Section 4.3.2, the performance of the system may show similar
progress across periods. Once we find an optimal partitioning configuration through
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the sampling periods, we can maintain this policy until the performance of the system
changes (improves or degrades). Performance changes are due to the run-time phase
change and indicate that the current configuration might not be optimal. However,
this approach also has a drawback since it may cause a shorter main period and more
communications when frequent phase changes exist.

4.4. Hardware Changes and Overhead

Our VCP requires the following hardware changes.

—Router arbiters should store VC partitioning configuration, which requires only a few
bits, and be able to check the type of packets (CPU and GPU). Also, an arbitration
algorithm should change such that dedicated VCs enforce that only the packet with
the same type can acquire them. The arbiter with these changes is less complex than
that of previous mechanisms since it only needs to match the type of packet with a
VC.

—We have discussed the need for DAMQ [Tamir and Frazier 1992] in Section 4.1. The
overhead of DAMQ is known to be insignificant.

—We have discussed the central decision logic in Section 4.3.1.

As a result, our VCP does not require significant changes to the baseline routers and
the overhead is negligible.

4.5. Extension of VCP

VCP can be combined with other NoC mechanisms. Since the goal of VCP is to avoid
significant interference by GPU cores, VCP only differentiates CPU or GPU packets.
If we want to further differentiate individual applications, other mechanisms can be
applied on top of VCP. For example, Aergia [Das et al. 2010] can set a different priority
for each packet. Within the same VC partition (CPU or GPU), the arbiter can schedule
packets based on their priority. We evaluate this VCP extension in Section 6.4.

VCP can also coordinate with cache management schemes, such as TAP [Lee and
Kim 2012], which tries to find the best cache partitioning configuration between the
CPU and GPU in heterogeneous architectures. Our VCP and TAP aim to solve a similar
problem. Also, caches and NoCs are not independent and affect each other significantly.
Therefore, combining VCP and TAP will yield even better results. However, managing
one will affect the other, so combining two and studying their interactions are not
trivial and is beyond the scope of our article.

4.6. Discussions

In this section, we discuss possible issues with VCP.

—Deadlock will not occur in VCP since CPU and GPU packets will occupy at least one
VC and we use the oldest-first policy between the same type of packets.

—If applications always show unpredictable phase changes, sampling may misidentify
the best performing configuration. Although we detect some workloads with phase
changes, our observation is that if partitioning has a significant impact, it can over-
come errors. Thus, the negative effect of dramatic phase changes is not as severe.

—No problem will occur during the transition period because the VC arbiter defines
the allowed type and always searches all input VCs and matches the type.

—Although we consider only two types of heterogeneous cores (CPU and GPU) in the
article, more complex heterogeneous systems exist. For example, most SoC (system-
on-chip) architectures, including smartphones and tablets, have CPUs, GPUs, DSPs,
and multiple modems, and all these components share the same system resources.
Future multi- and many-core systems may also have several different types of
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Table II. Processor Configuration

CPU

4 cores, 3.5GHz, 4-wide, out-of-order (OOO)
gshare branch predictor
8-way, 32KB L1 D/I cache, 2-cycle
8-way 256KB L2 cache, 8-cycle

GPU
6 cores, 1.5GHz, in-order, 2-way 16 SIMD width
8-way, 32KB L1 D (2 cycle), 4-way 4KB L1 I (1 cycle)
16KB s/w managed cache

L3 Cache 4 tiles (each tile: 32-way, 2MB), 64B line, LRU
Memory DDR3-1333, 2 MCs (each 8 banks, 2 channels)
Controller 41.6GB/s BW, 2KB row buffer, FR-FCFS scheduler

Table III. NoC Configuration

Frequency 1 GHz
Topology 4 × 4 2D Mesh
Pipeline 4-stage (IB, RC, VCA, SA/ST)
# VCs 4 per port, each VC can hold 5 flits

* a packet can have at most 5 flits
# ports 5 per router
Link 128 bits (16 B) with 1-cycle latency
Routing X-Y
Flow control credit-based
Placement Base in Figure 8

accelerators. In this case, we may need to add more VC types other than CPU and
GPU VCs. However, considering the limited number of VCs, we may need to reduce
the number of different VC types. We can achieve this by 1) forcing different types of
processors to use the same type of VC or 2) letting some processors utilize any type
of VCs. This decision should be made by identifying the characteristics of processors
and applications running on them, but we do not discuss this further since this is
beyond the scope of our article.

—Packets that carry performance metric information (from cores) and decision infor-
mation (from CDL) are treated as special packets and they can utilize any VC type.

