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Abstract

While unified virtual memory and demand paging in modern
GPUs provide convenient abstractions to programmers for
working with large-scale applications, they come at a signif-
icant performance cost. We provide the first comprehensive
analysis of major inefficiencies that arise in page fault han-
dling mechanisms employed in modern GPUs. To amortize
the high costs in fault handling, the GPU runtime processes
a large number of GPU page faults together. We observe that
this batched processing of page faults introduces large-scale
serialization that greatly hurts the GPU’s execution through-
put. We show real machine measurements that corroborate
our findings.

Our goal is to mitigate these inefficiencies and enable ef-
ficient demand paging for GPUs. To this end, we propose
a GPU runtime software and hardware solution that (1) in-
creases the batch size (i.e., the number of page faults handled
together), thereby amortizing the GPU runtime fault han-
dling time, and reduces the number of batches by supporting
CPU-like thread block context switching, and (2) takes page
eviction off the critical path with no hardware changes by
overlapping evictions with CPU-to-GPU page migrations.
Our evaluation demonstrates that the proposed solution pro-
vides an average speedup of 2x over the state-of-the-art page
prefetching. We show that our solution increases the batch
size by 2.27x and reduces the total number of batches by 51%
on average. We also show that the average batch processing
time is reduced by 27%.
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1 Introduction

Graphics processing units (GPUs) have been successful in
providing substantial compute performance and have now
become one of the major computing platforms in servers
and datacenters [21, 23]. As an accelerator device, however,
a conventional discrete GPU only allows access to its own
device memory, so programmers need to design their appli-
cations carefully to fit in the limited capacity of the device
memory. This makes it very challenging and costly to run
large-scale applications with hundreds of GBs of memory
footprint, such as graph computing workloads, because it
requires careful data and algorithm partitioning in addition
to purchasing more GPUs just for memory capacity.

To address this issue, recent GPUs support Unified Virtual
Memory (UVM) [1, 38, 39]. UVM provides a coherent view of
a single virtual address space between CPUs and GPUs with
automatic data migration via demand paging. This allows
GPUs to access a page that resides in the CPU memory as
if it were in the GPU memory, thereby allowing GPU appli-
cations to run without worrying about the device memory
capacity limit. As such, UVM frees programmers from tuning
an application for each individual GPU and allows the appli-
cation to run on a variety of GPUs with different physical
memory sizes without any source code changes. This is good
for programmability and portability.

While the feature sounds promising, in reality, the benefit
comes with a non-negligible performance cost. Virtual mem-
ory support requires address translation for every memory
request, and its performance impact is more substantial than
in CPUs because GPUs can issue a significantly larger num-
ber of memory requests in a short period of time [8, 47]. In
addition, paging in and out of GPU memory requires costly
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Figure 1. Working set size vs. active GPU core count. For
most of the regular workloads, the working set size is pro-
portional to the number of active GPU cores. In many large-
scale, irregular applications, however, most memory pages
are shared across GPU cores, so GPU core throttling is in-
effective in reducing the working set size. All lines without
markers are overlapped in each figure.

communications between CPU and GPU over an intercon-
nect such as PCle [44] and an interrupt handler invocation.
Prior work reports that page fault handling latency ranges
from 20us to 50us [53]. We find that these numbers are con-
servative and can be worse depending on the applications
and systems. Unfortunately, this page fault latency, which is
in the order of microseconds, cannot be easily hidden even
with ample thread-level parallelism (TLP) in GPUs, especially
when GPU memory is oversubscribed.

Recently, Li et al. [29] proposed a memory management
framework, called eviction-throttling-compression (ETC), to
improve GPU performance under memory oversubscription.
Depending on the application characteristics, the framework
selectively employs proactive eviction, memory-aware core
throttling (i.e., disabling a subset of GPU cores), and capac-
ity compression techniques. However, for many large-scale,
irregular applications, we found that the ETC framework
is ineffective. First, the proactive eviction heavily relies on
predicting the correct timing to avoid both early and late
evictions. Since irregular applications access a large number
of pages within a short period of time, predicting correct
timing is not trivial [29]. Second, the memory-aware throt-
tling technique aims to reduce the application working set by
disabling a subset of GPU cores. For this to be effective, the
working set size has to be reduced when GPU cores are throt-
tled. This is the case for most regular workloads, as shown in
Figure 1. However, this is not the case for many large-scale,
irregular applications because most of the memory pages are
shared across GPU cores, and thus, memory-aware throttling
is not effective in reducing the working set size.

The goal of this work is to support the efficient execution
of large-scale irregular applications, such as graph comput-
ing workloads, in the UVM model. We first investigate how
the current GPU runtime software and hardware operates

for UVM (Section 2). The GPU runtime processes a group
of GPU page faults together, rather than processing each
individual one, in order to amortize the overhead of multiple
round-trip latencies over the PCle bus and to avoid invoking
multiple interrupt service routines (ISRs) in the operating
system (OS). To efficiently process an excessive number of
page faults, the GPU runtime performs a series of opera-
tions such as preprocessing all the page faults and inserting
page prefetching requests, which takes a significant amount
of time (in the range of tens to hundreds of microseconds).
Once all the operations (e.g., CPU page table walks for all
the page faults, page allocation and eviction scheduling, etc.)
are finished, page migrations between the CPU and the GPU
begin. Section 3 describes our findings in detail along with
the assessment of processing a group of page faults in a real
GPU system.

Based on our in-depth analysis of how the GPU runtime
handles GPU page faults, schedules page migrations, and
interacts with the GPU hardware, we propose two novel tech-
niques that work in synergy: (1) Thread Oversubscription
(TO), a CPU-like thread block context switching technique,
to effectively amortize the GPU runtime fault handling time
by increasing the batch size (i.e., the number of page faults
handled together), and (2) Unobtrusive Eviction (UE) to take
GPU page evictions off the critical path with no hardware
changes based on the idea of overlapping page evictions with
CPU-to-GPU page migrations. The key contributions of this
paper are as follows:

e This is the first work to discuss that a group of page
faults are handled together in a batch in contempo-
rary GPUs. We provide a comprehensive analysis of
major inefficiencies that arise in the batch processing
mechanism.

o Our main insight is that when page migrations account
for a significant portion of the total execution time,
we should consider dispatching more thread blocks to
each GPU core despite the additional cost of (thread-
block) context switches.

o We demonstrate that these inefficiencies can be allevi-
ated with lightweight and practical solutions, thereby
enabling more efficient demand paging for GPUs.

e We improve performance by 2x and 1.79x over the
state-of-the-art page prefetching mechanism [53] and
ETC mechanism [29], respectively.

2 Background

In this section, we first provide a brief background on GPUs
in the context of thread concurrency. We then delve into the
unified virtual memory feature offered by modern GPUs.

2.1 Thread Concurrency in GPUs

GPUs offer a high degree of data-level parallelism by exe-
cuting thousands of scalar threads concurrently. To do so, a
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Figure 2. Overview of how GPU page faults are handled by the GPU runtime.

