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Abstract—Parallel machine learning workloads have become
prevalent in numerous application domains. Many of these
workloads are iterative convergent, allowing different threads
to compute in an asynchronous manner, relaxing certain read-
after-write data dependencies to use stale values. While consid-
erable effort has been devoted to reducing the communication
latency between nodes by utilizing asynchronous parallelism,
inefficient utilization of relaxed consistency models within a
single node have caused parallel implementations to have
low execution efficiency. The long latency and serialization
caused by atomic operations have a significant impact on
performance. The data communication is not overlapped with
the main computation, which reduces execution efficiency. The
inefficiency comes from the data movement between where they
are stored and where they are processed.

In this work, we propose Bounded Staled Sync (BSSync),
a hardware support for the bounded staleness consistency
model, which accompanies simple logic layers in the memory
hierarchy. BSSync overlaps the long latency atomic operation
with the main computation, targeting iterative convergent
machine learning workloads. Compared to previous work that
allows staleness for read operations, BSSync utilizes staleness
for write operations, allowing stale-writes. We demonstrate
the benefit of the proposed scheme for representative machine
learning workloads. On average, our approach outperforms the
baseline asynchronous parallel implementation by 1.33x times.

Keywords-Iterative Convergent Machine Learning Work-
loads; Bounded Staleness Consistency Model; Asynchronous
Parallelism; Atomic Operation.

I. INTRODUCTION

Machine learning (ML) workloads have become an im-

portant class of applications these days. ML provides an

effective way to model relationships in physical, biological,

and social systems, and thus is actively used in a variety

of application domains such as molecular models, disease

propagation, and social network analysis. As more data

becomes available for many tasks, ML is expected to be

applied to more domains, thereby making efficient execution

of ML workloads on architectures increasingly important.

In ML, the key phase is learning; ML inductively learns

a model by examining the patterns in massive amounts of

data. This requires significant amounts of computation and

thus easily takes several days or even months with sequential

execution on a single node. As such, most of ML workloads

are parallelized to be executed on large-scale nodes, and

prior work [1], [2], [3], [4], [5], [6] has mainly focused on

reducing the synchronization cost among multiple nodes by

utilizing asynchronous parallelism.

While a considerable amount of efforts has been focused

on inter-node synchronization in large-scale nodes, there has

been little focus on the performance of ML workloads on

a single node. As we will discuss in Section II, however,

inefficient execution of parallel ML workloads within a node

under-utilizes the performance potential on multi-threaded

architectures and reduces overall performance. In this work,

we focus on single-node performance.

We observe that the greatest inefficiency within a node

also comes from a synchronization overhead, which is im-

plemented with atomic operations on a single-node machine

such as shared memory processors. In parallel ML imple-

mentations, atomic operations are typically used to ensure

the convergence of lock-free iterative convergent algorithms.

However, atomic operations occupy a large portion of overall

execution time and become the biggest inefficiency within a

node. The inefficiency comes from non-overlapped synchro-

nization with the main computation thus wasting computing

time.

The recent emergence of 3D-stacking technology has

motivated researchers to revisit near-data processing archi-

tectures targeting the benefit both from the efficiency of the

logic layer and data movement cost reduction [7], [8], [9].

In this paper, we propose Bounded Staled Sync (BSSync),

hardware support integrating logic layers on the memory

hierarchy to reduce the atomic operation overhead in par-

allel ML workloads. BSSync offloads atomic operations

onto logic layers on memory devices, to fully utilize the

performance potential of parallel ML workloads. Atomic

operations are now overlapped with the main computation

to increase execution efficiency. BSSync revisits the hard-

ware/software interfaces to exploit parallelism.

BSSync utilize a unique characteristic of iterative conver-

gent ML algorithms. ML workloads start with some guess

as to the problem solution and proceed through a number
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of iterations until the computed solution converges. The key

property of parallel implementations for such ML workloads

is that workers on each core are allowed to compute using

stale values in intermediate computations. BSSync utilizes

this property to reduce atomic operation overhead.

In summary, the key contributions of our work are as

follows:

1) We evaluate ML workloads within a single node,

unlike previous works that focus on communication

latency between nodes.

2) We observe that the atomic operation overhead causes

inefficiencies within a single node for parallel ML

workloads. We quantify how much the overhead con-

tributes to the overall execution time.

3) Compared to previous works that allow staleness for

read operations, BSSync utilizes staleness for writes,

allowing stale-writes that accompany simple logic

layers at the memory hierarchy.

4) We propose hardware support that reduces the atomic

operation overhead. Our evaluation reveals that our

proposal outperforms a baseline implementation that

utilizes the asynchronous parallel programming model

by 1.33x times.

The rest of the paper is organized as follows. Section II

provides the motivation for our proposal and identifies

the key performance bottleneck as the atomic operation

overhead. Section III presents our mechanism, BSSync.

After presenting our evaluation methodology in Section IV,

Section V evaluates our mechanism. Section VI discusses

related work. Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we describe the benefit of utilizing asyn-

chronous parallelism within a single node as background

and then show the performance overhead of the atomic

operations in ML workloads.

A. Asynchronous Parallelism

Exploiting asynchronous parallelism has the benefit of

addressing the issue of workload imbalance between threads

that introduce a significant overhead for iterative convergent

ML workloads [5]. For the Bulk Synchronous Parallel (BSP)

model [10], all threads must execute the same iteration

at the same time, and barrier synchronization is used at

every iteration to guarantee that all running threads are

in the same phase of execution. On the contrary, with

asynchronous execution, threads can perform computation

instead of waiting for other threads to finish [11].

Figure 1 illustrates the problem of wasted computing time

for the BSP model due to straggler threads. The white

arrows represent the wasted computing time and the gray

arrows represent when each thread performs computation.