5. EVALUATION METHODOLOGY

5.1. Simulator

We use MacSim [HPArch Research Group 2011], a trace-driven and cycle-level hetero-
geneous architecture simulator, for evaluations. For all evaluations, we repeat early
terminated applications until all applications have finished at least once. This is to
model the resource contention uniformly across the duration of simulation, which is
similar to the work in [Qureshi and Patt 2006; Xie and Loh 2009; Jaleel et al. 2010; Lee
and Kim 2012]. Table II shows the processor configuration. To model a next-generation
heterogeneous architecture, we model our baseline CPU similarly to Intel’s Sandy
Bridge [Intel Sandy Bridge], with high-end GPU cores that are similar to the SM
(streaming multiprocessor) of NVIDIA Fermi [NVIDIA Fermi].

Table III shows the NoC configuration. Although we use a conservative five-stage
pipeline model, we include the VCP result with a three-stage pipeline router model
in Section 6.5. Also, the routers do not use any pipeline bypassing mechanisms,
which can reduce latencies by skipping some pipeline stages when switches/links are
idle. However, when operating in the regions where congestion dominates latency,
bypassing provides minimal benefit. As explained, queuing delay, not trip delay, is
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Fig. 7. Placement designs with the overlapped path.

Fig. 8. Alternative placement designs (shaded area shows routers that may have both CPU and GPU
packets).

dominant in our evaluated workloads, so the baseline router model performs similarly
to the bypassing router.

5.2. Placement

In this section, we discuss the placement of components in the heterogeneous archi-
tecture. Several different methods to place CPU/GPU cores, LLC tiles, and memory
controllers can exist. For example, Abts et al. [2009] discussed how to place memory
controllers in a homogeneous mesh network. However, the placement of cores and other
components is not discussed, to the best of our knowledge. In this article, identifying
the best placement for a heterogeneous architecture is beyond the scope of our study.
Instead, we discuss the basic placement ideas and reasoning for our designs.

First, placement must be carefully designed. For example, Figure 7 shows two designs
where paths to memory routers (LLCs and MCs) are overlapped from CPU and GPU
cores. The assumption here is that all communications between CPU and GPU cores
are made only through caches. In these examples, intermediate nodes may suffer from
much through traffic due to the overlapped path, which may lead to significant system
performance degradations.

Figure 8 shows alternative designs that do not have overlapped paths. In all three
alternatives, CPU and GPU cores have distinct routes to the memory routers while
the placement of LLC tiles and memory controllers varies. The shaded area shows all
routers that may have both CPU and GPU packets. Among these placements, we use
Baseline (Base) placement in Figure 8 and we evaluate other placements in Figures 7
and 8 in Section 6.8.

5.3. Benchmarks

We use SPEC 2006 CPU benchmarks and CUDA GPGPU benchmarks from Nvidia
CUDA SDK, Rodinia [Che et al. 2009], Parboil [The IMPACT Research Group, UIUC],
and ERCBench [Chang et al. 2010]. For the CPU workloads, Pinpoint [Patil et al. 2004]
was used to select a representative simulation region with the reference input set.
Most GPGPU applications run until completion. Table IV shows the CPU and GPGPU
benchmarks used for evaluations.
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Table IV.
Benchmark characteristics based on the network-intensity (PKC is
measured for an entire application. i.e. sum of core PKC).

High (PKC > 20) Low (PKC < 20)
Bench PKC Bench PKC

CPU

GemsFDTD 58 povray 1
wrf 63 gamess 2

bwaves 69 namd 3
cactusADM 73 sjeng 4

milc 74 gobmk 6
leslie3d 84 tonto 10

lbm 90 perlbench 12

High (PKC > 100) Low (PKC < 100)
Bench PKC Bench PKC

GPU

nearest-neighbor 166 Dxtc 0.4
stencil 241 VolumeRender 3.0

ScalarProd 253 cell 5.3
bfs 304 raytracing 5.9
cfd 331 AES 26

Reduction 417
BlackScholes 437
SobolQRNG 452

Table V. Heterogeneous Workloads

# High type CPU GPU type # Reference

W-LL no more than 1 Low 10 6.1 only
W-HL more than 2 Low 13

Entire Section 6W-LH no more than 1 High 13
W-HH more than 2 High 13

We categorize benchmarks into two groups (high and low network-intensive) based
on the packets per kilo cycles (PKC). We use this metric since PKC clearly shows the
network intensity of an application. To distinguish low and high groups, we use a PKC
of 20 and 100 for CPU and GPU applications, respectively.

