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Abstract

Video database management systems (VDBMSs) enable automated

analysis of videos at scale using computationally-intensive deep

learning models. To reduce the computational overhead of these

models, researchers have proposed two techniques: (1) leveraging

a specialized, lightweight model to filter out irrelevant frames or

to directly answer the query, and (2) using a cascade of models of

increasing complexity to answer the query. For both techniques, the

query optimizer generates a coarse-grained query plan for the entire

video. These techniques suffer from four limitations: (1) lower query

accuracy over hard-to-detect predicates, (2) lower filtering efficacy

with frequently-occurring objects, (3) lower accuracy due to non-

trivial model cascade configuration, and (4) missed optimization

opportunities due to coarse-grained planning for the entire video.

In this paper, we present FiGO to tackle these limitations. The

design of FiGO is centered around three techniques. First, it uses

an ensemble of models to support a range of throughput-accuracy

tradeoffs. Second, it adopts a fine-grained approach to query opti-

mization. It processes different chunks of the video using different

models in the given ensemble to meet the user’s accuracy require-

ment. Lastly, it uses a lightweight technique to prune the model

ensemble to lower the query optimization time. We empirically

show that these techniques enable FiGO to outperform the state-

of-the-art systems for processing queries over videos by 3.3× on

average across four video datasets.

CCS Concepts

• Information systems → Query optimization; • Computing

methodologies→ Object detection.
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1 INTRODUCTION

By leveraging recent advances in deep learning (DL), video data-

base management systems (VDBMSs) enable automated analysis of

videos at scale. These systems use 2-D object detection models for

locating objects of interest in the videos. The runtime performance

of these systems is constrained by the computational overhead

associated with processing the frames using the DL model. For

example, the Det-7 model from the EfficientDet family of object

detectors [28] only processes 4 frames per second on Titan XP GPU.

To speed up query execution, researchers have proposed two

techniques for reducing the invocation of the heavyweight, object

detection model (a.k.a., reference model
1
) in the VDBMS. The first

technique consists of using a lightweight, specialized model [13, 14,

19] for quickly filtering out irrelevant frames. The second technique

consists of using a sequence of lightweight models [2]. We next

describe these two approaches in detail:

Model Specialization (MS). This technique consists of using

a lightweight, specialized model to accelerate query processing.

As shown in Figure 1a, a VDBMS may use a specialized model to

filter out irrelevant frames or to even directly answer the query.

By reducing the number of invocations of the heavyweight, ref-

erence model, the VDBMS accelerates the query with a tolerable

drop in accuracy. Two exemplars of this technique are PP [19] and

BlazeIt [13]. PP filters out irrelevant frames using the specialized

model (❶ in Figure 1a). The frames that are considered relevant are

subsequently processed using the reference model. We refer to this

technique of using specialized models as MS-Filter. In contrast,

BlazeIt uses the specialized model to directly answer the given

query (❷ in Figure 1a). It only uses the reference model if the spe-

cialized model is not accurate enough. We refer to this technique

of using specialized models asMS-Skip.

Model Cascade (MC). Another approach for efficiently process-

ing video analytics queries consists of using a sequence of models,

called a model cascade, as shown in Figure 1b. While processing the

query, the VDBMS short-circuits the inference based on the feed-

back returned by each model (e.g., confidence score). An exemplar

of this technique is the Tahoma system [2].

1
We refer to the most accurate (and often also the most compute-intensive model) in

the model pipeline as the reference model.
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Figure 1: Techniques for Accelerating Queries – Two approaches taken

for accelerating queries in state-of-the-art video analytics systems.

1.1 Limitations

While these techniques successfully accelerate queries, they still

suffer from four limitations. We highlight these limitations using

the following illustrative query:

SELECT frameID FROM UA-DeTrac WHERE Count(Bus)≥1;

I – model specialization overhead. In MS-Filter, since

each filter detects only one object category (e.g., bus), the VDBMS

needs to train several specialized models (i.e., filters) at runtime.

In contrast, with BlazeIt, since a specialized model directly re-

turns the number of buses in an image, it must maintain a separate

model for each predicate (e.g., Count(Bus)). Thus, with model spe-

cialization, VDBMSs need to train and maintain a large collection

of models for different objects and predicates, respectively. The

overhead of training a specialized model while processing a previ-

ously unseen query is significant. For instance, training a ResNet-34

model on 100 sampled video frames takes 32 seconds.

II – high selectivity qery. The speedup obtained with the

filtering technique used in MS-Filter relies on the data reduction

rate. Consider a video with N frames. Let the fraction of frames

discarded by the specialized model be r , and the costs of running

the filter and running the reference model be Cf and Co per frame,

respectively. To accelerate the query, r must satisfy this constraint:

N (Cf + (1 − r ) ·Co ) < NCo

r >
Cf

Co

This constraint is not met by queries with high selectivity. To illus-

trate this problem, we replicate MS-Filter using a model from the

EfficientDet family of object detectors [28]. We defer a descrip-

tion of the empirical setup to §7. The results are shown in Figure 2.

