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Abstract—Utilizing heterogeneous platforms for computation
has become a general trend making the portability issue
important. OpenCL (Open Computing Language) serves the
purpose by enabling portable execution on heterogeneous
architectures. However, unpredictable performance variation
on different platforms has become a burden for programmers
who write OpenCL programs. This is especially true for
conventional multicore CPUs, since the performance of general
OpenCL applications on CPUs lags behind the performance
expected by the programmer considering the conventional
parallel programming model. In this paper, we evaluate the
performance of OpenCL programs on out-of-order multicore
CPUs from the architectural perspective. We evaluate OpenCL
programs on various aspects, including scheduling overhead,
instruction-level parallelism, address space, data location, local-
ity, and vectorization, comparing OpenCL to conventional par-
allel programming models for CPUs. Our evaluation indicates
different performance characteristic of OpenCL programs and
also provides insight into the optimization metrics for better
performance on CPUs.

Keywords-OpenCL Performance on CPU; Scheduling Over-
head; ILP; Data Transfer; Locality; Vectorization

I. INTRODUCTION

The heterogeneous architecture has gained popularity

as can be seen from Intel’s Sandy Bridge, and AMD’s

Fusion[1], [2]. Much research shows the promise of the

heterogeneous architecture for high performance and energy

efficiency. However, how to utilize the heterogeneous ar-

chitecture considering performance and energy efficiency is

still a challenging problem. OpenCL is an open standard for

parallel programming on heterogeneous architectures, which

makes it possible to express parallelism in a portable way

so that applications written in OpenCL can run on different

architectures without code modification[3]. Currently, many

vendors have released their own OpenCL framework[4], [5].

Even though OpenCL provides portability on multiple

architectures, portability issues still remain in terms of per-

formance. Unpredictable performance variations on different

platforms have become a burden for programmers who write

OpenCL applications. The effective optimization technique

is different depending on the architecture where the ker-

nel is executed. In particular, since OpenCL shares many

similarities with CUDA, which was developed for NVIDIA

GPU architectures, many OpenCL applications are not well

optimized for modern multicore CPUs. The performance

of general OpenCL applications on CPUs lags behind the

performance expected by programmers considering conven-

tional parallel programming model.

The reasons we consider CPUs for OpenCL compute

devices are (1) CPUs can also be utilized to increase the

performance of OpenCL applications by using both CPUs

and GPUs (especially when a CPU is idle) and (2) because

a CPU has more vector units, the performance gap between

CPUs and GPUs has been decreased. For example, even

for the massively parallel kernels, sometimes CPUs can be

better than GPUs depending on input sizes.

Here, we evaluate the performance of OpenCL applica-

tions on multicore CPUs from the architectural perspective,

regarding how the application would utilize architecture

resources on CPUs. We thoroughly evaluate OpenCL appli-

cations on various aspects that could change the performance

of OpenCL applications. We revisit generic performance

metrics that have been lightly evaluated in previous works

especially for running OpenCL on CPUs. Using these met-

rics, we also verify the current limitation of OpenCL and the

possible improvement in terms of performance. In summary,

the contributions of this paper are the following:

1) We provide programmers with a guideline to un-

derstand the performance of OpenCL applications.

Programmers can verify whether the OpenCL kernel

fully utilizes the computing resources.

2) We discuss the effectiveness of OpenCL applications

on multicore CPUs and possible improvement.

The main objective of this paper is to provide a way

to understand OpenCL performance on CPUs. Even though

OpenCL can be executed on CPUs and GPUs, most previous

work has focused on Only GPU performance issues. We

believe that our work increases the understandability of

OpenCL on CPUs and helps programmers to utilize OpenCL

implementation for CPU execution with minimal tuning,

which reduces the programming overhead to implement a

separate CPU version. Some previous studies about OpenCL

on CPUs handle some aspects presented in this paper, but

they lack quantitative evaluations, making them hard to use

when programmers want to estimate the performance impact

of each aspect.