With barrier synchronization, each thread waits for the others

at every iteration. As such, even when only a single straggler

Thread�4

Thread�3

Thread�2

Thread�1

Barrier Barrier

Figure 1: Straggler Problem of the BSP Model.

thread has not reached the barrier, other threads must stay

idle as they wait for the straggler thread to finish before

they can start the next iteration, thereby leading to wasted

computing time. Relaxing the barrier can reduce the stall

time, which leads to significant speedups for a variety of

iterative convergent ML workloads.

The performance of iterative convergent ML workloads is

determined by how much the solution has progressed within

a certain time, which is the product of both 1) the number

of iterations per time and 2) the progress per each iteration.

A small iteration difference between threads can lead to the

large progress per iteration. Relaxing the barrier yields more

iterations per time but lowers the progress per iteration,

therefore increasing the number of iterations required to

converge to the final solution.1

The Stale Synchronous Parallel (SSP) model [5] is a

type of programming/execution model that makes use of

asynchronous parallelism. Figure 2 shows a pseudo-code

example of parallel ML workloads utilizing the SSP model.

At a high level, a loop iteration consists of five stages of

operation. First, a loop iteration starts with read operations

fetching inputs (stage 1), followed by the computation on the

inputs to generate new data (stage 2). The read operations

may fetch stale values, and the stale values can be used

for computation. Then, after executing an atomic update

operation to store a new computation result (stage 3), a

synchronization operation is performed (stage 4). Unlike

the barrier operation in the BSP model, the synchronization

operation is used to guarantee that the iteration counts

of different threads are within the specified ranges. With

the user-specified staleness threshold s, the fast thread

should stall if not all threads have progressed for enough

iterations; the thread should wait for slower threads until

they finish iteration i− s. At the end of the iteration, a

convergence check is performed (stage 5). If the values have

not converged, the threads proceed to another iteration. The

computed results from the iteration are used as inputs for

the other threads and for the later iterations from the thread.

This process continues until the computed values converge.

The SSP model provides the benefit of both the BSP and

asynchronous execution models for iterative convergent ML

1Iterative convergent ML workloads continue to iterate while the com-
puted solution keeps changing from iteration to iteration. Convergence
check performs whether or not the solution has converged (unchanged).

242



while�true:
#�start�new�iteration�i
…
#�read�operation
d1�=�read(…)
d2�=�read(…)
…
#�compute�new�value
d1_new�=�compute(d1,�d2,�…)���
…
#�atomic�update�operation
update(d1_new,�…)
…
#�synchronization�operation
synchronize(…)�
…
#�check�convergence�
if�converged:
break

#�end�of�loop

BSP�(s�=�0)�:�Wait�for�all�threads�
finish�iter i
SSP�(s�>�0)�:�Wait�for�all�thread�finish�
at�least�iter i � s

New�value�depends�on�other�values

Figure 2: Stages of ML Workloads.

workloads. It alleviates the overhead of straggler threads

because threads can perform computation instead of waiting

for other threads to finish. At the same time, the bound on

staleness enables a faster progress toward the final solution

within an iteration. We utilize the SSP model in our evalua-

tion for asynchronous parallel workloads. Figure 3 compares

the performance of the BSP model and the SSP model

with a staleness threshold of two. The staleness threshold

is selected through our experiments to find the value that

provides the best speedup. Figure 3 shows that the SSP

model outperforms the BSP model by 1.37x times.
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Figure 3: Speedups of the SSP model over the BSP model.

B. Atomic Operation Overhead
Atomic read-modify-write operations capable of reading,

modifying, and writing a value to the memory without inter-

ference from other threads are frequently used in workloads

where threads must sequentialize writes to a shared variable.

They provide serializability so that memory access appears

to occur at the same time to every thread. Atomic operations

affect how threads see updates from other threads for the

shared memory address.
Atomic operations are used in parallel ML workloads for

reduction operations. Reduction is used to combine the result

of computation from each thread. Atomic operations enable

different threads to update the same memory address in par-

allel code. For example, to implement Matrix Factorization,

atomic-inc/dec operations are used. Atomic-inc/dec reads a

word from a memory location, increments/decrements the

word, and writes the result back to the memory location

without interference from other threads. No other thread

can access this address until the operation is complete.

If atomicity is not provided, multi-threaded systems can

read/write in shared memory thus inducing the data race.

The data race can lead to reduction operation failure, which

can slow down progress per iteration and even break the

convergence guarantee.

While previous studies show that exploiting asynchronous

parallelism could improve performance significantly, the

atomic operation overhead also has a huge impact on perfor-

mance. Figures 4 and 5 show the execution breakdown of the

BSP model and the SSP model with a staleness threshold of

two. We measure the execution time of different stages from

each thread and use the sum of all threads as the execution

time of that stage for the workload. (See Section IV for

detailed explanations of workloads and the hardware).
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Figure 4: Portion of Each Passes on the BSP Model.
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Figure 5: Portion of Each Passes on the SSP Model.

On the BSP models, a major portion of the execution

time is not spent on the main computation; only 58% is

spent for the main computation, 16% for atomic operations,

and 26% for stall time. As explained in Section II-A, stall

occurs due to the imbalanced progress of each thread in

terms of iterations. The main reason for the thread imbalance

is due to the sparse nature of the data and value-dependent
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computation in ML workloads; that is, different threads

have non-uniform workload distributions. For example, in

Breadth First Search (BFS), each vertex has a different

number of neighbors. The task is typically partitioned so

that each thread processes a disjoint subset of vertices,

therefore different threads can execute a different number

of instructions.

The stall time is reduced on the SSP model by allowing

asynchronous execution; on the SSP model as an average,

stall time is reduced to 7% from 26% of the execution time

on the BSP model. The atomic operation overhead now

becomes the dominant performance bottleneck on the SSP

model. On average, the atomic operation overhead consists

of 23% of execution time on the SSP model. Still, 30% of

the time is wasted, not performing the main computation.

vo id a t o m i c o p e r a t i o n ( i n t ∗ a d d r e s s , i n t v a l ){
/ / normal memory l o a d o p e r a t i o n
i n t o l d = ∗ a d d r e s s ;

/ / compute new v a l u e t o s t o r e
i n t new val = compute ( old , v a l ) ;

i n t assumed ;
do {

assumed = o l d ;
/ / d e c i d e whe the r t o pe r fo rm CAS o p e r a t i o n
i f ( good to compare and swap ( assumed , new val ) ){

/ / CAS o p e r a t i o n
o l d = compare and swap ( a d d r e s s , assumed , new val ) ;

} e l s e {
r e t u r n ;

}
}w h i l e ( assumed != o l d ) ;

}

Figure 6: Pseudo Code of Atomic Operation.