Table V shows evaluated heterogeneous workloads. For all workloads, we run four
CPU applications on four CPU cores along with one GPGPU application on six GPU
cores. We categorize CPU workloads based on the number of high-type CPU applica-
tions (out of four). We choose each application pseudo-randomly.

5.4. Evaluation Metric
We use a speedup metric defined in Equation (4). First, we compute the speedup of
each application with a configuration over the baseline unpartitioned configuration
(Equation (6) for CPU and Equation (7) for GPGPU). Then, we calculate the average
speedup of all CPU applications (Equation (5)). Finally, we take the average of
Equation (5) and Equation (7).

speedup = geomean(speedupCPU, speedupGPU) (4)
speedupCPU = geomean(speedupi, where 0 ≤ i ≤ 3) (5)

speedupi = IPCi/IPCbaseline(nopartition)
i (6)

speedupGPU = IPCGPU /IPCbaseline(nopartition)
GPU (7)
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Fig. 9. Static VCP results.

Although we use a geometric speedup metric throughout the article, our mechanism
is not limited by a specific metric. Since our target heterogeneous architecture is an
emerging architecture, how to evaluate this architecture is debatable. Regardless,
our VCP can easily adapt to any desirable metrics by replacing Equation (1) and
Equation (4).

6. EVALUATION RESULTS

6.1. Static VCP Results

First, we show in Figure 9 the VCP results with static configurations (S-VCP) for
different workloads. This indicates how VCP affects performance (detailed results of
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Fig. 10. Feedback-directed VCP results.

10 workloads and the average of all configurations). No significant difference exists
across all configurations in W-LL workloads. Since CPU and GPGPU applications are
not network-limited, performance is hardly affected by different configurations. For
this reason, we exclude W-LL workloads in further evaluations.

For W-HL workloads, since CPU applications can utilize network bandwidth well
without partitioning, VCP rather degrades the performance of CPU applications when
only a small number of VCs are dedicated for them (1:3 configuration),3 while the
performance of the GPGPU application is not improved at all. As a result, the overall
performance is degraded. On average, 1:3, 2:2, and 3:1 static partitioning show 15%, 2%,
and 1% degradations, respectively. On the other hand, for W-LH workloads, although
CPU applications are not network-limited, they experience moderate interference. As a
result, dedicating one VC to CPU applications will be sufficient, but too many VCs will
degrade the performance of GPGPUs severely. The 1:3 configuration shows an 8.5%
improvement, while the 2:2 and 3:1 configurations show 9% and 30% degradations,
respectively.

W-HH workloads show very complex behavior. The 2:2 and 1:3 configurations mostly
show a benefit, but the always-winning configuration does not exist. Based on the
workloads, the performance variance of the two configurations is significant. Dedicat-
ing more VCs for CPU applications will improve performance significantly, but provid-
ing more ways diminishes return. Meanwhile, the GPGPU application suffers severe
degradation. We have to balance VC partitioning based on the workloads. Overall, 1:3
and 2:2 improve 25%, while 3:1 degrades 13%. The 2:2 configuration shows much bet-
ter CPU performance, but the performance of the GPGPU application is significantly
degraded.

6.2. Feedback-Directed VCP Results

Figure 10 shows the feedback-directed VCP (F-VCP) result along with static configu-
ration results. As we give more VCs to CPU applications (1:3 to 3:1), the performance
benefits of CPU applications diminishes, while performance degradation of the GPGPU
application becomes more significant. F-VCP can identify the best static configuration
with different workloads, so it can improve CPU applications significantly (46% im-
provement) while hurting GPGPU very little (9% degradation). F-VCP improves system
performance by 15% on average, while the best static configuration (1:3) shows a 9%
improvement.

We show the s-curve of F-VCP in Figure 11 for detailed analysis.4 F-VCP mostly
shows better results than the best of all static configurations. Moreover, across 39

3We use the #CPU-VC:#GPU-VC notation for static configurations. For example, 1:3 indicates one CPU VC
and three GPU VCs.
4We sort workloads by the performance of F-VCP in ascending order.
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Fig. 11. F-VCP s-curve (workloads are sorted by the performance of F-VCP in ascending order).

Fig. 12. Network latency changes with F-VCP.

Fig. 13. F-VCP policy distribution (UN: unpartitioned).

workloads, the maximum performance degradation over the baseline is only 2.5% and
only two workloads result in more than a 1% degradation.

Also, to show how F-VCP works, we show the average packet latency changes in
Figure 12. We can observe that the traverse time is almost the same, but the queuing
delay of CPU packets decreases significantly, while that of GPU packets increases.