GPU shader core, such as NVIDIA Streaming Multiproces-
sor (SM), AMD Compute Unit (CU), or Intel Execution Unit
(EU), provides hardware resources that are required to keep
the contexts of multiple threads without doing conventional
context switching. In each architecture, a number of fac-
tors influence thread concurrency. For example, in NVIDIA
GPUs, the maximum concurrency is capped by the maxi-
mum number of threads and thread blocks (e.g., 2048 and 32,
respectively), the register file size (e.g., 64k 32-bit registers),
and the maximum number of registers per thread (e.g., 255),
among others [38]. When a GPU kernel is launched, the GPU
runtime decides the number of thread blocks to dispatch to
each SM based on its hardware resources.

2.2 Unified Virtual Memory in GPUs

Modern GPUs offer unified virtual memory (UVM) that pro-
vides a coherent view of virtual memory address space be-
tween CPUs and GPUs in the system [1, 38, 39]. To do so, the
GPU runtime software and hardware takes care of migrating
pages to the memory of the accessing processor. This elimi-
nates the need for manual page migrations, which greatly
reduces the programmer’s burden. It also allows us to run
GPU applications that are otherwise unable to run due to
memory capacity constraints. In this section, we describe in
more detail how UVM works.

Virtual Memory. To allow any processor in the system
to access the same data, virtual memory support is required.
The virtual-to-physical mapping is stored in a multi-level
page table in GPUs. To translate a virtual address into a
physical address, the GPU performs a page table walk. To ac-
celerate this, translation lookaside buffers (TLBs) are adopted
from CPUs and optimized for GPUs [8, 9, 46, 47]. GPUs ac-
cess an order of magnitude more pages than CPUs, requiring
a commensurate number of translations. In light of this, a
highly threaded page table walker is proposed [47]. A multi-
level page table requires many memory accesses to translate
a single address. Exploiting the fact that the accesses to the
upper-level page table entries have significant temporal lo-
cality, a page walk cache [10] is also adopted for GPUs [47].

Demand Paging. When a GPU tries to access a physical
memory page that is not currently resident in device memory,

the page table walk fails. Then, the GPU generates a page
fault and the GPU runtime migrates the requested page to the
GPU memory. This page fault handling is expensive because
(1) it requires long latency communications between the
CPU and GPU over the PCle bus, and (2) the GPU runtime
performs a very expensive fault handling service routine. To
amortize the overhead, the GPU runtime processes a group
of page faults together, which we refer to as batch processing.

Figure 2 shows an overview of how GPU page faults are
handled by the GPU runtime. When a page fault exception
is raised by the GPU memory management unit (MMU),
the GPU runtime begins to handle the exception (@). The
exception handling starts by draining all of the page fault
buffer entries (page A in the figure). We use one or two
pages in the figure for simplicity, but in reality, a number
of page faults are generated within a short period of time
since thousands of threads are concurrently running un-
der the single-instruction multiple-threads (SIMT) execution
model used in GPUs. To handle a multitude of page faults effi-
ciently, the GPU runtime preprocesses the page faults before
performing page table walks. This preprocessing includes
sorting the page faults in ascending order of page addresses
(to accelerate the page table walks) and the analysis of page
addresses to insert page prefetching requests.! We refer to
the time taken by the GPU runtime to perform a collection
of operations to handle many page faults together as GPU
runtime fault handling time. Specifically, the GPU runtime
fault handling time is defined as the time between the begin-
ning of batch processing and the beginning of the first page
transfer to the GPU’s memory by the runtime. GPU runtime
fault handling time varies depending on the batch size (i.e.,
the number of page faults handled together in a batch) and
contiguity of the pages.

The subsequent page faults generated after the batch pro-
cessing begins (pages B and C in the figure) cannot be han-
dled along with page A. Instead, they are inserted into the
page fault buffer and wait until the current batch is processed

Details on the preprocessing operations performed in real GPU runtime
software can be found in the preprocess_fault_batch() function in
NVIDIA driver v396.37 [41].



(@). Once the page table walks are completed, the GPU run-
time begins to migrate pages to the GPU’s memory (@).
Every time a page is migrated (€)), the GPU MMU updates
its page table and resumes the threads that are waiting for
the page. Once the last page is migrated (€ and @), the
batch’s processing ends. We refer to the time between the
beginning of a batch’s processing and the migration of the
last page as batch processing time. When batch processing
ends, the GPU runtime checks whether there are waiting
page faults (pages B and C in the figure). Then, the GPU
runtime begins to handle them immediately. This is an op-
timization to reduce the unpredictable overhead that arises
due to the interrupt-based service of the OS.2 Otherwise, the
batch processing routine ends (@). This process is repeated
when a new page fault interrupt is raised by the GPU (@).

3 Motivation

We make two observations on the batch processing mecha-
nism. First, batch processing introduces a significant delay
to the subsequent page fault group (or batch). As an exam-
ple, take the page B fault in Figure 2, which is generated
in the GPU after the first batch’s processing begins. Since
it cannot be handled along with page A, it has to wait un-
til the current batch is processed. To provide perspective,
we profile a breadth first search (BFS) application on an
NVIDIA Titan Xp [38] GPU. For this, we use the NVIDIA
Visual Profiler [42] with --unified-memory-profiling and -
-track-memory-allocations on. It provides timestamps for
every event throughout the execution, including when the
runtime starts to handle a GPU page fault group and when
each page migration begins and ends. The GPU runtime fault
handling time is calculated to be the duration between when
it starts to handle a GPU page fault group and when it begins
to migrate the first page of the group. The batch processing
time can be obtained from the timestamps for the GPU page
fault group event. The batch processing time is measured to
be in the range of 223us to 553us with a median of 313us, of
which, GPU runtime fault handling accounts for an average
of 46.69% of the time (measured to be in the range of 50us to
430pus with a median of 140us).

Fundamentally, two methods can mitigate the impact of
this delay. The first method is to reduce the GPU runtime
fault handling time itself by optimizing the GPU runtime
software, which is beyond the scope of our work. The second
method is to amortize the GPU runtime fault handling time.
This can be attained by increasing the batch size (i.e., the
number of page faults handled together in a batch). Figure 3
shows that per-page fault handling time decreases as the
batch size increases.? In Section 4.1, we discuss the reason

?Details on this optimization performed in real GPU runtime software
can be found in the uvm_gpu_service_replayable_faults() function in
NVIDIA driver v396.37 [41].

3Fault handling time per page is calculated by dividing the batch processing
time by the number of pages in the batch.

it is challenging to increase the batch size, and propose a
technique to achieve it.
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Figure 3. Per-page fault handling time (us) vs. batch size
(MB) for breadth first search (BFS) on an NVIDIA Titan Xp
GPU using the NVIDIA Visual Profiler [42].