Figure 6 shows the pseudo-code of atomic operations

using the compare-and-swap (CAS) operation.2 The CAS

operation is provided as a single instruction in many ar-

chitectures such as x86. The atomic operation consists

of four steps. First, a normal memory load operation is

performed. This load operation does not allow reading the

stale value unlike the load operation fetching the value for

main computation (stage 2 in Figure 2). Second, the new

value to store (new val) is calculated by the program using

the value computed from main computation (val) and the

loaded value (old). Third, a check operation is performed to

decide whether to perform a CAS operation. Fourth, the CAS

operation for the same memory location is performed, which

compares the memory contents with the original loaded

value. Only when the values match, does the swap operation

occur, updating memory.

The memory-intensive atomic operation incurs high over-

head with non-overlapped multiple transactions on the lower

level of the memory hierarchy. The transactions of reading,

2We omit the Load-Linked/Store-Conditional (LL/SC) implementation
that incurs similar cost as CAS implementation for brevity.

modifying, and writing a value back to memory are done by

the core, and the data movement is not overlapped with the

main computation, thus increasing execution time. Fetching

data from the lower level to the L1 cache increases the

latency of the atomic operation, which can become worse

with large data so that the line should be fetched from

DRAM rather than shared cache. Other cores trying to

modify the same cache line can cause the repetition of the

memory load and CAS operation, which increases the L1

access, which will be mostly cache misses.

The increased latency resulting from invalidation also

increases the overhead, and the invalidation traffic will also

be problematic on the shared cache with many cores. When

multiple threads try to modify the same line, a lot of inval-

idations result since every write will send the invalidation.

Also, all threads that try to access the same location

are sequentialized to assure atomicity. Possible collisions

can cause poor performance as threads are sequentialized.

As the atomics serialize accesses to the same element,

the performance of atomic instructions will be inversely

proportional to the number of threads that access the same

address. As more cores become available on chip, perfor-

mance degradation due to serialization will increase.

While overlapping atomic operations with computation is

possible with launching extra workers, launching a back-

ground thread is neither realistic nor beneficial for ML

workloads since launching more threads for computation is

typically more helpful than launching background threads.

When executing highly parallel ML workloads on many

cores, despite the reduced stall time with asynchronous

parallelism, strict consistency with atomic operations has

caused slow execution. Therefore, we conclude that the

performance of ML workloads is atomic operation bound.

III. MECHANISM

In this section, we propose BSSync, hardware support for

offloading the atomic operation onto logic layers on memory

devices. We describe the bounded staleness consistency

model that BSSync utilizes and the key idea of our proposal.

We then explain how data communication is performed with

our hardware implementation.

A. Bounded Staleness Consistency Model

BSSync supports the bounded staleness consistency

model [12] to reduce the atomic operation overhead. The

bounded staleness consistency model is a variant of the

relaxed consistency models in which data read by a thread

may be stale, missing some recent updates. The degree

of staleness, the delay between when an update operation

completes from a thread, and when the effects of that update

are visible to other threads is defined under the user-specified

threshold. The bounded staleness consistency model allows

reads to use stale values unless they are too stale. The

staleness is bounded so that it cannot be larger than the
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user-specified threshold. The bounded staleness consistency

model has been widely used for its combined benefits of

communication latency tolerance and minimization of the

negative impact of stale values on convergence on multiple-

nodes configurations [6].
1) Staleness Definition: Staleness can be measured in

multiple ways. Here, we use version numbers in terms of the

number of iterations, as in the SSP model [5]. The version

number v of a datum represents that the value of a particular

datum has been read by the thread at iteration v. Staleness is

defined using the version number and the current iteration

of the thread. For example, if the thread is at iteration i,
the staleness of the data with version number v is equal to

i− v.

We change the validity of a datum and redefine the

meaning of a cache hit/miss as in ASPIRE [6]. With the

user-defined staleness threshold s, as in the SSP model, the

read request to a datum can be

• Stale-hit: datum in cache and staleness ≤ s

• Stale-miss: datum in cache and staleness > s

• Cache-miss: datum not in cache

2) Operations: Here, we explain how the bounded stal-

eness consistency model defines the read operation for

asynchronous parallel ML workloads. Different threads can

have different views of a shared datum; the read operation is

only guaranteed to obtain the value whose staleness is less

than or equal to the staleness threshold s. When a thread

reads a shared datum d at iteration i, the thread is guaranteed

to see the effect of all updates on d from the first iteration

to iteration i− s.

B. Key Idea

BSSync reduces the atomic operation overhead by utiliz-

ing the characteristic of the iterative convergent ML work-

loads that allows the use of stale values in the computation.

Compared to previous studies utilizing the characteristic for

read operations, BSSync utilizes the characteristic to allow

stale-writes to minimize the adverse impact of long latency

atomic operations. BSSync is based on the following two

ideas regarding the iterative convergent algorithms and the-

state-of-art hardware implementations.

• First, atomic operations in ML workloads are for other

threads to see the updates within a certain staleness

bound. The atomic update stage is separate from the

main computation, and it can be overlapped with the

main computation. Since these workloads do not en-

force strict data dependence constraints (threads can

miss a certain number of updates to use stale values),

the update operation can be performed asynchronously.

• Second, atomic operations are a very limited, pre-

specified set of operations that don’t require the full

flexibility of a general-purpose core. The hard-wired

implementation of atomic operations on the memory

hierarchy can be more efficient.