MS-Filter takes more time to process queries with high selectivity

(e.g., r = 0.2). Thus, when the data reduction rate is small, the per-

formance gap between MS-Filter and Naive (i.e., naively running

object detector on every frame) is minimal.

We replicate the model cascade (MC) approach using eight mod-

els from EfficientDet. This approach also does not work well on

queries with high selectivity. This is because a large fraction of

video frames cannot be filtered out by earlier models in the cascade

leading to slower query processing.
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Figure 2: Comparison of Video Analytics Systems – F-1 score and

query processing time associated with handling the query in Listing 1.1

across different video analytics systems.

III – difficult-to-detect predicates. MS-Skip [13] uses a

specialized model to directly return aggregates (e.g., number of cars

in an image). This approach does not generalize to all predicates.

First, the specialized model is designed to be shallow for faster exe-

cution. So, it is unable to deliver high accuracy for harder predicates

(e.g., small objects in the background of the frame). Second, it relies

on a subset of the videos for training. Lack of positive examples

in the selected subset greatly affects the quality of the model. We

replicate MS-Skip by training a ResNet-34 model [9]. As shown

in Figure 2,MS-Skip is faster thanNaive. But, its F-1 score is worser

than its counterparts. While it delivers 0.7 F-1 score on some videos,

it fails to provide useful results on others.

We observe that the model cascade approach also suffers from

accuracy loss. First, short-circuiting based on confidence-scores

does not provide a reliable way to achieve good accuracy. Second,

the confidence score thresholds fail to generalize to the entire video.

IV – Coarse-Grained Optimization. Another drawback of

state-of-the-art DBMSs is that they adopt a coarse-grained approach

towards finding the model configuration (e.g., a filter followed by

the reference model or a model cascade) to process the query. We

refer to the chosen configuration as a query plan. For instance,
the Optimizer may uniformly sample 10% of the frames from the

video and select a fixed configuration for the entire video. Given an

accuracy constraint, coarse-grained optimization leads to higher

query processing time. Positive events tend to not appear in every

segment of the video, especially with low selectivity queries. If the

Optimizer picks the same query plan for the entire video, video

segments that are less likely to contain positive events or those that

contain easy-to-detect events are processed using the same slow

model configuration tailored for important segments.

1.2 FiGO

We present FiGO (Fine-Grained query Optimization in video

analytics), a VDBMS that addresses the limitations highlighted

above using a novel model ensemble approach together with fine-

grained optimization. In FiGO, the Optimizer first splits the given

video into a sequence of chunks of varying sizes. It then picks

an appropriate model from a collection of models for each chunk.

Unlike the model cascade approach, the Execution Engine in FiGO

only processes a chunk with one model picked from the ensemble.

Prior efforts do not focus on query optimization across a model

ensemble. This is critical since there are several suitable models for

a given vision task. For instance, Faster-RCNN [25] and SSD [18]

object detectors offer different performance-accuracy tradeoffs. We



present a novel technique for optimizing queries using a collec-

tion of models. Another limitation of the model specialization and

cascade approaches is that they require modifications to the neu-

ral network’s architecture or the model configuration. In contrast,

FiGO uses off-the-shelf models to accelerate queries. It does not

train any specialized models to process ad-hoc queries. This enables

it to seamlessly work across diverse queries and video datasets.

FiGO takes a fine-grained approach to query optimization. Since

the content of a video often changes, the optimal model for process-

ing the chunk also varies. FiGO tailors the plan for each chunk. It

uses slower, more accurate models for processing important chunks.

It either skips or applies faster, less accurate models for processing

irrelevant chunks. FiGO uses a novel accuracy-driven sample size

bound to determine the sizes of chunks
2
. The Optimizer initially

treats the entire video as a single chunk and then iteratively splits

it into smaller chunks depending on the accuracy constraint.

We illustrate the benefits of the fine-grained approach by con-

structing a baseline that couples a model ensemble approach with

coarse-grained optimization. In this case, the VDBMS picks a sin-

gle optimal model from the ensemble to process the entire video.

We refer to this approach as ME-Coarse. As shown in Figure 2,

to meet the target accuracy constraint,ME-Coarse often picks a

compute-intensive model, even though many segments in the video

do not need such a model. This leads to a higher query processing

time on most of the videos. In contrast, FiGO tailors the model

configuration for each chunk in the video, thereby delivering lower

query processing time while still meeting the accuracy constraint.

Coupling a model ensemble approach with fine-grained opti-

mization leads to a higher query optimization time. The Optimizer

must profile the sampled frames using all the models in the ensem-

ble. To lower this optimization overhead that prior VDBMSs do

not suffer from, we introduce a novel technique for pruning out a

subset of models with limited utility. We demonstrate that FiGO

outperforms state-of-the-art VDBMSs across diverse queries and

video datasets with respect to both accuracy and performance.