Second, we observe that page evictions introduce unnec-
essary serialization in page migrations. We examine a GPU
runtime implementation (NVIDIA driver v396.37 [41]) to un-
derstand how modern GPUs perform memory management
and when the decision on eviction is made. When the GPU
runtime handles a page fault, the physical memory allocator
in the GPU runtime tries to allocate a new page (or a free
root chunk) in the GPU memory (alloc_root_chunk()).
If such an allocation fails, which indicates that the GPU
memory runs out of space, a page eviction is requested

(pick_and_evict_root_chunk()). The physical memory man-

ager in the GPU runtime then checks whether it can evict
any user memory chunks to satisfy the request.* Once a suit-
able root chunk is selected for eviction, its eviction flag is set
(chunk_start_eviction()), and subsequently, the eviction
begins (evict_root_chunk()). Once the eviction is com-
pleted, the metadata (e.g., tracker and status data) associated
with the chunk is freed and the frame in the GPU memory
becomes available. Subsequently, the new page migration
begins.

From this, we conclude that page evictions and new page
allocations are serialized in modern GPUs to prevent the
new pages from overwriting the evicted pages. Note that an
eviction is required on every page fault once the pages resi-
dent in the GPU’s memory are at capacity. Figure 4 depicts
these operations. When the GPU runtime fails to allocate
page A, it initiates an eviction of page X, reactively (). Once
page X is evicted from the GPU’s memory, both the master
page table in the CPU’s memory and the GPU page table
are updated for the evicted page X, and the frame is freed (
@). Once the frame is freed, page A’s migration begins (@
). In Section 4.2, we propose a technique to eliminate this
serialization.

4All allocated user memory root chunks are tracked in an LRU list
(root_chunks.va_block_used). A root chunk is moved to the tail of the
LRU list whenever any of its sub-chunks is allocated. This is the policy
referred to as aged-based LRU in literature [4, 5, 29]. To examine the head
of the LRU list, 1list_first_chunk() is used.
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Figure 4. Overview of how and when GPU runtime evicts a
page from GPU memory, and why it is on the critical path.

4 Challenges and Solutions

In this section, we present two techniques to mitigate the
inefficiencies described in Section 3. In Section 4.1, we pro-
pose a technique that increases the batch size to amortize the
GPU runtime fault handling time and reduce the number of
batches. In Section 4.2, we propose a technique that reduces
the page migration time by overlapping page evictions with
CPU-to-GPU page migrations without relying on precise
timing of evictions.

4.1 Thread Oversubscription

In GPUs, the primary execution unit is a warp, which is a
collection of scalar threads (e.g., 32 in NVIDIA GPUs) that
run in a single-instruction multiple-thread (SIMT) fashion. A
warp is stalled once it generates a page fault. Provided that
only up to 64 warps (or 2048 threads) can concurrently run
in an SM [38, 39], it does not take much time before the GPU
becomes crippled due to lack of runnable warps. The num-
ber of concurrently running threads has been engineered to
provide enough TLP to hide memory latencies in traditional
GPUs, where no page migrations between the CPU and GPU
occur. We find that the level of thread concurrency opti-
mized for traditional GPUs is not sufficient to amortize the
GPU runtime fault handling time in the presence of demand
paging.

Two approaches can increase the batch size. The first ap-
proach is to use the stalled warps to generate more page
faults. For this, runahead execution [36] or speculative ex-
ecution [18, 19, 31] techniques can be employed. However,
these techniques are likely less effective to generate a large
number of page faults in a short amount of time because
each thread block typically runs short due to the GPU pro-
gramming model. The second approach is to increase thread
concurrency by dispatching more thread blocks to an SM.
However, the number of threads (or thread blocks) per SM is
dictated by the physical resource constraint. We want a solu-
tion that can increase thread concurrency without increasing
the physical resource requirement.

To this end, we develop thread oversubscription, a GPU vir-
tualization technique. We utilize the Virtual Thread (VT) [52]
as our baseline architecture for GPU virtualization. The VT
architecture assigns thread blocks up to the capacity limit

(i.e., physical resource constraints, such as register file and
shared memory), while ignoring the scheduling limit (i.e.,
scheduler resource constraints, such as program counters
and SIMT stacks). It dispatches thread blocks in active and
inactive states, such that the number of active thread blocks
does not exceed the scheduling limit. Once all the warps in
an active thread block are descheduled due to long latency
operations, the active thread block is context switched, and
the next ready, but inactive, thread block takes its place. Since
both active and inactive thread blocks fit within the capacity
limit, the need to save and restore large amounts of contexts
(e.g., register files) is obviated.

Our primary objective is to increase the batch size to
amortize the impact of batch processing rather than just
to increase TLP. However, we found that baseline VT is not
applicable to most of our evaluated graph workloads as is
because not enough resources are available to host even a sin-
gle additional thread block. The reason is that the number of
thread blocks that can be scheduled to an SM is often limited
by the maximum number of threads per SM for most graph
workloads. When the maximum number of threads per SM
is scheduled to an SM, the maximum number of registers per
SM is easily exhausted. Take NVIDIA Titan Xp [38] as an
example. If the maximum number of threads per SM is 2048
and the maximum number of registers per SM is 65536 [38],
each thread can use up to 32 registers. If each thread uses
more than 16 registers (i.e., a half of 32 registers), which is
the case for most of our evaluated workloads, baseline VT
cannot host even a single additional thread block due to the
register file resource constraints.
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Figure 5. Performance degradation when provisioning an
additional thread block to each SM requires context switch-
ing in traditional GPUs.

Hosting an additional (or more) thread blocks in an SM
in this case requires more expensive thread-block context
switching [30, 43, 49, 52]. This includes saving and restoring
the per-thread-block state information (e.g., warp identifiers,
thread block identifiers, and SIMT stack including the pro-
gram counter) and register files to the global memory. Note
that using shared memory to store the context information



is no longer feasible.’ This cost is intolerable in the tradi-
tional GPU computing model (i.e., when no page migrations
between CPU and GPU memory occur). Figure 5 shows the
performance impact assuming we provision an additional
thread block to each SM with context switching in tradi-
tional GPUs. We see that the context switching overhead
leads to a non-negligible performance degradation across
all the evaluated workloads (49% on average). This indicates
that the context switching overhead caused by adding an
additional thread block to each SM outweighs the benefit of
increasing thread concurrency if the running workloads fit
in the GPU memory.

However, we observe that in the presence of page migra-
tions between CPU and GPU memory, increasing thread con-
currency is beneficial despite the expensive context switch-
ing overhead. To this end, we extend VT in three ways. First,
we employ an additional mapping table so that different Vir-
tual Warp IDs (VWIs) can access the same set of register files
when they are context switched. Note that VWI is a unique
warp identifier across all the assigned warps to an SM, in-
cluding both active and inactive thread blocks [52]. Only
when a thread block finishes execution are its VWIs released
and reused for another thread block. Second, we extend the
operation performed by the Virtual Thread Controller (VTC).
The VTC keeps track of the state of all thread blocks in order
to determine which thread blocks can be brought back from
the inactive to an active state, or vice versa, when a thread
block is swapped out. Baseline VT only stores the per-thread-
block state information in the shared memory through the
context handler. We extend this operation to store register
files as well. Since the register files that a thread block uses
can easily exceed tens of KBs, we use global memory instead
of shared memory.