A key observation is that offloading atomic operations

to asynchronously execute in parallel with the CPU core

can eliminate the overhead of atomic operations. Atomic

operations are immediately retired from the core side but the

logic layer guarantees the atomicity. Atomic operations only

need to guarantee the atomicity of the update. Assuming the

atomicity is provided, that is, if the update is not dropped, it

is all right when the atomic update operation is performed

asynchronously so that other threads can observe the recent

value later.

Asynchronous execution of atomic operations reduces the

overhead of long latency reading the value from the lower

level of the memory hierarchy. It reduces the overhead by

transforming blocking operations into non-blocking opera-

tions. The CPU core does not wait for the atomic operations

to finish but proceeds to the main computation, enabling high

performance. Asynchronous execution of atomic operations

also reduces the overhead of redundant computation for

retrying in the case of conflict and the serialization that

blocks cores from proceeding for computation.

Instead of general-purpose cores, BSSync utilizes simple

logic layers at the memory hierarchy to perform atomic

operations. The CMOS-based logic layer can provide an

efficient implementation for atomic operations and can help

the CPU core to be latency tolerant. While the atomic oper-

ation is basically read-modify-write, reading the value from

the thread performing the atomic operation is not needed

since the value will not be used by the thread. The read

can probably incur fetching the value from the lower level

of the memory hierarchy. Since the data has low temporal

locality, it is inefficient to fetch the data to be located near

the core expecting short latency with a cache hit. The second

generation of Hybrid Memory Cube (HMC) also supports

simple atomic operations [13]. The implementation is quite

straight-forward without the requirement of full flexibility of

the CPU core so that it can be a hard-wired implementation.

C. Structure

Figure 7 shows the hardware extension of BSSync. Each

core is extended with a region table, control registers (itera-

tion register, threshold register), and an atomic request queue

(ATRQ). The cache hierarchy consists of per-core private L1

data caches and an inclusive shared L2 cache. The traditional

directory-based coherence mechanism is extended to control

the degree of coherence. Logic layers are extended on each

level of memory hierarchy: L1 data cache, L2 cache, and

DRAM.

BSSync changes the conventional hardware/software in-

terfaces to exploit parallelism between the host core and the

logic layer at the memory hierarchy. The programmer needs

to provide the staleness threshold and the thread progress

in terms of iteration counts. The programmer also needs

to modify the code to invoke the assembly-level atomic

instruction and annotate the shared memory object that
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Figure 7: Overview of BSSync.

allows bounded staleness consistency. While this requires

certain changes, these changes are mostly straight forward

so they can be easily done by the programmer.

The information provided by the programmer is used

by the BSSync hardware. The region table for each core

contains the address range of annotated memory objects,

one entry for each memory object. In many ML workloads,

these regions are contiguous memory regions and not many

objects exist in most workloads. The iteration register tracks

the progress of each thread storing the iteration count that the

core is currently executing. Before starting a new iteration,

each thread updates the iteration register for the thread with

the iteration number that the thread will start. The threshold

register stores the staleness threshold, which is provided by

the programmer.

ISA is extended to include the fixed-function, bounded-

operand atomic instructions executing on the logic layer.

We extend the opcode to encode the atomic operation. The

format of the atomic instruction follows the format of the

current load and store instructions where the size of the

operation is encoded.3

State LRU TagVersion DataMode

Private L1 Cache Line

Figure 8: Cache Tag Extension of Private L1 Data Cache

Line.

BSSync utilizes different cache protocols, depending on

the type of memory object. The decision for which protocol

to use is made at the cache line granularity on the private L1

3While we consider the bounded operand as the single word of data,
the operation might operate on multiple words using pre-defined vectors as
SIMD extensions are supported, which is straight-forward.

data cache. Figure 8 shows the cache tag extension of the L1

cache line. The tag entry for each L1 cache line is extended

to include additional bits for tracking (a) coherence mode,

and (b) version number of the cache line. The mode bit is

used to define the coherence mode of the cache line. The

coherence mode is bi-modal: Normal (N = 0), and Bounded

staled (B = 1). The normal line follows the conventional

coherence protocol: write-back policy with write-allocate,

and the MESI coherence protocol, but the bounded staled

line follows a different protocol described in later sections.

The version bits in the L1 cache line are used to track the

time until this cache line is valid, provide the time when

the cache line should be invalidated and get the new update

from the lower level of the memory hierarchy. The length

for version bits depend on the maximal staleness threshold

with the use of modulo operation, which incurs negligible

overhead.

The ATRQ decouples the atomic operations from the

conventional coherence tracking structures. The ATRQ is for

the computing unit to send the atomic operation requests to

logic layers at the memory hierarchy. It is placed between the

computing units and the logic layer on the L1 data cache. It

is also connected to the shared L2 cache and DRAM through

an interface to the interconnection network. This interface

is similar to the one in many cache bypass mechanisms.

The ATRQ shares an interface to the core’s MMU and

uses the physical address translated from the MMU to send

the request to the logic layers of the shared L2 cache and

DRAM.

D. Operations

In BSSync, there are two different ways to handle memory

instruction: memory accesses for normal memory objects

and memory accesses for objects allowed to read stale

values. The CPU core identifies the memory access type

by using a region table and sends the memory request to

different memory units.

The normal memory accesses are handled the same way

as conventional directory-based MESI protocols. When a

L1 cache miss occurs, a new miss status-holding register

(MSHR) entry and cache line are reserved for the line if

there is no prior request to the same cache line. The MSHR

entry is released when the cache line arrives from the L2

cache. When invalidation occurs, the invalidation requests

are sent to all sharers and the L1 cache tag array and MSHR

table are read upon receiving the request.

On the contrary, memory accesses for the objects allowed

to read stale values do not follow conventional protocol.

The accesses are further decomposed into the memory read

requests for the objects, and the atomic reduction operation

requests for those objects.

1) Handling Read Request: The data that are modified

through atomic operations are also read by each thread for

computation. Each thread needs to fetch recent changes on
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the shared data into each thread’s private L1 data cache.