Section II describes the architectural aspects to understand

OpenCL performance on CPUs. Then, we evaluate OpenCL

applications regarding those aspects in section III. We review

related work in section IV, and conclude the paper.



II. BACKGROUNDS ON CRITERIA

In this section, we describe the backgrounds of several pa-

rameters that affect OpenCL application performance. They

include thread scheduling, instruction-level parallelism, data

transfer, data locality, and compiler auto vectorization. These

aspects have been emphasized in academia and industry to

improve application performance on CPUs. Even though

most of the architectural aspects described in this section

are well-understood fundamental concepts, most OpenCL

applications are not written considering these aspects.

A. Thread Scheduling

OpenCL programmer can explicitly set workgroup size,

or let the OpenCL implementation decide it. If NULL

is used for workgroup size when the host program calls

clEnqueueNDRangeKernel, the OpenCL implementa-

tion partitions global workitems into appropriate number of

workgroups.

Given a program, workgroup size determines the amount

of workload in a workgroup, and the number of workgroups

of a kernel. On GPUs, a workgroup or multiple groups

is/are executed on a streaming multiprocessor (SM), which

is equivalent to one physical core on the CPU. Similarly, a

workgroup is handled by a logical core of the CPU, even

though it depends on the implementation[6], [7]. Workload

size per workgroup that is too small makes the workgroup

scheduling overhead more significant in total execution

time on CPUs since the thread context switching overhead

becomes larger.

It is true that scheduling overhead is not a fundamental

problem with the OpenCL model. Better OpenCL implemen-

tation can have less overhead than other suboptimal imple-

mentations. There have been many proposals to reduce the

scheduling overhead [7], [8], [6]. For example, SnuCL [6]

overcomes the overhead of a high number of workitems by

serializing them to have less number of threads. However, it

is also true that multiple OpenCL implementations on CPUs

still have high scheduling overhead due to the complexity

of compiler analysis. Therefore, instead of using many

workitems, as is usually the case for OpenCL applications

on GPUs, we are better off assigning more work to each

workitem with fewer workitems. The results from our ex-

periments agree with the above inferences.

B. Instruction Level Parallelism (ILP)

One of the performance problems of OpenCL applications

on CPUs is that usually the kernel is written to utilize the

TLP not for ILP. Since the OpenCL programming model is

an SIMT model, it is common for an OpenCL application to

have a massive number of threads, and all instructions in the

kernel are usually dependent on previous instructions, so that

typically most OpenCL kernels have ILP one; only one

instruction can be dispatched to execute. On the contrary,

on conventional programming model such as OpenMP, inde-

pendent instructions exist between different loop iterations.

For maximum performance on CPUs, OpenCL kernel should

be written to have more independent instructions.

C. Memory Allocation, Data Transfer

OpenCL assumes a distributed memory system for its

target, a system where communication between host and

compute devices is performed explicitly by a system net-

work, such as PCI-Express. But, the assumption of discrete

memory systems is not true when we use CPUs as compute

devices for kernel execution. The host and the compute de-

vices share the same memory system resources such as last-

level cache, on-chip interconnection, memory controllers,

and DRAMs.

The drawback of disjoint memory address space is that it

requires explicit data transfer between the host and compute

devices for kernel execution. In common OpenCL applica-

tions, the data should be transferred back and forth in order

to be processed by the host or device[3], which becomes

unnecessary when we only use the host for computation.

OpenCL provides the programmer many types of mem-

ory object allocation flags when the programmer calls

clCreateBuffer, that could change the performance of

data transfer and kernel execution.

1) First, programmers can specify if the memory object

is a read-only memory object(CL_MEM_READ_ONLY)

or write-only(CL_MEM_WRITE_ONLY) when refer-

enced inside a kernel. If the programmer does not

specify it, the default option is to create a memory

object which can be read and written by the ker-

nel(CL_MEM_READ_WRITE).

2) The other option that programmers can specify is

where to allocate a memory object. When the pro-

grammer does not specify allocation location, the

memory object is allocated on the device memory.