Third, we dynamically control the degree of thread over-
subscription based on the rate at which premature eviction
occurs. Premature eviction occurs when a page is evicted
earlier than it should be, and a page fault is generated for
the page again by the GPU. Since thread oversubscription in-
creases the number of concurrently running threads, it may
lead to an increase in the working set size, which increases
the likelihood of premature evictions. This is detrimental be-
cause when premature eviction occurs, the evicted page has
to be brought back to the GPU memory. On the other hand,
an increase in thread concurrency can lead to better page
utilization, reducing premature evictions. Hence, we modify
the GPU runtime to monitor premature eviction rates and
dynamically control the degree of thread oversubscription.

> Assume each thread block consists of 2048 threads and each thread uses 10
32-bit registers. In this case, 85KB = 80KB (2048 * 10 * 4 bytes) for register
files + 5KB for thread block state information has to be stored and restored
for context switching. The size of the thread block state information is
estimated according to [52]. According to [38, 39], shared memory size can
be configured up to 64KB per SM. Therefore, it is infeasible to use shared
memory for context switching.
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Figure 6. Thread oversubscription scheme.

In Section 6.1, we provide a detailed analysis of the impact on
premature eviction that the thread oversubscription causes.

Figure 6 shows how our thread oversubscription technique
works. We enable thread oversubscription from the begin-
ning of the execution by allocating one additional thread
block to each SM (@). The thread block additionally allocated
to each SM is inactive at first. It is important to note that the
number of active thread blocks does not exceed that of the
baseline, which is determined by the physical resource con-
straints. Once all of the warps in an active thread block are
stalled due to page faults, the thread oversubscription mech-
anism context switches the active (but stalled) thread block
with an inactive thread block (@). The thread oversubscrip-
tion mechanism can be detrimental if it causes premature
evictions. To prevent this, the GPU runtime monitors the
premature eviction rates by periodically estimating the run-
ning average of the lifetime of pages by tracking when each
page is allocated and evicted. We use the running average as
an indicator of premature evictions. If the running average
is decreased by a certain threshold, the thread oversubscrip-
tion mechanism does not allow any more context switching
by decrementing (and limiting) the number of concurrently
runnable thread blocks (@)).° Otherwise, thread oversubscrip-
tion allocates one additional thread block to each SM in an
incremental manner.

Figure 7 demonstrates how our thread oversubscription
technique can increase the batch size. For ease of explana-
tion, we assume that up to one thread block (TB) can be
dispatched to an SM. We also assume that pages A, B, and C
are accessed by TB1, and page D is accessed by TB2. In the
baseline, TB2 can be executed only after TB1 is retired. With
thread oversubscription, TB1 is context switched with TB2
when all of its warps are stalled (after a page fault for page C
is generated). After the context switching overhead, TB2 is
executed and a page fault for page D is generated, which can
be handled along with those for pages B and C. Once page C
is migrated, TB1 can be resumed and retired. Once page D is
migrated, TB2 is context switched in, resumed, and retired.

The number of concurrently runnable thread blocks is set to the number of
allocated thread blocks at first. This does not mean all of them are running
simultaneously. The warp scheduler picks a warp from active thread blocks
only.
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As we can see in the figure, thread oversubscription elimi-
nates the need for the third batch, reducing the overall batch
processing time. Note that the GPU runtime fault handling
time for the second batch is slightly increased to handle an
additional page fault for page D.

4.2 Unobtrusive Eviction

While the thread oversubscription technique alleviates the
performance impact of demand paging by amortizing the
GPU runtime fault handling time and reducing the number
of batches, there is an opportunity to reduce the page mi-
gration time itself. Figure 8 shows the performance impact
of page eviction by comparing the performance of a GPU
with 50% memory oversubscription (denoted as baseline) to
the performance of a GPU with unlimited memory, where
no page evictions occur. The GPU with 50% memory over-
subscription experiences an average performance loss of
46%. We compare this to the performance of a GPU with an
instant page eviction capability (denoted as ideal eviction).
Removing the page eviction latency achieves an average
performance improvement of 16%. To this end, we propose
unobtrusive eviction, a mechanism that eliminates the page
eviction latency by overlapping page evictions with page
migrations to the GPU.
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Figure 8. Performance of a GPU with 50% memory oversub-
scription compared to a GPU with unlimited memory, and
how the performance changes with ideal eviction.

DMA engines in modern CPUs and GPUs [6, 7, 40, 44, 45]
allow bidirectional transfers. However, page evictions and
new page allocations are serialized to prevent the new page

from overwriting the evicted page, as discussed in Section 3.
Our goal is to devise a mechanism that exploits bidirectional
transfers without violating the serialization requirement. The
key idea is to preemptively initiate a single page’s eviction
and enable pipelined bidirectional transfers afterwards. To
perform this preemptive eviction promptly at the beginning
of batch processing, we modify the GPU runtime and add
a new GPU memory status tracker. This does not affect the
GPU runtime fault handling performance since the tracking
is performed only when a new page is allocated in the GPU’s
memory.

When a page fault interrupt is raised by the GPU MMU, the
top-half interrupt service routine (ISR) responds. It checks
whether the number of GPU resident pages is at capacity via
the GPU memory status tracker. If so, it sends a preemptive
eviction request to the GPU. The rest of the fault handling
(e.g., preprocessing of the page faults, CPU-side page table
walks) is performed by the bottom-half ISR. Since the GPU
runtime fault handling time (i.e., the time between when
a batch’s processing begins and when the first page migra-
tion for the batch begins) is at least tens of microseconds,
the single page eviction is completed before the first page
migration begins. By doing so, the first page migration can
proceed without any delay. If a subsequent page eviction is
required, the bottom-half ISR of the GPU runtime schedules
the next page eviction along with the page migration to the
GPU memory. Note that since the single page preemptive
eviction is initiated by the GPU runtime when the batch pro-
cessing begins, no additional overhead (e.g., communications
with GPU) is required. Figure 9 shows how the unobtrusive
eviction is implemented.

GPU Runtime 1
Raise a page fault interrupt
Top-half ISR 9 GPU
@ Preemptive Eviction Request MMU

GPU Memory Status Tracker

4.1. Preprocess page fault group
[ Bottom-half ISR @ [ 2.2 Perform CPU-side page table walks
4.3. Schedule page migrations

‘ Preemptive Eviction |
[ CPU Memory GPU Memory ]

@ sidirectional Migrations

Figure 9. Unobtrusive eviction scheme.
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Figure 10. Overview of how unobtrusive eviction works.