When a core makes a read request for the data on its

private L1 cache, it checks whether the data is too stale (the

staleness is larger than the staleness threshold). The version

number of the cache line is used to decide stale-hit/miss;

therefore it is used to define the limit until the line is used.

If it is a stale-hit, no further action is required, the core

keeps accessing the line in the L1 cache.

On the contrary, in the case of a stale-miss, the read

request is blocked and the line in the lower level of the

memory hierarchy should be fetched into the private L1

cache even if the line resides in the L1 cache. The cache

line is invalidated from the L1 cache and the fetch request

is sent to the shared L2 cache. The version bit in the tag array

is updated with the current iteration count that is stored in

the iteration register of the core.

When the data is not cached in the L1 cache, thus

incurring a cache miss, the core brings the data from the

lower level of the memory hierarchy into the private L1

cache and updates the version bit with the current iteration

count. The behavior is same as if the version number in the

L1 cache were -∞.

L2 CacheLogic Layer

CPU Core

Computing Units

L1 CacheATRQ

DRAMLogic Layer

Interconnection Network

Logic 
Layer

(1)
(2b)

(2a),�(2b)

(2a)

Figure 9: Handling Atomic Operation Request.

2) Handling Atomic Operation Request: Figure 9 shows

how BSSync handles the atomic request. First, the core

issues an atomic operation request into the ATRQ (1). In

BSSync, the atomic reduction operation is a non-blocking

operation. The operation completes immediately after the

core simply puts the request into the ATRQ. The ATRQ

holds the information of the requests that are not completed,

so the size of the ATRQ varies dynamically with the number

of in-flight atomic operation requests. The logic layers on the

cache and the DRAM perform atomic operations and notify

the ATRQ to release its entry, when the atomic operation is

finished (2).

The processing of the atomic operation request depends

on whether or not the datum resides on the L1 data cache.

In the case of an L1 cache miss (2a), the ATRQ diverts

the atomic operation requests to bypass the L1 D-cache and

directly sends requests through the interconnection network

into the lower level of the memory hierarchy. If the line

resides on the L2 cache, the logic layer on the L2 cache

performs the atomic operation, sets the L2 cache line as

”dirty” (changing the state bits as ”modified”) and notifies

the ATRQ. In the case of L2 cache miss, the logic layer on

the DRAM performs the operation and notifies the ATRQ.

When the line resides in the L1 cache (2b), the ATRQ

sends the atomic operation request to both logic layers on

the private L1 cache and the shared L2 cache. Since we

assume inclusive cache, the line resides on the L2 cache if

it resides on the L1 cache. The state bits of the L1 cache

line still remain as ”clean,” unlike conventional coherence

protocols, but changes only the state bits on the L2 cache

line. The ATRQ entry is released when the logic layer at

the L2 cache notifies the ATRQ after finishing the atomic

operation.

Baseline

: Compute : Read : CAS : Atomic Request

L1�Cache�Miss

CAS�Fail

Time
BSSync

Time Saved

Figure 10: Comparison to Conventional Protocol

Figure 10 compares how BSSync changes the way the

atomic operation is handled. While the atomic operation is

completed by sending the atomic operation request into the

ATRQ with BSSync, conventional implementation requires

memory load and the CAS operation. The memory load can

miss on the L1 cache, thus fetching the cache line from the

lower level of the memory hierarchy. The CAS operation can

fail incurring the repetition of the memory load and CAS.

BSSync supports two different types of atomic operations:

atomic-inc/dec and atomic-min/max. The value accompanied

by the atomic operation request is different depending on the

type. For atomic-inc/dec, the ATRQ entry holds the delta for

inc/dec, and the logic layer performs the inc/dec operation

with the delta. For atomic-min/max, the logic layer compares

the value for the datum in the request and the one in the

memory hierarchy and stores the minimum/maximum value

from the comparison.

It should be noted that our mechanism is different from

the studies that bypass the private L1 cache to reduce the

contention at the private L1 cache. Bypassing can help since

it can reduce the contention of invalidation and serialization

due to multiple writers and reduce cache thrashing that evicts

the lines that may be reused shortly. However, bypassing

loses the opportunity of the shorter access latency when the

requested data resides in the L1 cache. When only fetching
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data from the L2 cache, the latency of accessing data will

increase. On the contrary, BSSync increases the reuse at the

private L1 cache reducing cache thrashing and invalidation

by allowing multiple values for the same data and not using

the L1 cache for the no-reuse data.

Our mechanism is also different from write-through policy

where all writes directly go to the shared cache. BSSync

eliminates the memory load within atomic operations for the

low-reuse data, not the store operation, which is required for

whatever policy is used for write.

3) Handling Evictions: BSSync changes how eviction is

handled. When eviction occurs, the memory hierarchy uses

the dirty bit (state bit as modified) to identify if write-back

needs to be performed. Since the state bits of the L1 cache

line of annotated memory objects are always ”clean,” the

line is just evicted from the private cache without performing

write-back on the L2 cache. In fact, the new value should

have already been applied to the L2 cache by performing

the atomic operation on the L2 cache.

When the cache lines in the shared L2 cache are evicted,

BSSync performs similar tasks as in the conventional proto-

col. The dirty lines on the L2 cache are written back to the

DRAM. The atomic operation performed on the L2 cache

changes the state bits of the line so that the new value can

be stored onto DRAM when eviction occurs.

IV. METHODOLOGY

A. Benchmarks and Inputs

We evaluate five ML applications with different inputs:

Least Squares Matrix Factorization (MAT), LASSO regres-

sion (LASSO), Latent Dirichlet Allocation (LDA), Breadth

First Search (BFS), and Single Source Shortest Path (SSSP).