OpenCL also supports the pinned memory. When the

host code creates memory objects using the CL_M

EM_ALLOC_HOST_PTR flag, the memory object is

allocated on the host-accessible memory that resides

on the host. Different from allocating the memory

object on the device memory, there is no need to

transfer the computational result back from the device

memory to the host memory.

OpenCL also provides different APIs for data transfer

between the host and compute devices. The host code can

enqueue commands to read data from a memory object

to the host memory(clEnqueueReadBuffer) or com-

mands to write data to memory object from the host mem-

ory(clEnqueueWriteBuffer). The programmer can

also map a memory object for reading or writing to have the

pointer of the mapped object(clEnqueueMapBuffer).



D. Affinity

Most conventional parallel programming model support

affinity, such as CPU_AFFINITY in OpenMP[9]. Unfortu-

nately, this feature is not supported in OpenCL. An OpenCL

workitem is a logical thread, which is not tightly coupled

with a physical thread even though most parallel program-

ming languages provide this feature. The reason for the lack

of this functionality is that the OpenCL design philosophy

emphasizes portability over efficiency.

We present the lack of support for affinity as one of the

performance limitations of OpenCL on CPUs and suggest

a potential solution to enhance OpenCL performance on

CPUs. We found the benefit of better utilizing cache on

many OpenCL applications by utilizing affinity.

E. Vectorization

Utilizing SIMD units has been one of the key performance

optimization techniques for CPUs [10]. Since SIMD instruc-

tions can perform computation on more than one data item

at the same time, SIMD utilization could make the program

more efficient. Many vendors have released various SIMD

instruction extensions on their instruction set architectures,

such as MMX[11].

Various methods have been proposed to utilize the SIMD

instruction: using optimized function libraries such as Intel

IPP[12] and MKL[13], using C++ vector classes with an

Intel compiler[14], or using DSL compilers such as the

Intel SPMD Program Compiler[15]. Programmers can also

program in assembly or use intrinsic functions. To help

programmers write programs utilizing SIMD instruction

easily, auto vectorization has been implemented in many

modern compilers [10], [14].

It is quite natural for programmers to expect that a

programming model difference has no effect on compiler

auto vectorization on the same architecture. For example, if

an application written in both OpenCL and OpenMP share

the same code structure, programmers would expect that

both codes are vectorized in a similar fashion thereby giving

similar performance numbers. Even though it depends on the

implementation, it is not usually true. Unfortunately, today’s

compilers are very fragile about vectorizable patterns, which

depends on the programming model. Programs should sat-

isfy certain conditions in order to fully take advantage of

compiler auto vectorization [10]. Our evaluation verifies the

possible effect of programming models on vectorization.

III. EVALUATION

A. Methodology

The experimental environment for our evaluation is de-

scribed in Table I. Our evaluation was done on a heteroge-

neous computing platform, consisting of a multicore CPU

and a GPU; the OpenCL application was executed on an

Intel OpenCL platform[4], and NVidia OpenCL platform[5].

CPUs Intel(R) Xeon (R) CPU E5645

Vector width SSE 4.2, 4 single precision FP

Caches L1D/L2/L3: 64K/256K/12M

FP peak performance 230.4 Gflop/s

Core frequency 2.40 GHz

DRAM 4GB

GPUs NVidia GeForce GTX 580

# SMs 16

Caches L1/Global L2: 16KB/768KB

FP peak performance 1.56 Tflop/s

Shader Clock frequency 1544 MHz

O/S Ubuntu 12.04.1 LTS

Platform Intel OpenCL Platform for CPU

NVidia OpenCL Platform for GPU

Compiler Intel C/C++ compiler

Table I
EXPERIMENTAL ENVIRONMENT

First, we use simple applications and Parboil benchmarks

by Grewe et al. [16]. Table II and III describe each

application and their default characteristics.

We use the wall-clock execution time. To measure stable

execution time without fluctuation, we iterate the kernel

execution until the total execution time of an application

reaches a significant enough running time, 90 seconds in

our evaluation. This is sufficiently long to have a multiple

number of kernel executions. Using the average kernel

execution time per kernel invocation calculated, we use nor-

malized throughput to present the performance differences

of different architectures.