Contributions. FiGO makes the following contributions.

• FiGO adopts a novel model ensemble approach coupled with

fine-grained optimization to accelerate query processing.

• FiGO leverages an accuracy-driven bound for chunking the

given video that strikes a balance between query optimization

time and query execution time.

• FiGO prunes the set of models using a variant of Thompson

sampling to reduce optimization time.

• FiGO is 3.3× faster on average compared to the state-of-the-art

VDBMSs across diverse queries. It generalizes to four different

video datasets by not relying on ad-hoc, specialized models.

2 BACKGROUND

In this section, we provide an overview of the optimizations em-

ployed in state-of-the-art VDBMSs [2–4, 8, 10, 12, 12–14, 16, 19,

22, 32, 34]. Table 1 lists the key characteristics of these VDBMSs:

(1) PP [19], (2) BlazeIt [13], (3) NoScope [14], (4) Tahoma [2], (5)

Panorama [34], and (6)Miris [3].

2
Like other VDBMSs, we measure accuracy with respect to the most accurate model

(a.k.a., reference model) in the ensemble.

System

Execution Optimization

+ MS + MC + ME
✝

Coarse Fine
✝

PP ✔ ✔
BlazeIt ✔ ✔
NoScope ✔ ✔
Tahoma ✔ ✔
Panorama ✔ ✔
Miris ✔

FiGO ✔ ✔

MS: Model Specialization, MC: Model Cascade

ME: Model Ensemble, ✝: Techniques used in FiGO.

Table 1: Qualitative Comparison of Video Analytics Systems – Key

characteristics of state-of-the-art VDBMSs.

As we discussed in §1, PP, BlazeIt, and NoScope accelerate

queries using model specialization. They construct lightweight

models in an ad-hoc manner to answer the query. To choose which

specialized model to use, they evaluate the models on a set of

sampled frames during query optimization.

Tahoma [2] is a closely related VDBMS. It constructs a model

cascade by combining a chain of models (e.g., image classification

or object detection models) and determines when to short-circuit

the inference based on the confidence score of prediction of each

model in the chain. Tahoma speeds up queries by skipping compute-

intensivemodels that appear at the end of the chain. UnlikeTahoma,

FiGO does not use a model cascade. Instead, for each chunk, FiGO

picks only one model to use.

Panorama [34] is another state-of-the-art VDBMS that uses a

single cascaded model to solve the unbounded vocabulary prob-

lem in object recognition. Similar to Tahoma, it offers a set of

performance-accuracy tradeoffs. The model generates multiple

feature embeddings for an input with different levels of quality.

Panorama determines the appropriate performance-accuracy trade-

off point based on the delta between the representative embedding

of a category and the embedding of the input.

Miris [3] is a VDBMS focused on multi-object tracking. It uses

a recurrent neural network and a graph neural network to mark

the tracking trajectories between objects. Miris also adopts a fine-

grained approach to tuning the tracking accuracy. It starts sampling

at a low frame rate to gain a high-level perspective of the video at

the beginning and then gradually increases the sampling rate to

improve the accuracy of tracking. FiGO differs fromMiris in two

ways. First, FiGO takes a fine-grained approach towards both query

optimization and query processing. Second, it is tailored for object

detection instead of tracking.

3 OUR APPROACH

In this section, we first describe how FiGO couples fine-grained

optimization with a model ensemble approach in §3.1. We discuss

the importance of adaptively changing the optimal model for each

video chunk in lowering query processing time and improving

accuracy. We conclude with an overview of FiGO in §3.2.

3.1 Fine-Grained Optimization over Ensemble



Chunk.A chunk consists of a contiguous sequence of video frames.

We denote a chunk byVi . Chunksmay vary in their size (i.e., number

of frames). The maximum size of a chunk is the size of original

video V . A video V with R chunks may be specified as:

|V | =
R∑
i=1
|Vi |, 0 < |Vi | ≤ |V |

Two key design decision in FiGO are: (1) it operates at the chunk-

granularity for both optimization and execution. (2) it always picks

a fixed number of samples from a chunk for query optimization.

To obtain more samples in an interesting part of the video, it splits

that part into a larger set of fine-grained chunks. Similarly, it maps

an uninteresting part of the video to a single, coarse-grained chunk.

The Optimizer uses sample size estimation and cost estimation to

determine how to split the video into a sequence of chunks (§4).

Query Execution. The Execution Engine uses a model ensem-

ble M with |M | models (e.g., object detectors). Unlike the model

specialization approach, there is no online training overhead in

FiGO since it does not construct ad-hoc models. Unlike the model

cascade approach, the Execution Engine only processes each

chunk with exactly one model. FiGO delivers lower query process-

ing time as it only uses the optimal model for processing the chunk.