MAT, LASSO, and LDA are from Petuum [5] and utilize

the atomic-inc/dec operation. BFS and SSSP are taken from

implementations provided by Harish et al. [14], [15] and

utilize the atomic-min operation. MAT learns two matrices,

L and R, such that L ∗ R is approximately equal to an

input matrix X . Given a design matrix X and a response

vector Y , LASSO estimates the regression coefficient vector

β, where coefficients corresponding to the features relevant

to Y become non-zero. LDA automatically finds the topics,

and the topics of each document from a set of documents

using Gibbs sampling. BFS expands the Breadth First Search

tree from a given source node, and SSSP calculates the

shortest path for each vertex from the given source vertex.

We port original workloads into pthread workloads utilizing

all available threads.

Tables I and II show the input for our evaluation. Each

data set has varying properties. For each workload, we

measure the workload completion time. Each thread iterates

on a loop until the solution converges. We sum the execution

time of each iteration and use it for performance comparison.

Workloads Inputs

Matrix Factorization (MAT)
729 X 729 matrix
rank : 9, 27, 81

LASSO Regression (LASSO)
50 samples X 1M features
lambda : 0.1, 0.01, 0.001

Latent Dirichlet Allocation (LDA)
20-news-groups data set
topics : 4, 8, 16

Table I: Inputs for MAT, LASSO, and LDA from Petuum [5].

Graph Vertices Edges Characteristic

coAuthorsDBLP (1) 299067 977676
Co-authorship network
generated by DBLP

PGPgiantcompo (2) 10680 24316 PGP trust network

cond-mat-2003 (3) 30460 120029
Co-authorship network of
condensed matter publications

ny sandy (4) 44062 77348 Live Twitter event

Table II: Input Graphs for BFS, and SSSP from Dyno-

Graph [16].

Number of x86 cores 64

x86 core
x86 instruction set(user space)
Out of order execution, 2.4 GHz

On-chip caches

MESI coherence, 64B line, LRU replacement
L1I cache: 16 KB, 8-way assoc, 3 cycles
L1D cache: 16 KB, 4-way assoc, 2 cycles
L2 cache: 2 MB, 4 bank, 16-way assoc, 27 cycles

DRAM
Single controller, 4 ranks/channel, 8 banks/rank
Closed page policy
Latency : 100 cycles

Table III: Baseline Hardware Configuration.

B. Hardware Configurations

For evaluating our hardware mechanism, we utilize

ZSIM [17]. Table III shows the baseline hardware config-

uration on the ZSIM simulator. Not just the core but also

the memory model are modeled in detail. Each core runs

x86 instructions and consists of the execution pipeline, the

private L1 instruction and data caches. In BSSync, each core

is also extended to include the region table, and the control

register. The ATRQ has 64 entries per core and we did not

see resource contention for the ATRQ in the evaluation. The

coherence mode and version number for each cache line are

integrated by extending tag arrays to track the status of the

cache line in the caches. The caches use LRU replacement

policy. A simple logic layer performing atomic operations is

integrated on the caches and DRAM. We assume the single-

cycle latency of performing the atomic operation when the

request reaches the logic layer.

V. RESULTS

A. Overall Performance

Figure 11 shows the speedup of BSSync with the BSP

model and the SSP model with a staleness threshold of two.

Not only with the SSP model, but also with the BSP model,

BSSync reduces the atomic operation overhead. On average,

BSSync outperforms the baseline implementation of SSP

model by 1.83 ÷ 1.37 = 1.33x times and the one of the

BSP model by 1.15x times.
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Figure 11: Speedup of BSSync.

BSSync shows greater benefit on the SSP model due to

two reasons. First, it is because the portion of the atomic

operation for overall execution time is greater on the SSP

model. On the BSP model, stall time still consumes a large

portion of the execution time and has less benefit. Second,

it is because BSSync can better overlap atomic operation

execution with main computation on the SSP model than the

BSP model. On the BSP model, the computation result of

an iteration should be visible to other threads before starting

next iteration, so atomic operations are not fully overlapped

with main computation.

The benefit of BSSync varies depending on workloads

with regard to words per instructions. In general, if a thread

touches more shared data per instruction, the degree of

benefit from BSSync increases. MAT and LDA show a

higher ratio for atomic operations than LASSO; therefore,

they have more benefit with BSSync. LDA shows greater

benefit with increasing topic counts. BFS and SSSP show

the highest benefit with coAuthorsDBLP (1) input, which is

the largest graph in our input sets.

B. Analysis

Figures 12 shows the reduced portion of the atomic pass

in total execution time. Figures 12a shows that the atomic

operation overhead consists of 5% of the execution time on

the BSP model with BSSync. In Figures 12b, the atomic

operation overhead is reduced to 2.3% from 23% of the

baseline implementation of the SSP model. Now, 89% of

the time is spent on the main computation with BSSync for

the SSP model.

A major portion of performance improvements of BSSync

can be attributed to reduced number of memory loads. Per-

forming atomic operations at the core incurs a large number

of memory loads, which inefficiently handles data with

low locality. Contention from multiple cores can incur the

repetition of atomic operations and therefore more memory

loads. Figure 13 shows how BSSync reduces the number of

memory loads by offloading atomic operations to the logic

layer for the SSP model with a staleness threshold of two.

BSSync reduces the number of loads by 33%. Benchmarks
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(a) The BSP Model.
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(b) The SSP Model.

Figure 12: Portion of Each Passes with BSSync.

such as LDA show less than half the number of memory

loads from the baseline with BSSync.
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Figure 13: Reduced Memory Loads on the SSP model.

Contention from multiple cores to write the same cache

line increases memory access latency. The memory latency

is increased due to round trip time to invalidate other
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cores and receive their acknowledgments, and for requesting

and receiving synchronous write-backs. BSSync reduces

memory access latency by reducing on-chip communication,

reduces the upgrade misses by reducing exclusive request,

and sharing misses by reducing invalidations. Figure 14

shows the reduced invalidation traffic with BSSync for the

SSP model with a staleness threshold of two. Invalidation

traffic is reduced to 43% of baseline implementation. On

the majority of the benchmarks, the invalidation traffic is

reduced more than 50% from the baseline, which translates

into a lower completion time.
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Figure 14: Reduced Invalidation Traffic on the SSP model.