Figure 10 provides a timeline example of how the unobtru-
sive eviction works. When the GPU runtime begins a batch’s
processing, it checks the GPU memory status. If it is at ca-
pacity, it initiates a single page eviction (@). Once page X is
evicted from the GPU’s memory, both CPU and GPU page ta-
bles are updated (@). Unlike the baseline case (Figure 4), page
A can be migrated to the GPU memory without any delay (€
). At the same time, page Y can be evicted using bidirectional
transfers. Since the data transfer speed from the GPU to CPU
memory is faster than the other way around [29], eviction
is completely unobtrusive and migrations to the GPU can
occur without any delay.

5 Evaluation

In this section, we describe our evaluation methodology and
evaluate our proposed techniques. We provide more detailed
analyses in Section 6.

5.1 Methodology

Simulator. We use MacSim [27], a cycle-level microar-
chitecture simulator. We modify the simulator to support
virtual memory, demand paging [4, 5, 8, 9, 29, 38, 39, 45, 53],
and the Virtual Thread (VT) [52]. Our virtual memory imple-
mentation includes TLBs, page tables, and a highly threaded
page table walker [46, 47, 53]. Demand paging is modeled
based on the GPU runtime software for NVIDIA PASCAL
GPUs (driver v396.37) [4, 5, 38, 40, 41, 45]. We also model
the batch processing mechanism that handles a multitude
of outstanding faults together. We use a 1024-entry fault
buffer [45] to handle up to 1024 simultaneous page faults.
The page table walker is shared across all the SMs in the
GPU, allowing up to 64 concurrent page walks [47]. Each
TLB contains the miss-status-holding-registers (MSHRs) to
track in-flight page table walks [53].

We use 20ys as the conservative value for the GPU runtime
fault handling time similar to other works [8, 9, 29, 44, 53].
The benefits of our mechanism would be more pronounced
if this overhead were larger, which is often the case based
on our profiling experiments. We also employ the state-of-
the-art page prefetching mechanism [53]. The GPU memory
capacity is configured to be fractions (50% and 75%) of the
memory footprint of each workload as in prior works [29,
53]. We use LRU for page replacement policy [4, 5, 45]. We

include the context switching overhead (i.e., timing overhead
of storing and restoring context, such as register files and
per-thread-block state information, to/from global memory
whenever a context switch occurs) in the evaluation for
thread oversubscription. For premature eviction rates, we
calculate the running average of the lifetime of pages at every
100k cycles. The threshold is empirically set to 20% for our
evaluation.

We also evaluate unobtrusive eviction using the simulator,
in which we faithfully model the scheme described in Sec-
tion 4.2. We were not able to implement the mechanism in
real NVIDIA runtime software because the open source part
of the runtime software does not include the part where it
interacts with the driver entirely. Table 1 shows the configu-
ration of the simulated system.

Table 1. Configuration of the simulated system.

GPU Configuration

Core 16 SMs, 1GHz, 1024 threads per SM,
256KB register files per SM

Private L1 Cache 16KB, 4-way, LRU, L1 misses are

coalesced before accessing L2

Private L1 TLB 64 entries per core, fully associative, LRU

Memory Configuration

Shared L2 Cache  2MB total, 16-way, LRU

Shared L2 TLB 1024 entries total, 32-way associative, LRU

Memory 200 cycle latency

Unified Memory Configuration

Fault Buffer 1024 entries

Fault Handling 64KB page size, 20pus GPU runtime fault

handling time, 15.75GB/s PCle bandwidth

Workloads. We select 11 workloads from the GraphBIG
benchmark suite [37]. These include Betweenness Central-
ity (BC), Breadth-First Search (BFS), Graph Coloring (GC),
Single-Source Shortest Path (SSSP), K-core decomposition
(KCORE), and Page Rank (PR). BC is an algorithm that de-
tects the amount of influence a node has over the flow of
information in a graph [33]. Graph traversal is the most
fundamental operation of graph computing, for which we
include five different implementations of BFS: data-warp-
centric (DWC), topological-atomic (TA), topological-frontier
(TF), topological-thread-centric (TTC), and topological-warp-
centric (TWC). GC performs the assignment of labels or col-
ors to the graph elements (i.e., vertices or edges) subject
to certain constraints [22, 24], for which we include two
different implementations: data-thread-centric (DTC) and
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Figure 11. Performance comparison among baselines with the state-of-the-art page prefetching [53] with and without PCle
compression, eviction-throttling-compression (ETC) [29], and our proposed mechanisms (thread oversubscription is denoted
as TO, and unobtrusive eviction is denoted as UE), normalized to the baseline.

topological-thread-centric (T'TC). KCORE partitions a graph
into layers from external to more central vertices [34]. SSSP
finds the shortest path from the given source to each ver-
tex, for which we include a topological-warp-centric (TWC)
implementation. PR is an algorithm that evaluates the impor-
tance of web pages [16]. The footprints of these workloads
range from 26MB to 349MB, with an average of 74MB. Im-
practically long simulation times prevent us from using the
entire real-world data set. Note, however, that the footprints
are larger than the ones used in prior works [29, 53].

5.2 Performance

Figure 11 shows the performance of the proposed thread
oversubscription and unobtrusive eviction mechanisms (de-
noted as TO and UE, respectively). The performance is nor-
malized to that of a baseline (denoted as BASELINE) that uses
the state-of-the-art page prefetching technique, proposed
by Zheng et al. [53]. We also evaluate how the performance
changes when PCle (de)compression is utilized (denoted as
BASELINE with PCle Compression). Last, we compare our
mechanisms with the eviction-throttling-compression (ETC)
mechanism [29]. Our mechanism (TO+UE) achieves an aver-
age speedup of 2x and 1.81x relative to the BASELINE and
BASELINE with PCle Compression, respectively. Our mecha-
nism even outperforms ETC by 79% on average. ETC includes
three components: proactive eviction (PE), memory-aware
throttling (MT), and capacity compression (CC). However,
the authors of ETC disable PE for irregular applications as
it hurts performance, and we replicate this behavior.” The
memory-aware throttling (MT) technique can be beneficial
when memory is oversubscribed if it can reduce the working
set size and thus decrease the page thrashing rates.® How-
ever, as we discussed in Section 1, since most of the memory

"We faithfully model ETC to the best of our knowledge.
8When triggered, MT statically throttles half of the SMs in the beginning.
After the initial phase, it repeats two epochs, the detection epoch and the

pages are shared in many large-scale, irregular workloads,
MT is not effective.

The performance improvement achieved by our mecha-
nism is mainly attributed to the following two key factors.
First, as described in Section 4.1, our thread oversubscription
technique effectively reduces the total number of batches,
thereby mitigating the overall page fault handling overhead.
For the evaluated workloads, we see that the number of
batches is reduced by 51% on average because we process
2.27x more page faults per batch, as shown in Figures 12
and 13. This corroborates our observation that it is benefi-
cial to increase thread concurrency in the presence of fre-
quent page migrations, even at the cost of expensive context
switches.
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Figure 12. Total number of batches.