Benchmark Kernel global work size local work size

Square square 10000, 100000, NULL

1000000, 10000000

Vectoraddition vectoadd 110000, 1100000, NULL

5500000, 11445000

Matrixmul matrixMul 800 X 1600, 16 X 16

1600 X 3200,

4000 X 8000

Reduction reduce 640000, 2560000, 256

10240000

Histogram histogram256 409600 128

Prefixsum prefixSum 1024 1024

Blackscholes blackScholes 1280 X 1280, 16 X 16

2560 X 2560

Binomialoption binomialoption 255000, 2550000 255

MatrixmulNaive matrixMul 800 X 1600 16 X 16

1600 X 3200,

4000 X 8000

Table II
CHARACTERISTICS OF THE SIMPLE APPLICATIONS

Benchmark Kernel global work size local work size

CP cenergy 64 X 512 16 X 8

MRI-Q computePhiMag 3072 512

computeQ 32768 256

MRI-FHD RhoPhi 3072 512

FH 32768 256

Table III
CHARACTERISTICS OF THE PARBOIL BENCHMARKS



B. Thread Scheduling

1) Number of Workitems: To evaluate the effect of num-

ber of workitems and the workload size per workitem, we

perform an experiment on OpenCL applications by allocat-

ing more computation per workitem. We coalesce multiple

workitems into a single workitem by forming a loop inside

the kernel. To maintain the total amount of computation

the same, we reduce the the number of workitems to

execute the kernel. The number of workitems coalesced

increase from 1 to 1000 workitems by multiplying 10 for

each step. Figure 1 shows the performance of Square,

Vectoraddition applications with different amount of

computation per workitem. Table IV shows the number of

workitems used in this evaluation.
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Figure 1. Performance of Square, Vectoraddition applications with
different workload per workitem

Benchmark base 10x 100x 1000x

Square 1 10000 1000 100 100

Square 2 100000 10000 1000 100

Square 3 1000000 100000 10000 1000

Square 4 10000000 1000000 100000 10000

VectorAdd 2 110000 11000 1100 110

VectorAdd 2 1100000 110000 11000 1100

VectorAdd 3 5500000 550000 55000 5500

Table IV
NUMBER OF WORKITEMS FOR EACH APPLICATION

From the figure, we find a performance gain for allocating

more work per workitem on CPUs. A noticeable example

is a case of vector addition, where we add an array of

numbers. If we create as many workitems as the size of

arrays, we end up creating significant overhead on CPUs.

When we reduce the number of workitems, we see a major

performance improvement for CPUs.

Compared to CPUs with high overhead of many

workitems, GPUs have low overhead for maintaining a

large number of workitems, as our evaluation shows. Fur-

thermore, reducing the number of workitems has degraded

performance on GPUs significantly. The large performance

degradation on GPUs is because we could no longer take

advantage of the GPU’s TLP anymore.
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Figure 2. Performance of Parboil benchmarks with different workload per
workitem

Figure 2 shows the performance of Parboil benchmarks

with a similar experiment. The number of workitems coa-

lesced increase from one to four workitems by multiplying

two for each step. We find the same performance gain

of allocating more work per workitem. The performance

the MRI-FHD:RhoPhi kernel remains same with different

workload per workitem.

2) Workgroup Size: We also evaluate the effect of the

number of threads in workgroups, both on CPUs and GPUs.

We vary the number of threads in a workgroup by chang-

ing the workgroup size (local_work_size) on kernel

invocation. We maintain the total number of workitems

of the kernel as the same. Table V shows the different

workgroup size for each benchmark, and Figure 3 shows

the performance of applications with different workgroup

sizes. The NULL argument means that the workgroup size

is dependent on OpenCL implementation.