The Execution Engine completely skips processing irrelevant

chunks (i.e., does not run any of the models in the ensemble over

them). Thus, FiGO accelerates queries by processing less interesting

chunks using faster models and skipping irrelevant chunks.

Query Optimization. The Optimizer is responsible for picking

the optimal model configuration for each chunk. In FiGO, the query

plan consists of exactly one model or skipping the chunk. Unlike

other VDBMSs, FiGO splits the video into a set of chunks. The size

of each chunk depends on: (1) the estimated number of required

samples, and (2) the estimated execution time for the chunk. After

splitting, the Optimizer evaluates potential plans for each chunk.

Given a chunk, it first picks a few samples V̂i and then evaluates

each modelm′ from the ensemble M over V̂i to obtain accuracy

and processing time metrics f (x,m′):

V̂i → { f (x,m
′) | x ∈ V̂i ,m

′ ∈ M }

For simplicity, FiGO uses uniform sampling during this profiling
step. Lastly, the Optimizer constructs the set of optimal plans P
for all of the chunks:

P ∼ { [V1,m2], [V2,m1] ... [VR ,m3] }

Since the Optimizer needs to profile multiple models during opti-

mization, the profiling step increases query optimization time. We

will later present a model ensemble pruning technique for lowering

this overhead.

Case Study.We illustrate how FiGO processes the query in Fig-

ure 3. In this example, we assume the VDBMS only has access to

an ensemble with three models (e.g., Det-0, Det-1, and Det-2 from

EfficientDet [28]). Det-0 is the fastest model and Det-2 is the

most accurate model (a.k.a., the reference model). We use the same

query that checks for the existence of a bus object in a frame.

The Optimizer must make two decisions. First, it must deter-

mine how to split the video into chunks. Second, it must decide

which model to use for each chunk or to skip that chunk. To make

Model 
PoolVideo

Optimize
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Plan - Skip (No Bus)

Chunk-4: [200, 300)
Plan - Det-1
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Figure 3: Fine-Grained Optimization over a Model Ensemble – Illus-

tration of how FiGO processes the query in Listing 1.1.

these decisions, the Optimizer always picks the same number of

video frames from each chunk (denoted by λ, e.g., λ = 10 frames). It

then estimates the number of required samples to find the optimal

model (elaborated in §4). After confirming that the sample size in

a given chunk is sufficient, it picks the model to use based on the

accuracy of each model over the sampled frames from that chunk.

Like other VDBMS, we define accuracy of a given modelm based

on the consensus between m and the reference model (typically

also the most computationally-expensive model).

In the example shown in Figure 3, the Optimizer first splits the

video into two chunks: [0, 200] and [200, 400]. The Optimizer next

determines to further split the [200, 400] into two chunks, based

on the sample size bound and the cost model (elaborated in §4).

The profiling results for each chunk are shown in the tables. For

example, in the table associated with chunk-4, the accuracy of Det-0

is
7

10
(i.e., it agrees with Det-2 on seven out of ten frames). Based

on collected metrics, the Optimizer constructs the query plan.

Assume that the [0, 200] chunk does not contain any bus. So, all

the models do not find a bus object in any of the sampled frames.

Then theOptimizer decides to completely skip processing the other

190 frames in this chunk. Assume that the [200, 300] chunk contains

a bus in the background that is difficult to detect. For this chunk,

the accuracy of the Det-0 model is lower than that of Det-1 and

Det-2. Det-1 provides the same accuracy as Det-2 but is faster than

Det-2. So, the Optimizer picks Det-1 for processing the remaining

frames in this chunk. Assume that the [300, 400] chunk contains a

bus in the foreground that is easy to detect. For this chunk, Det-0 is

sufficient to accurately detect the existence of the bus. Hence, the

Optimizer picks Det-0 for processing the rest of this chunk.
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Theoretical Cost. We now provide a theoretical analysis of

the benefits of fine-grained optimization over other approaches

by quantifying only the execution time without the optimization

overhead. To simplify our analysis, we assume that the VDBMS

only uses two modelsm1 andm2. Let us denote the cost of running

these models by Cm1 and Cm2, respectively (where Cm1 < Cm2).

In the given video, let us denote the length of video that does not

contain any positive events by α . Let the length of video that may

be correctly processed by either model be β . Let the length of video

that may only be correctly processed by the most accurate model

m2 be γ . Then, the execution time of FiGO to process this video is:

βCm1 + γCm2

This is because the Optimizer skips chunks that are unlikely to

contain positive events. In addition, it picks m1 to process the

chunks that are easier to analyze.

With the model specialization approach, we only obtain the

execution cost of the filtering technique since it is hard to guarantee

the accuracy of a specialized model that directly answers the given

query (i.e., MS-Skip). The theoretical execution time of VDBMS

that uses a specialized model for filtering out irrelevant frames is:

βCm2 + γCm2 + ϵ

This is because MS-Filter is likely to usem2 to process the entire

video to obtain higher accuracy. The specialized model in front of

m2 adds computational overhead (ϵ). The value of ϵ depends on the

specialized model. We observe that this cost is already higher than

that of FiGO as this approach does not leverage both models.