Second, the unobtrusive eviction technique reduces the
average batch processing time significantly. As seen in Fig-
ure 14, when employed with the thread oversubscription
technique, it reduces the average batch processing time by
60%. The unobtrusive eviction technique is more effective in
larger batches, where the page migration time dominates the

execution epoch. Depending on the behavior monitored during the detection
epoch, MT decides to throttle or unthrottle SMs.
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overall batch processing time, and the thread oversubscrip-
tion technique provides that opportunity. The unobtrusive
eviction technique is particularly effective for BFS-DWC. From
further investigation, we see that BFS-DWC has an extremely
high divergent memory access pattern. Because of this, con-
stant page thrashing occurs throughout the execution. There-
fore, the unobtrusive eviction technique, which hides the
eviction latency, leads to a 4.13x performance improvement.
When both of them are employed (denoted as TO+UE), we
find that the average batch processing time is reduced by
27% compared to the baseline even though we handle more
page faults per batch. As a result, the thread oversubscrip-
tion technique achieves 22% performance improvement and
the unobtrusive eviction technique achieves 61% additional
performance improvement, as shown in Figure 11.
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Figure 14. Average batch processing time.

6 Analysis

In this section, we provide in-depth analyses of our proposed
mechanisms.

6.1 Effect on Premature Eviction

Since the thread oversubscription technique increases the
batch size, premature evictions can also increase. Therefore,
premature eviction is a key metric to evaluate the efficacy
of the thread oversubscription technique. Figure 15 shows

how the premature evictions change when the thread over-
subscription technique is employed, compared to the base-
line. Surprisingly, the thread oversubscription technique de-
creases premature evictions in most of the workloads. The
reason is that it increases the likelihood of GPU resident
pages being used before evicted. This is particularly the case
for topological graph workloads since the input graph is
traversed or processed in a topological order by each thread
block in the topological graph workloads. Since the thread
oversubscription technique increases thread concurrency
and makes their memory accesses more parallel, there is a
higher chance of concurrently running thread blocks access-
ing similar sets of pages while they are residing in the GPU
memory.
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Figure 15. Premature eviction comparison.

The only exception is BFS-TWC. This happens when the
working sets of existing thread blocks and additional thread
blocks (context switched in) are distinct (as in the case of
BFS-TWC), thrashing each other. We observe that premature
evictions increase as we increase the number of concurrently
runnable thread blocks for some workloads (e.g., BFS-TWC
and SSSP-TWC). In the case of BFS-TWC, the premature evic-
tions increase by 4% and 38% compared to the baseline as
we increase the number of concurrently runnable thread
blocks by 2x and 3x, respectively. In the case of SSSP-TWC,
the premature evictions decrease by 2% but increased by 27%
compared to the baseline as we increase the number of con-
currently runnable thread blocks by 2x and 3x, respectively.
As shown in Figure 15, however, this detrimental effect is
delimited since our technique monitors the premature evic-
tion rates and dynamically controls the degree of thread
oversubscription, as described in Section 4.1.

6.2 Effect on Batch Size

Figure 16 compares the distribution of batch size. Batch size
is computed as the summation of all the pages in each batch
in size. Efficiency is computed as the reciprocal of an av-
erage time to handle each page. The line chart shows that
as the number of page faults per batch increases, efficiency
increases since the GPU runtime fault handling time is amor-
tized. It is clearly seen that bigger batches appear when the
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Figure 16. Batch size comparison.

thread oversubscription is employed. From this, we conclude
that thread oversubscription effectively increases the batch
size.

6.3 Sensitivity to Oversubscription Ratio

Figure 17 shows the performance impact of memory over-
subscription (bar chart) and the performance improvement
of the unobtrusive eviction technique (line chart) when the
memory oversubscription ratio is varied from 0.1 (i.e., the
GPU physical memory capacity is set to 10% of each appli-
cation’s working set size) to 1.0 (i.e., all application data fits
in the GPU memory). We observe the following. First, the
performance impact of memory oversubscription increases
as the GPU memory becomes smaller. With smaller GPU
memory, a smaller fraction of the application fits in the GPU
memory. This causes more frequent page evictions to oc-
cur, requiring more page migrations between the CPU and
GPU. Second, the unobtrusive eviction technique provides
a scalable performance benefit. Obviously, when all appli-
cation data fits in the GPU memory, it is ineffective (i.e.,
speedup of 1). As the memory size becomes smaller, its effi-
cacy increases, as page evictions occur more frequently. The
unobtrusive eviction technique provides an average speedup
of 1.63x when the oversubscription ratio is 0.1. Therefore,
we conclude that the unobtrusive eviction technique can
provide a commensurate amount of performance benefit as
the application requires more memory.
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Figure 17. Sensitivity to memory oversubscription ratio.

6.4 Sensitivity to GPU Fault Handling Time

Figure 18 shows the average performance improvement of
all workloads when the GPU runtime fault handling time is
varied from 20us to 50us. Each bar is normalized to its own
baseline (i.e., baseline configuration with 20us, 30us, 40us,
and 50ps). The data shows that the performance improve-
ment that our proposed techniques can bring increases as the
GPU runtime fault handling time becomes larger. To give per-
spective, we profile a regular application (e.g., vectoradd) in
addition to the BFS measurement (Section 4.1). We observe
that the GPU runtime fault handling time is higher for an
irregular application (with a minimum of 50us) than for a
regular application (with a minimum of 20us). Provided that
a batch processing usually takes more than 300us in real
GPUs, we believe that our proposed techniques can bring
higher performance improvement when employed in real
GPUs.

GPU Runtime Fault Handling Time (us)

Figure 18. Sensitivity to the GPU fault handling time.

6.5 Context Switching Overhead

For thread oversubscription evaluation, we include the con-
text switching overhead (i.e., timing overhead of storing
and restoring context, such as register files and per-thread-
block state information, to/from global memory whenever
a context switching occurs). Although not shown, we also
evaluated a close-to-ideal context switching overhead using
an infinite-size shared memory. For this infinite-size shared
memory, we used the latencies computed according to Equa-
tions 1 and 2 in [52] as follows:

Context (Bits)
Bandwidth (Bits Per Cycle)

For example, assume that a shared memory has 32 banks,
and each bank provides 32-bit data per cycle. The total band-
width of the shared memory is 1024 bits per cycle. For a
thread block that consists of 2048 threads where each thread
uses 10 32-bit registers, the total context size is estimated
to be 85KB (see footnote 5). In this case, the close-to-ideal
context switching overhead is computed as 680 cycles, which
is less than a microsecond. From this, we observed that the

Overhead (Cycles) =




overall execution time is insensitive to the context switching
overhead.

7 Related Work

To our knowledge, this paper provides the first comprehen-
sive analysis of where the major inefficiencies arise in the
page fault handling mechanism used in modern GPUs [4, 5,
38, 39, 45], and proposes a solution to mitigate the inefficien-
cies and regain the performance lost due to demand paging.
This section briefly discusses related work.