Figure 13 shows a policy distribution histogram for each workload. Although F-VCP
constantly chooses one configuration in some workloads, many workloads show that
F-VCP adapts well to application phase changes if they exist.

6.3. Comparison with Different Packet Scheduling for Injection Buffer

As mentioned, an unbalanced number of packets between the CPU and GPU exists in
the injection buffer when CPU and GPU applications share the network. In order to
solve this imbalance, we can consider effective packet scheduling, which can be made
through out-of-order scheduling. In the in-order injection buffer, a packet should wait
until all previous packets are serviced. On the other hand, out-of-order scheduling can
prioritize one packet over others. Thus, in this section, we evaluate several packet
scheduling policies applied to the injection buffer. In addition, we also evaluate the
DAMQ-based injection queue that has separate virtual queues for CPU and GPU
packets, and F-VCP.
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Fig. 14. Different injection buffer scheduling results.

We evaluate several packet scheduling policies applied to the injection buffer without
VC partitioning. Also, we apply ATLAS [Kim et al. 2010a], one of the state-of-the-
art memory schedulers, to the packet scheduler. Since ATLAS prioritizes applications
that attained the least service during previous periods, ATLAS fits well to prioritize
CPU packets that usually attain fewer services than GPU packets in heterogeneous
workloads. We summarize all evaluated polices as follows.

—Baseline is first-come first-serve policy.
—CPU-first. CPU packets always have higher priority than GPU packets (batching is

used for preventing starvation).
—GPU-first. GPU packets always have higher priority.
—ATLAS-A. ATLAS with application granularity.
—ATLAS-C. Similar to ATLAS-A, but we distinguish only two groups: GPGPU or CPU

applications.
—MPI. Based on the private cache miss-per-instruction (MPI), we prioritize applica-

tions that have lower MPI.
—DAMQ. CPU and GPU packets have virtually separate queues using DAMQ.

Scheduling between queues is round-robin.

Figure 14 shows the results. When out-of-order scheduling is applied to the shared
injection buffer (other than DAMQ and F-VCP), CPU packets can be prioritized at a
moment, but packet occupancy is still very unbalanced with the shared buffer. This
limits the benefit of injection buffer scheduling. All evaluated policies show negligible
benefits, but only the CPU-first policy shows a 2% improvement. On the other hand, by
having separate queues with round-robin scheduling between them, we can mitigate
the occupancy imbalance problem. As a result, DAMQ can improve performance by 8%.
However, DAMQ cannot outperform F-VCP since the effect of coordination in the injection
buffer is limited in the virtual channels of routers.

From the observations made in this section, we can draw the conclusion that separate
queues are favorable to better performance in heterogeneous architectures, but the VC
arbitration should be considered at the same time to be more effective, as in VCP.

6.4. Comparison with VC Arbitration Policies

In this section, we compare F-VCP with previous VC arbitration mechanisms,
application-aware prioritization (denoted as STC) [Das et al. 2009], and Aergia [Das
et al. 2010] along with two static policies, CPU-first and GPU-first.

STC computes the network demand of applications at intervals by looking at a num-
ber of metrics such as private cache misses per instruction, average outstanding L1
misses in MSHRs, and average stall cycles per packet. This produces a ranking of
applications, and all packets of one application are prioritized over another, resulting
in a coarse granularity of control. To prevent application starvation, a batching frame-
work is implemented that prioritizes all packets of one time quantum over another,
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Fig. 15. Evaluation of virtual channel arbitration policies.

regardless of source application. Aergia predicts the available latency (slack) of any
packet by the number of outstanding L1 misses and prioritizes low-slack (critical)
packets over packets with higher slack when they are within the same batching inter-
val. Static policies always give a higher priority to certain types of packets (either CPU
or GPU) and form batches to prevent the starvation problem. Moreover, we apply STC
and Aergia to the DAMQ-based injection buffer (DAMQ+S and DAMQ+A) and F-VCP
(F-VCP+S and F-VCP+A). Figure 15 shows the results.

As explained in Section 3.3, NoC mechanisms for heterogeneous architectures should
have separate injection queues for CPU and GPU packets. As a result, STC, Aergia, and
CPU-first policies without separate injection queues show around a 1% improvement on
average. In a few workloads, Aergia shows up to a 1.55 times speedup. These workloads
have relatively high CPU-to-GPU packet ratio, so Aergia also can be effective. However,
Aergia degrades the performance of almost half of the workloads (10% degradation at
most). This is because fine-grain prioritization prevents some CPU applications from
being prioritized, but Aergia mostly degrades GPGPU performance by not prioritizing
them.