With the model cascade approach, the execution cost is:

αCm1 + βCm1 + γ (Cm1 +Cm2)

This is because a VDBMS using a model cascade approach coupled

with coarse-grained optimization never skips processing a chunk.

Furthermore, with a model cascade, the VDBMS always runs the

faster model before running the slower model, which increases the

execution time associated with the γ subset of the given video.

3.2 System Architecture

We now present an overview of the system architecture of FiGO.

As shown in Figure 4, the Optimizer is responsible for chunking

the video and pruning the ensemble to lower optimization time.

Video Chunking. Video chunking consists of two parts: (1) re-

quired sample size estimation, and (2) cost estimation. The Opti-

mizer must pick the optimal model to process a given chunk. By

estimating the number of required samples, the Optimizer deter-

mines whether it must further split the chunk based on the given

sample size bound. A query plan may be sub-optimal with respect

to query execution time even if it meets the target accuracy. The

Optimizer relies on a cost model to estimate the execution cost of

a plan (i.e., the selected model for a particular chunk). If the execu-

tion cost is higher than cost of additional chunking, the Optimizer

further splits the chunk to lower the query execution cost.

Model Ensemble Pruning. If the Optimizer profiles all the

models in the ensemble over the sampled frames in a chunk, the

optimization overhead may outweigh the benefits of reduced query

execution time. FiGO uses an online ensemble pruning technique

that is based on Thompson sampling. This allows the Optimizer to

only consider a smaller subset of models in the ensemble that have

higher utility, thereby lowering the query optimization time.

4 VIDEO CHUNKING

In this section, we first motivate the need for chunking in §4.1. We

then present a theoretical analysis of the accuracy of a given query

plan based on the number of samples in §4.2. Lastly, we present a

cost model for estimating the execution cost of a query plan in §4.3.

4.1 Variable Chunk Size

In FiGO, the Optimizer picks a model for processing a chunk

by first evaluating a set of models over the sampled frames from

the chunk. This profiling step is important to ensure the runtime

performance and accuracy of FiGO. First, if a query is evaluated

over an insufficient number of sampled frames from a chunk, then

the query accuracy with respect to that chunk may be low. This is

because the Optimizer may miss positive events that do not show

up in the sampled frames (but are present in remaining frames of

the chunk). Second, increasing the number of sampled frames leads

to a higher query optimization time due to the profiling cost. If the

plan is nearly optimal, and the VDBMS continues to collect more

samples by further splitting the chunk, then it increases the overall

query processing time.

To overcome these problems, FiGO splits the video into a se-

quence of differently-sized chunks. Since FiGO uniformly picks

a fixed number (λ) of samples from each chunk, this approach is

equivalent to varying the sampling rate across the video. A larger

chunk size maps to a lower sampling rate. In contrast, a smaller-

sized chunk maps to a higher sampling rate. During optimization,

λ is always fixed. FiGO instead varies each individual chunk size to

strike a balance between accuracy and query execution time. λ is a

configurable parameter.

Figure 5 illustrates the chunking process. The Optimizer first

treats the entire video as a single chunk. If the number of samples (λ)
obtained from a given chunk c is lower than the estimated number

of required samples, or the Optimizer determines that c may be

further split using the cost model, then it continues to further split

c . We discuss how the Optimizer estimates the lower bound of

the number of required samples and how it uses the cost model

in §4.2 and §4.3, respectively. Once the Optimizer determines that

the actual sample size (λ) is higher than the estimated lower bound,

and that the plan cannot be further optimized, it picks the model

for processing the remaining frames within c .

4.2 Sample Size Lower Bound

We now explain how the Optimizer determines if the chunk

is split enough to meet the accuracy constraint. Our key idea is
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Figure 5: Video Chunking – Illustration of how the Optimizer chunks a

given video in FiGO.

that, given the configurable sample size for each chunk λ, given an

accuracy threshold A, and an acceptable error range t , we estimate

the probability that the accuracy of query execution plan is within

the acceptable error range based on the observed average accuracy

and the average accuracy deviations across all the models in the

ensemble. We then use the probability to obtain a lower bound of

sample size K 3
. Using the sample size lower bound, the Optimizer

determines whether it needs to further split the chunk, so that

actual sample size λ surpass the estimated lower bound K .

Proof Sketch. We now present a theoretical sample size lower
bound of a chunk. To derive the bound, we first obtain the gen-

eralization error bound for a specific modelm. We then obtain a

probability bound for all the possible plans for a given accuracy

threshold. By combining those two bounds, we compute the sample

size lower bound.

Assume that the original video V is divided into R chunks.