Virtual Memory Support in GPUs. Address translation
is required for memory references in virtualized memory.
The performance implications of address translation are
widely known, and considerable research has been done to
reduce the overheads [10-15, 25, 32, 35, 46, 47, 50, 51]. Power
et al. [47] study a memory management unit (MMU) design
for GPUs and propose per-compute unit TLBs and a shared
page walk unit. Pichai et al. [46] also explore GPU MMUs and
propose modest TLB and page table walker augmentations.
Ausavarungnirun et al. [8] propose a GPU memory manager
that provides an application-transparent multiple page size
support in GPUs to increase the TLB reach. Ausavarungnirun
et al. [9] propose an address-translation-aware GPU mem-
ory hierarchy design that reduces the overhead of address
translation by prioritizing memory accesses for page table
walks over data accesses. Shin et al. [48] propose a SIMT-
aware page table walk scheduling mechanism to improve
address translation performance in irregular GPU workloads.
Cong et al. [17] propose a two-level TLB design for a unified
virtual address space between the host CPU and customized
accelerators.

Demand Paging in GPUs. Unlike traditional GPUs, where
GPU runtime must migrate all pages to the GPU memory
before launching a kernel, modern GPUs support on-demand
page faulting and migration (i.e., demand paging) [4, 5, 38,
39, 45]. The demand paging support eliminates the need for
manual data migration, thereby reducing programmer effort
and enabling GPU applications to compute across datasets
that exceed the GPU memory capacity. However, its impli-
cation on performance is considerable and has been studied
a lot recently [2, 3, 8, 9, 20, 26, 28, 29, 53]. Zheng et al. [53]
explore the problem of PCle bus being underutilized for
demand-based page migration and propose a software page
prefetcher to better utilize PCle bus bandwidth and hide
page migration overheads. Agarwal et al. [2] investigate the
problem of demand-based page migration policy and pro-
pose using virtual-address-based program locality to enable
aggressive prefetching and achieve bandwidth balancing.
Agarwal et al. [3] further explore page placement policies
and propose using characteristics (i.e., bandwidth) of het-
erogeneous memory systems and program-annotated hints

to maximize GPU throughput on a heterogeneous memory
system.

Li et al. [29] propose ETC, a memory management frame-
work to improve GPU performance under memory oversub-
scription. The ETC framework categorizes applications into
three categories (regular applications with and without data
sharing, and irregular applications) and applies three tech-
niques (proactive eviction, memory-aware throttling, and
capacity compression) differently. The proactive eviction
mechanism is ineffective (or rather detrimental) for irregular
applications. The reason is that it heavily relies on predicting
correct timing to avoid both early and late evictions. Since
irregular applications access a large number of pages within
a short period of time, it becomes ineffective. However, our
UE mechanism relies on neither the timing nor size predic-
tion. All we need is to initiate a single page eviction before
the first page migration begins. This is based on our in-depth
analysis of how GPU runtime schedules page migrations and
how it interacts with the DMA engine and the GPU hard-
ware (via command buffer). Their memory-aware throttling
and capacity compression techniques are orthogonal to our
work.

8 Conclusion

We proposed a GPU runtime software and hardware solu-
tion that enables efficient demand paging for GPUs. To this
end, we first inspected a real GPU runtime software im-
plementation to find major sources of inefficiencies in the
page fault handling mechanisms employed in modern GPUs.
Based on two key observations we made (the large scale
serialization introduced by the batch processing mechanism
and the serialization observed in the page migrations), we
proposed two co-operative techniques: (1) thread oversub-
scription, which increases the batch size to amortize the
GPU runtime fault handling time and reduce the number of
batches, and (2) unobtrusive eviction, which eliminates the
page migration delay caused by page evictions. Our exten-
sive evaluation showed that the proposed solution achieves
an average speedup of 2x over the baseline that employs the
state-of-the-art prefetching.

Acknowledgments

We thank the anonymous reviewers and HPArch group mem-
bers for their feedback. This research was partially supported
by Intel Corporation.

References

[1] Advanced Micro Devices Inc. 2012. AMD Graphics Cores Next (GCN)
Architecture. https://www.amd.com/Documents/GCN_Architecture_
whitepaper.pdf.

[2] Neha Agarwal, David Nellans, Mike O’Connor, Stephen W. Keckler,
and Thomas F. Wenisch. 2015. Unlocking Bandwidth for GPUs in
CC-NUMA Systems. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA).


https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

(3]

—
N=)
—

(10]

(11]

[12

—

[13

—_

[14

=

[15

—

(16]

(17]

(18]

(19]

Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and
Stephen W. Keckler. 2015. Page Placement Strategies for GPUs Within
Heterogeneous Memory Systems. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Nikoly Akhenykh. 2017. Unified Memory On Pascal and Volta.
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-
nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf.
Nikoly Akhenykh. 2018. Everything You Need to Know About Unified
Memory. http://on-demand.gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-know-about-unified-memory.pdf.
AMD. 2011. AMD Accelerated Processing Units. https://www.amd.
com/us/products/technologies/apu/Pages/apu.aspx.

AMD. 2012. AMD Graphics Cores Next (GCN) Architecture. https:
/Iwww.amd.com/Documents/GCN_Architecture_whitepaper.pdf.
Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu.
2017. Mosaic: A GPU Memory Manager with Application-transparent
Support for Multiple Page Sizes. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata
Ghose, Jayneel Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur
Mutlu. 2018. MASK: Redesigning the GPU Memory Hierarchy to Sup-
port Multi-Application Concurrency. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation
Caching: Skip, Don’T Walk (the Page Table). In Proceedings of the
International Symposium on Computer Architecture (ISCA).

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating Two-dimensional Page Walks for Virtual-
ized Systems. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS).

Abhishek Bhattacharjee. 2013. Large-reach Memory Management
Unit Caches. In Proceedings of the International Symposium on Microar-
chitecture (MICRO).

Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011.
Shared Last-level TLBs for Chip Multiprocessors. In Proceedings of the
International Symposium on High Performance Computer Architecture
(HPCA).

Abhishek Bhattacharjee and Margaret Martonosi. 2009. Characteriz-
ing the TLB Behavior of Emerging Parallel Workloads on Chip Multi-
processors. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT).

Abhishek Bhattacharjee and Margaret Martonosi. 2010. Inter-core Co-
operative TLB for Chip Multiprocessors. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-scale
Hypertextual Web Search Engine. In Proceedings of the International
Conference on World Wide Web (WWW).

Jason Cong, Zhenman Fang, Yuchen Hao, and Glenn Reinman. 2017.
Supporting Address Translation for Accelerator-Centric Architectures.
In Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA).

Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano.
2016. A Survey on Thread-Level Speculation Techniques. ACM Comput.
Surv. 49, 2, Article 22 (June 2016), 39 pages. https://doi.org/10.1145/
2938369

Xu Fan, Shen Li, and Wang Zhiying. 2012. HVD-TLS: A Novel Frame-
work of Thread Level Speculation. In International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019.
Interplay Between Hardware Prefetcher and Page Eviction Policy in
CPU-GPU Unified Virtual Memory. In Proceedings of the International
Symposium on Computer Architecture (ISCA).