When STC and Aergia are applied along with separate injection queues (DAMQ+S and
DAMQ+A), they can be more effective. Since separate injection queues provide a more
balanced number of packets between CPU and GPU applications, router arbiters see
a similar number of packets and are thereby effective. STC and Aergia provide 4% and
5% additional performance improvements on top of DAMQ.

On the other hand, our F-VCP successfully manages on-chip routers with almost no
degradation cases. Moreover, as discussed in Section 4.5, VCP can be extended using
previous VC arbitration mechanisms, such as STC and Aergia. We also evaluate these
extensions, which are denoted F-VCP+S and F-VCP+A for STC and Aergia, respectively.
Even though F-VCP already improves performance by 15%, STC and Aergia provide
additional improvements of 3% and 4% by arbitrating packets in finer granularity.

6.5. VCP Results with Three-Stage Pipeline Model

As described in Section 5.1, we use a conservative five-stage pipeline model in all eval-
uations so far. This may incur extra latencies in the network. However, as claimed,
a shorter-latency router model can improve performance, but it cannot entirely re-
solve the resource contention problem since the dominant delay occurs in the injection
queues. In order to confirm that VCP works well with a faster router design, we re-
evaluate the same set of experiments as in Section 6.4 with a three-stage pipeline
model; Figure 16 shows results.

Across 39 heterogeneous workloads, the three-stage pipeline model improves per-
formance by 3% over the five-stage pipeline router. Interestingly, the benefit of the
shorter-latency router model provides performance improvements for all configura-
tions by 2% to 3%. Moreover, VCP yields an additional 16% performance improvement
over the three-stage pipeline model. From this experiment, we can confirm that 1) the
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Fig. 16. Evaluation of three-stage pipeline router model (normalized to the router model with five-stage
pipeline).

Fig. 17. Adaptive XY/YX routing.

Fig. 18. Adaptive XY/YX routing results.

shorter-latency router model can improve the performance of the network as well as
the system, 2) the network congestion still exists even with a shorter-latency model,
and 3) VCP is still an effective solution.

6.6. XY/YX Adaptive Routing

In order to optimize the baseline network, we can consider adaptive routing as well.
For example, in our baseline placement (Base in Figure 8), although memory routers
(L3 and memory controllers) are shared, there are distinct routes from CPU and GPU
cores to memory routers. When we use static XY routing only (Figure 17, left), packets
must traverse within the shared memory routers. Instead, to reduce the contention in
the memory routers, we can use XY/YX adaptive routing (Figure 17, right). When a
core sends a request packet, it uses XY routing. When the packet is returned with data,
it now uses YX routing. As a result, we can reduce the traversal within the memory
routers.

Figure 18 shows the result of XY/YX adaptive routing along with VCP. As expected,
XY/YX routing significantly improves performance by 10%. This is because XY/YX
routing reduces the network congestion while improving the network utilization. We
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Fig. 19. F-VCP with different number of VCs.

Fig. 20. F-VCP with different length of training period (base: 200K).

can also observe that VCP is still effective and gives an additional 13% performance
improvements by mitigating network contentions to the memory routers.5

6.7. Sensitivity of VCP

In this section, we evaluate F-VCP with different configurations. Figure 19 shows
the F-VCP results with a different number of VCs.6 In each bar, we compare F-VCP
with the baseline router with the same number of VCs (i.e., VC6-F-VCP with VC6).
F-VCP performs well with more VCs, but the benefit decreases in VC8 and we expect
diminishing improvement with more VCs. Generally, a higher number of VCs perform
better by reducing the congestion, so the benefit of F-VCP can also decrease. However,
the buffer space is limited in on-chip routers, which places a practical limit on the
number of VCs. As a result, we expect that F-VCP will work well within this limitation.

We briefly discussed in Section 4.3 how different durations of training periods will
affect F-VCP. We perform experiments with different durations of training periods.
Figure 20 shows the results.7 Generally, different durations of training periods would
not matter on average, but the 800K configuration shows significant variances (from
0.53 to 1.28 speedup). A lengthy period can help reduce the overhead of sampling, but
it may fail to adapt run-time behavior.

6.8. Different Placement Results

As discussed in Section 5.2, we evaluate different placements in this section. Figure 21
shows the results of placements in Figures 7 and 8. All results are normalized to the
baseline (Base) placement in Figure 8.