BSSync also increases the L1 private cache utilization

efficiency. Performing atomic operations at the core can

incur a large number of accesses to the lower level of the

memory hierarchy due to memory loads for low locality data

in atomic operation. Unnecessary fetches of a word with low

locality can lead to L1 cache thrashing and the cores can

suffer from expensive communication to the lower level of

the memory hierarchy such as the L2 cache and DRAM.

Access to the L2 cache and DRAM is costly since there is

additional latency due to the time spent in the network, and

the queuing delays.

Figure 15 shows a reduced number of accesses to the

L2 cache and DRAM. BSSync better exploits L1 caches by

efficiently controlling communication. BSSync reduces the

capacity misses of the L1 cache by bypassing to the L2 cache

or DRAM, thus reducing evictions of the other L1 cache

lines. In Figures 15a, 15b, BSSync reduces the number of L2

cache read accesses by 40% and reduces DRAM accesses to

42% of the baseline implementation. Benchmarks like MAT

and LDA benefit by reduced L2 cache read accesses and

DRAM accesses. BFS and SSSP also benefit from lower L2

cache access frequency with coAuthorsDBLP (1) input.

Here, we model how BSSync reduces memory waiting

cycles at the cores. An application’s execution time can

be partitioned into computing cycles, memory waiting cy-

cles, and synchronization cycles. The speedup of BSSync

comes from overlapping atomic operations with the main

computation, thus reducing execution time. Figure 16 shows

how memory waiting cycles are reduced with BSSync. On

average, the memory waiting cycles are reduced by 33%.
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(a) L2 Cache Read Accesses.
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(b) DRAM accesses.

Figure 15: Reduced Accesses to the Lower Level of the

Memory Hierarchy with BSSync.
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Figure 16: Total Memory Waiting Cycles on the SSP model.

C. Discussion

1) Comparison with Other Studies: Compared to other

studies focusing on inter-node communication latency,

BSSync tries to improve execution efficiency within a single

node. While most studies relax the consistency so that work-

loads execute in an asynchronous manner, allowing stale-

read, our work focuses on allowing stale-write to reduce the

atomic operation overhead. BSSync can be easily combined

with other studies to further improve overall performance.

2) Thread Migration: So far we have assumed that a

thread executes on a pre-defined physical core and that the

thread is not switched to other cores so that each physical

core tracks the iteration count. If a thread migrates between

cores, modification is required such that all hardware should

use the thread id instead of the physical core id. However,

overall, it is a minor modification and will not affect the

benefit of our mechanism.

3) Future Work: As identified in our work, there ex-

ists workload imbalance between multiple threads in ML

workloads due to the sparse nature of data and value-

dependent computation. For simplicity, we assume a work-

load is statically distributed, so no dynamic work distribution
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mechanism exists on this platform. However, a dynamic

distribution of workload such as work stealing can resolve

the workload imbalance issue and can improve performance.

Thus, our future work will address the coordination of

BSSync with dynamic workload distribution.

Currently, our evaluation is performed within a single

node. Depending on workloads and optimization target, the

workload partitioning decision such as number of nodes and

number of threads within a node can vary. We will perform a

trade-off analysis for each decision on how BSSync changes

the trade-off.

VI. RELATED WORK

Due to the parallel nature of ML algorithms, considerable

effort [18], [19], [20], [21], [22], [23], [24], [25] has

been devoted to improving the performance and efficiency

of ML workloads. Those efforts are categorized in to two

categories: 1) system-oriented and 2) theory-oriented ap-

proaches.

System-oriented approaches focus on high iteration

throughput. Multiple platforms are examples of these

efforts, including the Map-Reduce frameworks such as

Hadoop [26], Spark [27], and graph-based platforms such

as GraphLab [18]. Ahmed et al. [19] propose a parallel

framework for efficient inference in latent variable models.

They ignore consistency and synchronization altogether,

and rely on a best-effort model for updating shared data.

Most solutions based on NoSQL databases rely on this

model. While this approach can work well in some cases,

it may require careful design to ensure that the algorithm

is operating correctly. Low et al. [20] focus on special

communication patterns and propose Distributed GraphLab.

GraphLab programs structure the computation as a graph,

where data can exist on nodes and edges in which all

communication occurs along the edges. Low et al. utilize the

findings that if two nodes on the graph are sufficiently far

apart, they may be updated without synchronization. While

this finding significantly reduces synchronization in some

cases, it requires the application programmer to specify the

communication pattern explicitly. The problem of system-

oriented approaches is that they provide little theoretical

analysis and proof and that they require the programmer

to convert ML algorithm to a new programming model.

On the contrary, theory-oriented approaches focus on

algorithm correctness/convergence and number of itera-

tions for a limited selection of ML models. Agarwal and

Duchi [21] propose a distributed delayed stochastic op-

timization utilizing cyclic fixed-delay schemes. Recht et

al. [22] propose an update scheme, Hogwild!, a lock-free

approach to parallelizing stochastic gradient descent (SGD)

utilizing the findings that most gradient updates modify only

small parts of the decision variables. Zinkevich et al. [23]

propose Naively-parallel SGD and Gemulla et al. [24]

propose Partitioned SGD. The problem of theory-oriented

approaches is that they oversimplify systems issues. The

ideas proposed in those studies are simple to implement but

tend to under exploit the full performance potential due to

this simplification.
LazyBase [25] applies bounded staleness allowing stal-

eness bounds to be configured on a per-query basis. The

consistency model and delaying updates between parallel

threads in LazyBase are similar to our work. ASPIRE [6]

proposes a relaxed consistency model and consistency pro-

tocol coordinating the use of a best effort refresh policy

and bounded staleness for communication latency tolerance

and the stale value usage minimization. ASPIRE enforces

only a single writer for each object which prohibits multiple

machines/threads writes to the single object, while BSSync

does not have such constraints. ASPIRE targets minimizing

inter-node communication overhead, which can be combined

with our work.
The recent emergence of 3D-stacking technology enabled

high performance by incorporating different technologies: a

logic and memory layer that are manufactured with different

processes [7], [8], [9]. So, multiple vendors such as Micron,

are revisiting the concept of processing data where the

data lives, including in-memory atomic operations and ALU

functions. Hybrid Memory Cube technology [13] has simple

in-memory atomic operations. The Automata processor [28]

directly implements non-deterministic finite automata in

hardware to implement complex regular expression. Chu et

al. [29] propose a high level, C++ template-based program-

ming model for processor-in-memory that abstracts out low-

level details from programmers. Nai and Kim [30] evaluates

instruction offloading for graph traversals on HMC 2.0. Kim

et al. [31] studies energy aspect of processor-in-memory for

HPC workloads.