Google. [n.d.]. Google GPUs Cloud Computing. https://cloud.google.
com/gpu.

Andre Vincent Pascal Grosset, Peihong Zhu, Shusen Liu, Suresh
Venkatasubramanian, and Mary Hall. 2011. Evaluating Graph Coloring
on GPUs. In Proceedings of the Symposium on Principles and Practice of
Parallel Programming (PPoPP).

IBM. [n.d.]. GPUs Cloud Computing. https://www.ibm.com/cloud/
gpu.

Mark T. Jones and Paul E. Plassmann. 1993. A Parallel Graph Coloring
Heuristic. SIAM J. Sci. Comput. 14, 3 (May 1993), 654-669. http:
//dx.doi.org/10.1137/0914041

Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the Dis-
tance for TLB Prefetching: An Application-driven Study. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

Jens Kehne, Jonathan Metter, and Frank Bellosa. 2015. GPUswap:
Enabling Oversubscription of GPU Memory Through Transparent
Swapping. In Proceedings of the International Conference on Virtual
Execution Environments (VEE).

Hyesoon Kim, Jaekyu Lee, Nagesh B. Lakshminarayana, Jaewoong Sim,
Jieun Lim, Tri Pho, Hyojong Kim, and Ramyad Hadidi. 2012. MacSim:
A CPU-GPU Heterogeneous Simulation Framework User Guide.
Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. 2014. VAST:
The illusion of a large memory space for GPUs. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT).

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao
Zhang, Onur Mutlu, Yang Guo, and Jun Yang. 2019. A Framework for
Memory Oversubscription Management in Graphics Processing Units.
In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

Zhen Lin, Lars Nyland, and Huiyang Zhou. 2016. Enabling Efficient Pre-
emption for SIMT Architectures with Lightweight Context Switching.
In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC).

Shaoshan Liu, Christine Eisenbeis, and Jean-Luc Gaudiot. 2010. Spec-
ulative Execution on GPU: An Exploratory Study. In International
Conference on Parallel Processing (ICPP).

Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013.
TLB Improvements for Chip Multiprocessors: Inter-Core Cooperative
Prefetchers and Shared Last-Level TLBs. ACM Trans. Archit. Code
Optim. 10, 1, Article 2 (April 2013), 38 pages. https://doi.org/10.1145/
2445572.2445574

Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and Daniel
Chavarria-Miranda. 2009. A Faster Parallel Algorithm and Efficient
Multithreaded Implementations for Evaluating Betweenness Central-
ity on Massive Datasets. In Proceedings of the International Conference
on Parallel and Distributed Processing (IPDPS).

David W. Matula and Leland L. Beck. 1983. Smallest-last Ordering and
Clustering and Graph Coloring Algorithms. 7. ACM 30, 3 (July 1983),
417-427. http://doi.acm.org/10.1145/2402.322385

Collin McCurdy, Alan L. Coxa, and Jeffrey Vetter. 2008. Investigating
the TLB Behavior of High-end Scientific Applications on Commodity
Microprocessors. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS).

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. 2003. Runa-
head Execution: An Alternative to Very Large Instruction Windows for
Out-of-Order Processors. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA).

Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-
Yung Lin. 2015. GraphBIG: Understanding Graph Computing in the


http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
https://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://doi.org/10.1145/2938369
https://doi.org/10.1145/2938369
https://cloud.google.com/gpu
https://cloud.google.com/gpu
https://www.ibm.com/cloud/gpu
https://www.ibm.com/cloud/gpu
http://dx.doi.org/10.1137/0914041
http://dx.doi.org/10.1137/0914041
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/2445572.2445574
http://doi.acm.org/10.1145/2402.322385

(38]
(39]
(40]
[41]

(42]

Context of Industrial Solutions. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).
NVIDIA Corp. 2016. NVIDIA Tesla P100. https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.
NVIDIA Corp. 2016. NVIDIA Tesla V100. http://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
NVIDIA Corp. 2017. CUDA Toolkit Documentation. https://docs.
nvidia.com/cuda/index.html.

NVIDIA Corp. 2018. NVIDIA Driver Downloads. https://www.nvidia.
com.

NVIDIA Corp. 2019. NVIDIA Visual Profiler. https://developer.nvidia.
com/nvidia-visual-profiler.

[43] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2015. Chimera:

Collaborative Preemption for Multitasking on a Shared GPU. In Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

PCI-SIG. 2015. PCI Express Base Specification Revision 3.1a.

Peng Wang. 2017. UNIFIED MEMORY ON P100. https://www.olcf.ornl.
gov/wp-content/uploads/2018/02/SummitDev_Unified-Memory.pdf.
Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architec-
tural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[47] Jason Power, Mark D. Hill, and David A. Wood. 2014. Supporting x86-

64 Address Translation for 100s of GPU Lanes. In Proceedings of the

[48]

[49]

[50]

[51]

[52]

[53]

International Symposium on High Performance Computer Architecture
(HPCA).

Seunghee Shin, Guilherme Cox, Mark Oskin, Gabriel H. Loh, Yan Soli-
hin, Abhishek Bhattacharjee, and Arkaprava Basu. 2018. Scheduling
Page Table Walks for Irregular GPU Applications. In Proceedings of
the International Symposium on Computer Architecture (ISCA).

Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho
Navarro, and Mateo Valero. 2014. Enabling Preemptive Multipro-
gramming on GPUs. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

Hongil Yoon, Jason Lowe-Power, and Gurindar S. Sohi. 2018. Filtering
Translation Bandwidth with Virtual Caching. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Hongil Yoon and Gurindar S. Sohi. 2016. Revisiting virtual L1 caches:
A practical design using dynamic synonym remapping. In Proceed-
ings of the International Symposium on High Performance Computer
Architecture (HPCA).

M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram. 2016. Virtual
Thread: Maximizing Thread-Level Parallelism beyond GPU Scheduling
Limit. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

Tianhao Zheng, David Nellans, Arslan Zulfigar, Mark Stephenson,
and Stephen W. Keckler. 2016. Towards High Performance Paged
Memory for GPUs. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA).


https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://www.nvidia.com
https://www.nvidia.com
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://www.olcf.ornl.gov/wp-content/uploads/2018/02/SummitDev_Unified-Memory.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/02/SummitDev_Unified-Memory.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Thread Concurrency in GPUs
	2.2 Unified Virtual Memory in GPUs

	3 Motivation
	4 Challenges and Solutions
	4.1 Thread Oversubscription
	4.2 Unobtrusive Eviction

	5 Evaluation
	5.1 Methodology
	5.2 Performance

	6 Analysis
	6.1 Effect on Premature Eviction
	6.2 Effect on Batch Size
	6.3 Sensitivity to Oversubscription Ratio
	6.4 Sensitivity to GPU Fault Handling Time
	6.5 Context Switching Overhead

	7 Related Work
	8 Conclusion
	References