Even though the designs in Figure 7 have the overlapped paths to the memory
routers between CPU and GPU cores, CPU-Friendly and GPU-Friendly designs show
3% and 4% improvements over the baseline, respectively. The trip latency can increase,
but dominant delays occur from the injection buffer. By having a shorter distance from

5Please note that this optimization is specific to our baseline placement and may not be effective on other
configurations.
6We fix other configurations the same. Each VC has four buffer entries, so the number of total buffer entries
is 4 * # VCs.
7We fix the length of the main period to be 20 times that of the training period.
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Fig. 21. Different placement evaluations.

memory to CPU (CPU-Friendly) or GPU (GPU-Friendly), queuing delays decrease.
On the other hand, the design that distributes memory controllers shows the overall
best performance (7%). As discussed in Abts et al. [2009], distributing congestion near
memory controllers is a key reason for the improvements. With all different placement
designs, VCP constantly shows higher than 11% improvement across all alternative
designs. From this experiment, we conclude that different placements affect perfor-
mance and VCP can control network bandwidth effectively when network congestion
exists regardless of the placement.

6.9. Discussions

We discuss F-VCP with other possible configurations that we do not show in this
section.

(1) Although we do not evaluate larger meshes with more cores, we expect that F-VCP
will still be effective. As the size of the network increases, queuing delays can be
reduced due to more diverse paths, but it can increase overall traffic from more
cores and the average distance from source to destination will be increased. Also,
we believe that the network contention problem will still exist even with a larger
network, as more advanced applications that consume larger data will appear. As
long as network congestion exists, F-VCP can successfully arbitrate between CPU
and GPU packets.

(2) We have treated CPU and GPGPU applications with equal weight so far. When
a user or a system wants to have a different weight for CPUs and GPUs, F-VCP
requires a very minor change. It only requires changing the feedback metric, which
is defined in Equation (1). Changes in the rest of the system are not necessary.

7. RELATED WORK

7.1. NoC Research

There has been an extensive amount of work in the past [Duato et al. 1997; Dally and
Towles 2003] on non-on-chip networks. However, the time scales and the amount of
resources available in non-on-chip network environments are much higher than what is
permissible/acceptable in an NoC. Therefore, we limit our discussion only to NoC work.

A survey paper [Bjerregaard and Mahadevan 2006] and a keynote paper [Marculescu
et al. 2009] laid out practical issues of implementing NoC, their solutions in the lit-
erature, and open problems in detail. In this section, we reiterate the work on QoS
mechanisms among others and add recent work.

Previous QoS mechanisms can be categorized based on two aspects. First, based on
whether a mechanism provides guaranteed services, we can categorize mechanisms
into best-effort service (BE) and guaranteed service mechanisms (GS). While hard
GS [Liang et al. 2000; Taylor et al. 2002; Millberg et al. 2004; Bjerregaard and Sparsø
2005; Goossens et al. 2005a; Weber et al. 2005; Hansson et al. 2009; Stefan et al.
2012] is favorable since it provides predictable outcomes within the tight requirement
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such as real-time systems, BE [Goossens et al. 2002; Rijpkema et al. 2003] can better
utilize system resources, thereby improving the system throughput. As a result, many
researchers considered hybrid NoC, which combines GS and BE [Bolotin et al. 2004;
Beigné et al. 2005; Dobkin et al. 2005].

Second, based on how QoS is provided, we can categorize previous mechanisms
into (1) resource preallocation, (2) prioritization (arbitration), and (3) injection control
(source throttling). In resource preallocation (or reservation) mechanisms [Liang et al.
2004; Millberg et al. 2004; Bjerregaard and Sparsø 2005; Goossens et al. 2005b; Leung
and Tsui 2006], packets are assigned in different traffic classes based on the impor-
tance, and NoC resources, including virtual circuits, channels, and buffer space, are
reserved for each class.

Priority-based mechanisms [Bolotin et al. 2004; Beigné et al. 2005; Harmanci et al.
2005; Marescaux and Corporaal 2007; Das et al. 2009, 2010] are similar to preallocation
mechanisms since they determine a different priority for each application or packet (i.e.,
different class in preallocation) by estimating criticality from core/application-specific
behaviors, including cache misses per instruction and number of miss-predecessors.
However, they do not dedicate resources for a certain type and instead rely on arbitra-
tions in various places in the network. In Das et al. [2009, 2010], priority is calculated
in the centralized logic and each router has the same priority information for all ap-
plications. Arbiters of a router schedule packets based on the priority. To prevent the
starvation problem, multiple packets often form a batch so that packets in old batches
have higher priority than packets in newer batches.