VII. CONCLUSION

The importance of parallel ML workloads for various

application domains has been growing in the big data era.

While previous studies focus on communication latency

between nodes, the long latency and serialization caused by

atomic operations have caused the workloads to have low

execution efficiency within a single node.
In this paper, we propose BSSync, an effective hard-

ware mechanism to overcome the overhead of atomic op-

erations consisting of non-overlapped data communication,

the serialization, and cache utilization inefficiency. BSSync

accompanies simple logic layers at the memory hierarchy

offloading atomic operations to asynchronously execute in

parallel with the main computation, utilizing staleness for

write operations. The performance results show that BSSync

outperforms the asynchronous parallel implementation by

1.33x times.

REFERENCES

[1] R. Zajcew, P. Roy, D. L. Black, C. Peak, P. Guedes, B. Kemp,
J. Loverso, M. Leibensperger, M. Barnett, F. Rabii, and

251



D. Netterwala, “An OSF/1 UNIX for Massively Parallel
Multicomputers,” in USENIX Winter, 1993.

[2] A. C. Dusseau, R. H. Arpaci, and D. E. Culler, “Effective Dis-
tributed Scheduling of Parallel Workloads,” in SIGMETRICS
’96, 1996.

[3] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti,
“The Impact of System Design Parameters on Application
Noise Sensitivity,” Cluster Computing, 2013.

[4] D. Terry, “Replicated Data Consistency Explained Through
Baseball,” Commun. ACM, 2013.

[5] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. Xing, “More Effective
Distributed ML via a Stale Synchronous Parallel Parameter
Server,” in NIPS ’13, 2013.

[6] K. Vora, S. C. Koduru, and R. Gupta, “ASPIRE: Exploiting
Asynchronous Parallelism in Iterative Algorithms Using a
Relaxed Consistency Based DSM,” in OOPSLA ’14, 2014.

[7] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,
L. Xu, and M. Ignatowski, “TOP-PIM: Throughput-oriented
Programmable Processing in Memory,” in HPDC ’14, 2014.

[8] R. Sampson, M. Yang, S. Wei, C. Chakrabarti, and T. F.
Wenisch, “Sonic Millip3De: A Massively Parallel 3D-stacked
Accelerator for 3D Ultrasound,” in HPCA ’13, 2013.

[9] Q. Zhu, B. Akin, H. Sumbul, F. Sadi, J. Hoe, L. Pileggi, and
F. Franchetti, “A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 3DIC ’13,
2013.

[10] L. G. Valiant, “A Bridging Model for Parallel Computation,”
Commun. ACM, 1990.

[11] L. Liu and Z. Li, “Improving Parallelism and Locality with
Asynchronous Algorithms,” in PPoPP ’10, 2010.

[12] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch, “Session Guarantees for
Weakly Consistent Replicated Data,” in PDIS ’94, 1994.

[13] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM
architecture increases density and performance,” in VLSIT
’12, 2012.

[14] P. Harish and P. J. Narayanan, “Accelerating large graph
algorithms on the GPU using CUDA,” in HiPC’07, 2007.

[15] P. Harish, V. Vineet, and P. J. Narayanan, “Large Graph
Algorithms for Massively Multithreaded Architectures,” In-
ternational Institute of Information Technology Hyderabad,
Tech. Rep., 2009.

[16] “DynoGraph,” https://github.com/sirpoovey/DynoGraph,
Georgia Institute of Technology, 2014.

[17] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,” in
ISCA-40, 2013.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “GraphLab: A New Framework For Parallel
Machine Learning,” in UAI ’10, 2010.

[19] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.
Smola, “Scalable Inference in Latent Variable Models,” in
WSDM ’12, 2012.

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud,” in VLDB
’12, 2012.

[21] A. Agarwal and J. Duchi, “Distributed Delayed Stochastic
Optimization,” in NIPS ’11, 2011.

[22] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A Lock-
Free Approach to Parallelizing Stochastic Gradient Descent,”
in NIPS ’11, 2011.

[23] M. Zinkevich, J. Langford, and A. J. Smola, “Slow Learners
are Fast,” in NIPS ’09, 2009.

[24] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-
scale Matrix Factorization with Distributed Stochastic Gradi-
ent Descent,” in KDD ’11, 2011.

[25] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey, III, C. A.
Soules, and A. Veitch, “LazyBase: Trading Freshness for
Performance in a Scalable Database,” in EuroSys ’12, 2012.

[26] “Hadoop,” http://hadoop.aparch.org.

[27] “Spark,” https://spark.apache.org.

[28] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and
H. Noyes, “An Efficient and Scalable Semiconductor Archi-
tecture for Parallel Automata Processing,” IEEE Transactions
on Parallel and Distributed Systems, 2014.

[29] M. L. Chu, N. Jayasena, D. P. Zhang, and M. Ignatowski,
“High-level Programming Model Abstractions for Processing
in Memory,” in WoNDP ’13, 2013.

[30] L. Nai and H. Kim, “Instruction Offloading with HMC 2.0
Standard - A Case Study for Graph Traversals,” in MEMSYS
’15, 2015.

[31] H. Kim, H. Kim, S. Yalamanchili, and A. F. Rodrigues,
“Understanding Energy Aspect of Processing Near Memory
for HPC Workloads,” in MEMSYS ’15, 2015.

252