Benchmark base case 1 case 2 case 3 case 4

Square NULL 1 10 100 1000

VectorAddition NULL 1 10 100 1000

Matrixmul 16X16 1X1 2X2 4X4 8X8

Blackscholes 16X16 1X1 1X2 2X2 2X4

MatrixmulNaive 16X16 1X1 2X2 4X4 8X8

Table V
WORKGROUP SIZE FOR EACH APPLICATION

The benchmarks can be categorized into three categories

depending on the behavior. The first group consists of

Square, Vectoraddition, naive implementation of

Matrixmul; Matrixmul belongs to the second group;

and Blackscholes belongs to the last.

Square, Vectoraddition, naive implementation of

Matrixmul, shows performance increase with increased

workgroup sizes on CPU. On Square, Vectoraddition

applications, performance achieved with NULL workgroup

size is less than the peak performance we achieve. This

implies that programmers should explicitly set the work-

group size for the maximum performance. The performance
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Figure 3. Performance of applications with different workgroup size on CPUs and GPUs

with a small workgroup size is also bad on GPUs, since the

workgroup is allocated per SM, so that the small workgroup

size makes GPUs unable to utilize many warps in an

SM. Even though no hardware TLP is available inside a

logical core on CPUs1, performance increases with a large

workgroup size. It is because the overhead of managing a

large number of workgroups, many number of threads in

many implementations, is reduced. We can also find that

performance is saturated at a certain workgroup size.

We also see a significant performance increase on the

Matrixmul application with an increased workgroup size.

The optimal workgroup size of this application is different

depending on platforms. For inputs 1 and 2, the optimal

workload size on CPUs is 8 X 8, but the optimal size on

GPUs is 16 X 16. This is because Matrixmul utilizes

the local memory in OpenCL by blocking and workgroup

size can change the local memory usage of the kernel. Since

the size of the cache in CPUs, and the scratchpad memory in

GPUs are different, the optimal workload can be different.

Unlike other applications, Blackscholes shows dif-

ferent performance behavior between on CPUs and on

GPUs. As we can see on Figure 4, the workgroup size

does not change the performance on CPUs, but it affects

the performance significantly on GPUs. Since the workload

allocated on a single workitem is relatively long compared

to other applications, overhead of managing a large number

of workgroups becomes negligible. On the contrary, number

of warps in a SM is limited by the workgroup size on

GPUs, which makes the performance on GPUs low on small

workgroup sizes.

1The evaluated CPUs have SMT processors, so multiple logical cores
share one physical core.
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Figure 4. Performance of blackscholes with different workgroup size on
CPUs and GPUs

Figure 5 shows the performance of Parboil benchmarks

with different workgroup sizes. We increase the workgroup

size from one to 16 times by multiplying 2 for each

step. Since the workgroup size for CP:cenergy kernel

is two-dimensional, we increase workgroup size of the

kernel in two directions. CP:cenergy(x) represents the

performance with workgroup sizes 1X8, 2X8, 4X8, 8X8,

16X8. CP:cenergy(y) represents the performance with

workgroup sizes 16X1, 16X2, 16X4, 16X8, and 16X16.

In general, we find the performance gain with a large

workgroup size. The performance saturates when there is

enough computation inside the workgroup.
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C. Instruction-Level Parallelism (ILP)

To evaluate the ILP effect on both CPUS and GPUs, we

implemented a set of micro-benchmarks that share common

characteristics. Each benchmark has an identical number of

memory accesses, computations, and loop iterations inside

the kernel. The only difference between each benchmark is

the ILP by varying number of independent instructions. For

example, in the case of ILP 1, the next instruction depends

on the output of the previous instruction; but in the case

of ILP 2, there is an independent instruction between two

dependent instructions.

Figure 6 shows the performance with increasing ILP for

the same kernel. We provide enough number of workitems

to fully utilize TLP. The number of workitems remains

same for all micro-benchmarks. The left y-axis represents

throughput of the CPUs, and right one represents the one of

GPUs. From the figure, we find that performance improves

depending on the ILP value of the OpenCL kernel on CPUs.