On the other hand, injection (or congestion) control mechanisms [Nilsson et al. 2003;
Duato et al. 2005; van den Brand et al. 2007; Ogras and Marculescu 2008] try to
balance the injections from processing nodes or applications by injecting packets in the
predefined rate or limiting packet injections. Globally synchronized frame (GSF) allows
a limited number of packet injections for each source in one epoch (or frame) although
GSF maintains future frames for handling bursty injections [Lee et al. 2008]. Each
VC is now mapped to a different frame, and router arbiters prioritize packets in older
frames. Therefore, GSF can guarantee minimum bandwidth as well as network delay.
Grot et al. [2009] proposed a preemptive virtual clock (PVC), which uses a virtual clock
to track each flow’s bandwidth consumption while using frames to reduce the history
effect of the virtual clock. PVC also uses the preemption of virtual channels for higher
priority packets if lower priority packets occupy the VC so that the priority inversion
problem does not occur. A recent proposal by Chang et al. [2012] controls injections
from each application based on the MPKI (misses per kilo instructions) since MPKI
can identify the memory intensity of the application.

Based on the classification, VCP is a basically BS mechanism. Also, VCP uses both
resource preallocation and injection control categories since VCs are preallocated for
CPU and GPU cores, and based on how we partition virtual channels, injection can be
automatically controlled. As explained in Section 3.3, VCP has been improved in two
aspects compared to previous mechanisms. First, as opposed to previous mechanisms
that only considered run-time traffic analysis or targeted homogeneous processors, our
work is intended for heterogeneous workloads on heterogeneous processors. To consider
the different nature of CPU and GPU cores, in particular the effect of thread-level
parallelism, VCP directly collects performance from cores instead of relying on indirect
metrics. Second, VCP claims the need for separate injection queues for CPUs and GPUs.
Since GPU packets mostly occupy the queue when a shared queue is used, the effect
of any scheduling or arbitration is limited. In addition to these two improvements,
one of the strengths of VCP is its extensibility with other mechanisms. As shown in
Section 6.4, some previous mechanisms are orthogonal to VCP and can be combined
with VCP to be more effective.
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7.2. Virtual Channel Management Mechanism

In addition to NoC research in the previous section, we also discuss some of the adap-
tive virtual channel management mechanisms. Virtual channel size and organization
can significantly affect system performance and power consumption [Varatkar and
Marculescu 2002]. As a result, researchers have tried to find an optimal VC configu-
ration in static or design time based on the characteristics of their target applications
and traffic patterns. Also, dynamic buffer management mechanisms are proposed. Choi
and Pinkston [2004] proposed dynamic VC allocation based on the traffic pattern us-
ing virtual channel DAMQs and DAMQs with recruit registers, which are improved
DAMQs [Tamir and Frazier 1992]. Nicopolous et al. [2006] proposed ViChaR. The
motivation of ViChaR is that the number of virtual channels and the depth of the
buffer (based on the size of packet) can significantly affect the performance based on
the traffic pattern. Thus, ViChaR optimizes the number of VCs and the depth of the
buffer based on the traffic load using a unified buffer. Lai et al. [2008] also tried a
similar dynamic VC allocation mechanism, but they considered congestion awareness.
Evripidou et al. [2012] proposed a VC virtualization mechanism using VC renaming to
support an arbitrarily large number of VCs. Trivinõ et al. [2012] also considered a VC
virtualization mechanism as well as an NoC resource partitioning mechanism.

7.3. Shared Resource Partitioning in the System

To avoid severe interference and guarantee the quality-of-service (QoS) in shared
resources, resource partitioning mechanisms have been widely studied by many re-
searchers.

Shared last-level cache (LLC). Cache partitioning mechanisms [Suh et al. 2002, 2004;
Kim et al. 2004; Qureshi and Patt 2006; Srikantaiah et al. 2009] have been most widely
studied among others. In these mechanisms, cache ways are logically partitioned to
each application, so that inter-application interference can be mitigated. Also, dynamic
insertion policies [Qureshi et al. 2007; Jaleel et al. 2008, 2010] improve performance by
providing adaptive cache insertions. Nontemporal or thrashing patterns are identified
and then isolated by inserting cache blocks into a non-MRU position.

Memory controller. How the off-chip DRAM requests in memory controllers are man-
aged significantly affects performance as well as fairness, so memory controllers are
widely studied by many researchers. Most studies focus on DRAM request scheduling
policies applied to the request buffer [Nesbit et al. 2006; Mutlu and Moscibroda 2007,
2008; Kim et al. 2010a, 2010b]. These mechanisms prioritize requests based on the be-
havior of applications, so that DRAM bandwidth is effectively shared by applications.
On the other hand, Muralidhara et al. [2011] managed DRAM bandwidth by parti-
tioning DRAM channels. In the proposed mechanism, DRAM requests from different
applications are mapped to different DRAM channels.