V → V1V2 ...VR

We assume that the Optimizer needs at least K samples for each

chunk, so that the Optimizer is able to derive a query plan with

small error. So, it picks a total of KR samples. We denote the col-

lected samples of the ith chunk by V̂i . We assume that the Opti-

mizer has a set of models in the ensemble (denoted by M). The

Optimizer evaluates modelm on frame x to obtain an accuracy met-

ric denoted by f (x,m). f (x,m) compares results with respect to the

reference model. If they are in consensus, it is set to 1. Otherwise,

it is set to 0.

For a given modelm, f (x,m) over sampled frames is likely to

differ from that computed across the entire video. This error is

given by:

E
x ∈V̂

f (x,m) − E
x ∈V

f (x,m)

To facilitate the computation of sample size lower bound, the aver-

age variance is given by:

σ 2 = E
x ∈V̂m′∈M

[
f (x,m′) − E

m′′∈M
f (x,m′′)

]
2

It measures the average variance between the accuracy of a model

and the mean accuracy of all models in the ensemble. Given an

error threshold t , we next obtain the probability that error is within

t using Bernstein’s inequality [26]:

IP

[
E

x ∈V̂
f (x,m) − E

x ∈V
f (x,m) > t

]
≤ exp

( KRt2

2σ 2 + 2t/3

)
3
Like other VDBMSs, FiGO computes accuracy based on consensus with respect to

the reference model. This metric is highly correlated with a canonical F-1 score.

Next, we seek to bound the probability that a particular plan

returned by the Optimizer has a better accuracy than the accuracy

threshold A. Let us first define µ to be the mean accuracy of all

models from the model ensemble over the all sampled video frames.

µ = E
x ∈V̂ ,m′∈M

f (x,m′)

The bound of a modelm that has greater than A accuracy is:

IP

[
E

x ∈V̂
f (x,m) > A

]
= IP

[
E

x ∈V̂
f (x,m) − E

x ∈V̂ ,m′∈M
f (x,m′) > A − E

x ∈V̂ ,m′∈M
f (x,m′)

]
= IP

[
E

x ∈V̂
f (x,m) − E

x ∈V̂ ,m′∈M
f (x,m′) > A − µ

]
We next use Bernstein’s inequality again to bound the term on

right-hand-side to obtain:

IP

[
E

x ∈V̂
f (x,m) > A

]
≤ exp

(
−

KR(A − µ)2

2σ 2 + 2(A − µ)/3

)
This represents the probability that a plan with a specificm has

greater thanA accuracy. Since there are |M | models in the ensemble

and R chunks in the video, the total number of possible plans is

|M |R . Using the previous bound, we obtain a bound on the number

of execution plans that have accuracy greater than A:���{m′ ∈ M : E
x ∈V̂

f (x,m′) > A
}��� ≤ |M |Rexp ( − KR(A − µ)2

2σ 2 + 2(A − µ)/3

)
So far, we have obtained the bound that error of a plan is within

t . We have also obtained the bound for number of plans that have

accuracy better than A. By combining of these two bounds, we

obtain a bound on the sample size K such that plans with accuracy

better than A have error within t . We also simplify the equation by

Jensen’s inequality [11]:

IP

[
E

x ∈V̂
f (x,m) − E

x ∈V
f (x,m) > t

]
,∀m ∈ M

≤ |M |Rexp
(
−

KR(A − µ)2

2σ 2 + 2(A − µ)/3

)
exp

(
−

KRt2

2σ 2 + 2t/3

)
≤ |M |Rexp

(
−

KR(A − µ)2

2σ 2 + 2(A − µ)/3
−

KRt2

2σ 2 + 2t/3

)
≤ |M |Rexp

(
−

KR(t + A − µ)2

4σ 2 + 2(t + A − µ)/3

)
We expect the value to reach 0 as R grows (i.e., in the extreme case,

generalization error should be 0 if query is optimized for every

frame or chunk size is 1). To achieve that, the base should be less

than 1 as expressed below:

1 ≥ |M |exp
(
−

K(t + A − µ)2

4σ 2 + 2(t + A − µ)/3

)
K(t + A − µ)2

4σ 2 + 2(t + A − µ)/3
≥ loд(|M |)

λ
?

≥ K ≥
loд(|M |)(4σ 2 + 2(t + A − µ)/3)

(t + A − µ)2

Thus, given a desired error range t and expected accuracy A, the
Optimizer calculates sample size lower boundK using the observed



variance between models and the mean model accuracy. If actual

sample size λ in a chunk exceeds the calculated K , the Optimizer
stops further optimization unless forced by the cost model.

4.3 Cost Model

Lastly, we discuss how the Optimizer uses the cost model. The

idea is to compare the cost of further splitting the chunk (i.e., more

optimization time) against the estimated reduction in query execu-

tion time due to more fine-grained plans. If the estimated reduction

in query execution time outweighs the additional optimization

overhead, then the Optimizer proceeds to further split the chunk.