On the contrary, there is no performance variation on GPUs

with different instruction-level parallelism.
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Figure 6. Performance of ILP micro-benchmark on: (CPU) Intel Xeon
E5645, (GPU) GTX580

D. Memory Allocation, Data Transfer

To evaluate the performance effect of different memory

object allocation flags and different APIs for data transfer,

we perform an experiment on OpenCL applications with

different combinations of these options. The combination

we use is three dimensional. The options for our evaluation

are described as follows. To measure exact execution per-

formance, we use a blocking call for all kernel execution

commands, and memory object commands.

1) APIs for data transfer :

a) Copy : clEnqueueReadBuffer, clEnqueueWri
teBuffer for explicit read and write

b) Mapping : clEnqueueMapBuffer with CL_MAP_
READ, CL_MAP_WRITE for read and write

2) Where to allocate a memory object :

a) Allocation on a compute device memory
b) Allocation on the host accessible memory on the

host(pinned memory)

3) Kernel access - when referenced inside a kernel:

a) Memory object is read-only/write-only : CL_MEM_RE
AD_ONLY for an input to a kernel, CL_MEM_WRITE
_ONLY for computation results

b) Memory object is read/write : CL_MEM_READ_WRIT
E for all memory objects

The throughput we present here is the computational

performance including data transfer time between the host

and compute devices as shown in Equation (1).

Throughput app =
Throughput kernel

kernel time + transfer time
(1)

We compare the performance of different data-transfer

APIs on all possible allocation flags. Figure 7 shows the

performance of the benchmarks with different APIs for data

transfer. The y-axis represents the normalized throughput

when we use mapping for data transfer from the baseline

when we explicitly read and write. From the results, we

find mapping APIs have superior performance compared to

explicit data transfer, regardless of the decision on other

dimensions. Mapping APIs perform superior wherever the

memory object is allocated. Mapping APIs perform better

regardless of the decision of allocating the memory object

as read-only/write-only, or as read/write object.

The different performance of different APIs comes from

the different data transfer time. Different APIs do not affect

the kernel execution time. The data transfer time is shorter

with mapping APIs. The performance gap increases with

increases in workload sizes and therefore, increases in data

transfer sizes.
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Figure 7. Normalized application throughput of mapping over copying for all combinations on other dimension. Mapping APIs perform superior to
explicit data transfer on all possible combinations.

We also report the performance of Parboil benchmarks

with different APIs for data transfer. Since the data transfer

time is much shorter than the kernel execution time on

Parboil benchmarks, instead of using application throughput

as shown in Equation (1), we report the data transfer time

from the host to device, and data transfer time from the

device to host with different APIs. Different APIs do not

affect the kernel execution time. Figure 8 show the perfor-

mance of the Parboil benchmarks with different APIs for

data transfer. Upper figure in Figure 8 shows the data transfer

time from the host to a compute device with different data

transfer APIs. Lower figure shows one from compute device

to host. As with simple applications, we can find that the

data transfer time is shorter with mapping APIs on these

benchmarks.

The difference of data transfer time comes from the

different behavior of different APIs. When the host code

explicitly transfers data between the host and device, the

OpenCL runtime should allocate a separate memory object

and copy the data between the memory object. However,

copying is not needed when the host code uses mapping;

only returning a pointer is needed.

We also verify the performance effect of the allocation

location of memory objects, Programmers can allocate the

memory object on host memory or device memory. We

find that allocation location does not have a major impact

on performance. This is because device memory and host

memory reference the same main memory of the system.

Finally, we verify the performance effect of specifying a

memory object as read only or write only. We do not see

a noticeable performance difference, which we omit in this

paper for brevity.