7.4. Heterogeneous Architecture Research

The previous studies on shared resource partitioning in the system is discussed in Sec-
tion 7.3. Here, we only discuss studies that specifically target CPU-GPU heterogeneous
architectures. Lee and Kim [2012] studied the cache-sharing behaviors in heteroge-
neous workloads and proposed TLP-aware cache management schemes, which sample
cores with different cache policies to see the performance effects by caches.

Yang et al. [2012] proposed a preexecution mechanism of GPGPU applications on
CPU cores. The proposed mechanism automatically extracts memory operations of
the GPGPU kernel and dispatches these operations on the CPU when the kernel is
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launched. Preexecution from CPU cores brings data blocks of GPGPU kernels in the
shared cache, so most off-chip accesses from GPGPU applications are hit in the cache.

Jeong et al. [2012] considered quality-of-service (QoS) in a multi-processor system-
on-chip when off-chip bandwidth is shared between CPU and real-time constrained
graphics applications. The proposed mechanism adaptively prioritizes CPU and GPU
requests based on the progress made by graphics applications. Ausavarungnirun
et al. [2012] proposed the staged memory scheduler (SMS). Due to massive memory ac-
cesses by GPU cores, the visibility of the memory requests by the memory scheduler is
very limited. SMS attacks this problem with a multiple-stage memory scheduler. In the
first stage, requests from the same source are inserted into the same queue and form
a batch based on the row buffer locality. Then, a batch scheduler in the second stage
picks an application batch based on the application characteristics and requirements.
A scheduler in the final stage issues a ready DRAM command.

7.5. Heterogeneous Interconnection Network

We can consider a heterogeneous network to cope with the heterogeneity of cores, so
we discuss previous work on heterogeneous on-chip networks in this section.

Mishra et al. [2011] proposed HeteroNoC, which asymmetrically allocates resources
(buffers and links) to exploit non-uniform demand on a mesh topology. They used two
types of routers, small and large, and placed more powerful large routers in congested
areas. Grot et al. [2011] proposed Kilo-NOC, which isolates shared resources into QoS-
enabled regions to minimize the network complexity. While proving QoS for shared
resources, Kilo-NOC uses energy-efficient and cost-effective routers for the rest of
the network. Bakhoda et al. [2010] proposed a throughput-effective NoC for GPU
architectures. Due to many cores with a smaller number of memory controllers, a
many-to-few traffic pattern is dominant in GPUs. To optimize such traffic, they used a
half router, which cannot change the dimension of a packet, to reduce the complexity
of the network while increasing the injection bandwidth from the memory controllers
to provide burst data read.

7.6. NoC Research for GPU Architectures

In this section, we discuss NoC research proposed for GPU architectures. Yuan
et al. [2009] proposed a complexity-effective memory scheduler for GPU architectures.
NoC routers of the proposed mechanism reorder packets to increase row-buffer locality
in the memory controllers. As a result, a simple in-order memory scheduler can per-
form similarly to a much more complex out-of-order scheduler. Bakhoda et al. [2010]
proposed a throughput-effective NoC for GPU architectures. Due to many cores with
a smaller number of memory controllers, a many-to-few traffic pattern is dominant
in GPUs. To optimize such traffic, they used a half router, which cannot change the
dimension of a packet, to reduce the complexity of the network while increasing the
injection bandwidth from the memory controllers to provide burst data read.

8. CONCLUSION

How the NoC for heterogeneous architectures is handled has significant importance.
Due to the heterogeneity of CPU and GPU cores, more specifically much higher
network injections, CPU applications often suffer from severe interference. Previous
mechanisms proposed for homogeneous CMPs have limitations to solve the network
resource-sharing problem in this architecture. In this article, we propose feedback-
directed virtual channel partitioning (F-VCP). On-chip network bandwidth can be
controlled by the proposed VCP, which arbitrates packets that pass through the router
while providing a more balanced number of packets to the NoC using DAMQ-based
separate injection queues. Across 39 heterogeneous workloads, our VCP shows a 15%
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improvement compared to the unpartitioned router. We perform thorough evaluations
with many different configurations and VCP shows robustness. For future work, we
will develop a performance model with on-chip bandwidth partitioning to improve the
sampling-based technique in VCP.
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