We model the execution cost of a specific chunk as the product

of the cost of the assigned model Cm and number of frames in a

specific chunk |Vi |:
|Vi |Cm

Thus, the total cost of splitting the chunk is given by the sum of

additional optimization cost and the cost of executing the new plan.

Since splitting a chunk into two sub-chunks leads to doubling the

number of samples, the optimization cost is given by the cost of

evaluating all models in a collectionM over the additional samples

(λ samples for each chunk):

2λ
∑

m′∈M
Cm′ − λ

∑
m′∈M

Cm′

To estimate the execution cost of the new plan, the challenge here is

that which models will be selected for the sub-chunks is unknown.

However, we may obtain a lower bound on the execution cost. We

denote the estimated cost of model profiling for left and right sub-

chunks by Cml and Cmr , respectively. The models found by next

iteration of optimization to use for the new sub-chunks should be

at least as good as the model for left and right sub-chunks found

during current iteration for providing good accuracy. Their costs

are denoted by Cmlc and Cmrc . So Cml and Cmr must be greater

than or equal to Cmlc and Cmrc (more expensive or slower model

provides better accuracy). Since the size of the new sub-chunk is

half of that of the original chunk, we estimate execution cost by

calculating its lower bound:

|Vi |

2

Cml +
|Vi |

2

Cmr =
|Vi |

2

Cmlc +
|Vi |

2

Cmrc

So, the potential reduction in query execution time is given by:

|Vi |

2

Cml +
|Vi |

2

Cmr − |Vi |Cm

To justify the optimization overhead, the reduction in execution

time must be higher than the increase in optimization time:

λ
∑

m′∈M
Cm′ ≤

|Vi |

2

Cml +
|Vi |

2

Cmr − |Vi |Cm

The Optimizer computes this bound to strike a balance between

query execution time and optimization time. If the estimated in-

crease in optimization time is justified, it continues to split the

chunk even if K is less than λ frames.

5 ONLINE MODEL ENSEMBLE PRUNING

In this section, we present the model ensemble pruning technique

that Optimizer uses to lower the optimization overhead. We first

motivate the need for ensemble pruning and its connection to

multi-bandit problem and Thompson sampling [29] in §5.1 and §5.2.

We conclude with a discussion on how we tailor the Thompson

sampling algorithm to the ensemble pruning problem in §5.3.

5.1 Motivation

FiGO uses a collection of models to accelerate queries. In partic-

ular, the ensemble consists of eight object detection models from

the EfficientDet family [28]. Each model offers a unique trade-

off between the accuracy and query execution time. To maximize

speedup, FiGO supports as many models as possible. However, dur-

ing the profiling step, the Optimizer spends a significant amount of

time evaluating all the models over the sampled frames. To tackle

this problem, we leverage the observation that even though differ-

ent models are used across different videos, it is often the case that

only a subset of models is used while processing a given video. Thus,

the Optimizer prunes out the subset of models that is not likely to

be used for a given query or video dataset, thereby lowering the

overhead of the profiling step.

5.2 Connection to Multi-Armed Bandit

In reinforcement learning, the multi-armed bandit problem demon-

strates [15] the dilemma between exploration and exploitation [7,

20]. A player has access to a set of slot machines and the goal is to

maximize gain by playing on these machines. The dilemma lies in

whether: (1) the player should try out other slot machines to dis-

cover machines with higher reward (exploration), or (2) the player

should stick to playing on a certain machine (exploitation).

TheOptimizer faces a similar challenge while pruning themodel

ensemble. To identify which models to prune, the Optimizer must

evaluate them on the sampled frames during profiling. While this

will eventually lead to better ensemble pruning, the profiling over-

head may outweigh those benefits. On the other hand, if the opti-

mizer only evaluates a subset of models that delivers high accuracy,

that would lead to imperfect model pruning as the Optimizer is

unable to leverage faster, less accurate models.

Thompson Sampling. This is a widely-used technique [1, 5] for

solving the multi-armed bandit problem. It begins with no assump-

tion about the reward of different actions. It then refines the estima-

tion of reward associated with each action by exploring the action

space. A key benefit of this technique is that it returns the reward

estimate along with a confidence score. We tailor this algorithm to

tackle the ensemble pruning problem in FiGO.

5.3 Ensemble Pruning via Thompson Sampling

The goal of the Optimizer is to find the performant model that

makes the most correct predictions and discard other models. We

may view the process of evaluating a specific model as an action

a. The reward associated with a model Qa is given by the average

number of correct predictions made by that model. Thus, we for-

mulate the ensemble pruning problem as finding the model among

all models that maximizes the number of correct predictions (Q).

arдmax
a∈A

(Qa )

In reality, theQ may only be estimated because the VDBMS does not

know how a model performs a priori. The Optimizer can estimate



Q at time t by using the average of the observed reward value R 4

across all the sampled video frames examined before t .