E. Affinity

We evaluate the performance benefit using the CPU

affinity in OpenMP. We use OMP_PROC_BIND and

GOMP_CPU_AFFINITY to control the scheduling of

threads on the processors[9]. When the OMP_PROC_BIND

is set to be true, the threads will not be moved between

processors. GOMP_CPU_AFFINITY enables us to control

the allocation of a thread to a particular CPU. The aim is to

verify the effects of mapping of a computation in terms of

cache utilization. We use two kernels: Vector Addition

and Vector Multiplication. The work is distributed

among eight cores; and the second computation is dependent

on the first one, in the sense of using the data produced

by the first one. Figure 9 shows the method we use. The

upper figure in Figure 9 represents the aligned case, and

the lower figure represents the misaligned case. On the

aligned case, we allocate computations of the second

kernel on that threads that access the same data that is

already accessed during the execution of the first kernel.

On the misaligned case, we change this mapping. As

we expect, the aligned case shows higher performance

than does the misaligned case . The misaligned one

runs longer by 15 percent. This is because during the second

computation, the processors encounter cache misses on their

private caches.

Figure 9. Performance Impact of CPU affinity

As the results shows, even though OpenCL emphasizes

portability, adding the affinity support to OpenCL may

provide a significant performance improvement in some

cases. Hence, we argue that coupling logical threads with

physicals threads is needed on OpenCL, especially for CPUs.

The granularity for the assignment could be workgroup; in

other words, the programmer can specify the core where

specific workgroup would be executed, so that data on

different kernels can be shared without a memory request

if the programmer allocates cores on specific workgroups in



consideration of data sharing of different kernels.

F. Vectorization

We evaluate the possible effect of programming mod-

els on vectorization, even though vectorization is more

about compiler implementation. For evaluation, we port the

OpenCL kernels to identical computations being performed

by their OpenMP counterparts. We map multiple workitems

on OpenCL to a loop to port OpenCL kernels to their

OpenMP counterparts. We utilize the Intel C/C++ compiler

and the Intel OpenCL platform for our evaluation. The

expectation is that when we run the same computation

in the OpenCL and OpenMP programs, both runs should

give comparable performance numbers. However, the results

show that this assumption does not hold. For the evaluated

benchmarks, the OpenCL kernels outperform their OpenMP

counterparts. Figure 10 shows the performance of OpenMP

and OpenCL implementations.

1

10

100

1000

MBench1 MBench2 MBench3 MBench4 MBench5 MBench6 MBench7 MBench8

T
h
ro
u
g
h
p
u
t(
G
F
Lo
p
s)

OpenMP OpenCL

Figure 10. Performance impact of vectorization

The reason for this mismatch is the different way OpenMP

and OpenCL compilers vectorize code. The OpenCL kernel

compiler tries to vectorize in a way that allows it to execute

several workitems together by a single vector instruction.

For example, if the target instruction set is SSE 4.2, and the

computation is based on a single precision floating point,

then four workitems could make progress concurrently, so

they are coalesced into a single workitem. By doing this,

vectorized OpenCL code would have less thread creation

compared to non-vectorized code.

On the other hand, the compiler tries to vectorize OpenMP

programs, by unrolling a loop combined with the generation

of packed SIMD instructions. To be vectorized, a loop

should be countable, have single entry and single exit, and

a straight control flow graph inside the loop[17].

There are many factors that could prevent the vector-

ization of a loop in OpenMP. Two key factors are non-

contiguous memory access and data dependence.

1) Noncontiguous memory access: Four consecutive

floats may be loaded directly from the memory in a

single SSE instruction. But if the four floats to be

loaded are not consecutive, we will have a load using

multiple instructions. Loops with a nonunit stride is

an example of the above scenario.

2) Data dependence: Vectorization requires changes in

the order of operations within a loop since each SIMD

instruction operates on several data elements at once.

But such a change of order might not be possible due

to data dependencies.

…

for (int j=0; j < 4; j++)

{

FMUL(_a[j], _b[j])

FMUL(_a[j], _b[j])

FMUL(_a[j], _b[j])

FMUL(_a[j], _b[j])

FMUL(_a[j], _b[j])

FMUL(_a[j], _b[j])

}

…

Figure 11. Vectorization on OpenCL vs. OpenMP. (The equivalent code in
OpenCL can be vectorizable but this OpenMP code cannot be vectorizable.)

Figure 11 shows an example of different vectorization

mechanisms from OpenMP and OpenCL compilers. When

there is a true data dependence inside an OpenCL kernel or

inside a loop iteration in OpenMP parallel for section,

the OpenCL kernel is vectorized, while the OpenMP code

isn’t. Therefore, they show different performance even when

vectorization of OpenMP loops seems possible. The vector-

ization of an OpenCL kernel is relatively straightforward,

because no dependency checks are required as in the case

of traditional compilers.

IV. RELATED WORK

Multiple research studies have been done on how to

optimize OpenCL performance on GPUs. The GPGPU

community provides TLP[18] as a general guideline for

optimizing GPGPU applications since GPGPUs are usually

equipped with a massive number of processing elements.

Since OpenCL has the same background as CUDA[19], most

OpenCL applications are written to better utilize TLP. The

widely used occupancy metric indicates the degree of TLP.

However, this scheme cannot be applied on CPUs since even

when the TLP of the application is large, the physical TLP

available on CPUs is limited by the number of CPU cores,

so that the context switching overhead is much higher on

CPUs than on GPUs for which this overhead is negligible.

There have been several publications referring to the

performance of OpenCL kernels on CPUs. Some of them

focus on algorithms and some of them refer to the perfor-

mance difference by comparing it with GPU implementation

and OpenMP implementation on CPUs[20], [21], [22], [7].

However, to the best of our knowledge, our work is the first

to provide a broad summary, combining application with

the architecture knowledge to provide a general guideline to

understand OpenCL performance on multi core CPUs.

Ali et al. compare OpenCL with OpenMP and Intel’s TBB

on different platforms[21]. They mostly discuss the scaling

effects and compiler optimizations. But it misses out on

why the optimizations listed in the paper give performance

benefit mentioned and lacks quantitative evaluation. We,

too, evaluate the performance of OpenCL and OpenMP for

a given application. However, our work considers various



aspects that can change application performance and provide

quantitative evaluations to help programmers estimate the

performance impact of each aspect.

Seo et al. discuss OpenCL performance implications for

the NAS parallel benchmarks and give a nice overview of

how they optimize the benchmarks by first getting an idea of

the data transfer and scheduling overhead and then coming

up with ways to avoid them[22]. They also show how

to rewrite a good OpenCL code, given an OpenMP code.

Stratton et al. describe a way to implement a compiler for

fine-grained SPMD-thread programs on multicore execution

platforms[7]. For the fine-grained programming model, they

start with CUDA, saying that it will apply to OpenCL as

well. They focus on the performance improvement over the

baseline. Our work is more generalized and broad compared

to these previous studies and also includes some of the

important points that are not addressed in these papers.

One of the references that is very helpful to understand

the performance behavior of OpenCL is a documentation

from Intel[23]. It broadly lays out some general guidelines

to follow to get better performance out of OpenCL applica-

tions on Intel processors. However, it does not discuss the

performance improvement and also does not state how much

benefit can be achieved.

V. CONCLUSION

We evaluate the performance of OpenCL applications

on modern multicore CPU architectures. Understanding the

performance in terms of architectural resource utilization is

helpful for programmers. In this paper, we evaluate various

aspects, including thread scheduling, ILP, data transfer,

locality, and compiler-supported vectorization. We verify the

unique characteristics of OpenCL applications by comparing

them with conventional parallel programming models such

as OpenMP. Key findings of our evaluation are as follows.

1) Large workgroup size is helpful for better performance

on CPUs.

2) Large ILP helps performance on CPUs.

3) On CPUs, Mapping APIs perform superior compared

to explicit data transfer APIs. Memory allocation flags

do not change performance.

4) Adding affinity support to OpenCL may help perfor-

mance in some cases.

5) Programming model can have possible effect on

compiler-supported vectorization. Conditions for the

code to be vectorized can be complex.

Our evaluation shows that considering the characteris-

tics of CPU architectures, the OpenCL application can be

optimized further for CPUs, and the programmer needs to

consider these insights for portable performance.
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