Qt (a) =
1

n

n∑
i=1

Ri

However, this greedy algorithm requires the Optimizer to evaluate

every model for the same number of times, leading to a higher

optimization overhead.

To overcome this problem, we tailor the Thompson sampling

algorithm to estimate the average number of correct predictions of

each model. The estimator allows the Optimizer to quickly con-

verge to evaluating only a smaller number of models. As Thompson

sampling, the estimator uses three variables: (1) n records how

many times a model is evaluated. (2) τ represents the confidence of

the estimation (higher confidence level if a model is evaluated more

times), so it is correlated to n. (3) µ represents the expected value of

estimated reward E[Q]. For each model, the estimated reward Q is

updated as a running average. The Optimizer updates the expected

value of estimated reward weighted on variable τ as shown below:

Qt+1 =
(
1 −

1

n

)
Qt +

1

n
R

µt+1 =
τt µt + nQt+1

τt + n

When the Optimizer checks the expected reward of a model, at

time t , instead of returning Q directly, it returns a random value

that is sampled from a probability distribution based on µ and τ :

Qt ∼ N
(
µt ,

√
1

τt

)
This distribution not only accounts for the encountered values of

Q , but also incorporates confidence of the evaluation.

Performance Cost. Typically, in the multi-armed bandit prob-

lem, the system only cares about an action with the highest reward.

However, in FiGO, the Optimizer needs to consider both accuracy

and execution cost of a particular model. So, we include the ex-

ecution cost of a model Ca in the estimator. We use the profiled

inference time per frame of a model as its execution cost.

arдmin
a∈A

(Ca ) ∧ arдmax
a∈A

(Qa )

This ensures that if two models have similar accuracy, then the

Optimizer picks the faster model.

Exploration Expansion. The canonical Thompson sampling

algorithm only updates the estimated reward value of the best ac-

tion. However, in FiGO, pruning all models in the model ensemble

to one model does not minimize the query processing time. We

empirically find that pruning the ensemble to three models provides

sufficient flexibility for the Optimizer. Pruning to fewer models

lowers accuracy, and pruning to more models increases optimiza-

tion overhead. So, we configure the Optimizer to only consider

the top three models during query optimization. However, for the

pruning algorithm, Optimizer must initially evaluate all the mod-

els over the first chunk to determine their accuracy and inference

4
In FiGO, the observed reward value is 1 if the model is in consensus with the reference

model. Otherwise, it is 0.

Algorithm 1: Query optimization.

Input :V – Video.

M – Model ensemble (e.g., 8 models from EfficientDet).

λ – Sample size for each chunk (e.g., 10 frames).

A – User-specified query accuracy (e.g., 0.95).
t – Tolerable error bound (e.g., 0.03).
E – Estimator used for model pruning.

Output :Return a list of execution plans.

1 return GetQueryPlan(0, Length(V))

2 Function GetQueryPlan(start, end)
Output :A collection of plans under A constraint within t .

3 Vi ← V [start, end] // Obtain chunk.

4 V̂← UniformSample(Vi , λ) // Sample frames.

5 M̂← PruneModel(E, M)

6 R← {}

// Profiling step.

7 for v ∈ V̂ do

8 for m ∈ M̂ do

9 R += { [v, m]: Predict(v, m) ==

10 Predict(v,mreference) }

11 UpdateEstimator(E, R, M̂)

12 K← EstimateSampleSize(R, M̂)

13 FurtherChunkingCost, ExecCost← EstimateCost(R, M̂)

// Determine whether to continue splitting.

14 plan← {}

15 if (K ≤ λ and ExecCost < FurtherChunkingCost)
16 or ( |end - start | ≤ 100 frames) then

17 plan += { [start,end]: PickBestModel(R, M̂, A, t) }

18 else

19 plan += GetQueryPlan(start, end
2

)

20 plan += GetQueryPlan( end
2

, end)

21 return plan

time metrics. For those selected models, the estimator evaluates

all of them on sampled frames and updates their reward.

Ensemble Pruning + Video Chunking.We adapt the estima-

tor to operate on fine-grained chunks. First, it is important to let the

Optimizer do sufficient exploration at very beginning. So, the Op-

timizer evaluates all the models on the very first chunk. Otherwise,

it may prune certain models without sufficient analysis. Second,

the Optimizer prunes and updates the estimated reward values

for models at chunk granularity. For a given chunk, the Optimizer

first decides which models to prune based on their estimated re-

ward value. It then evaluates those models to construct the plan.

Based on the profiling step, it updates the estimated reward value

of the evaluated models. For the next chunk, the Optimizer prunes

the models based on their updated reward estimates. This enables

fine-grained, local adaptation of ensemble pruning to each chunk.

6 QUERY OPTIMIZATION ALGORITHM

In this section, we present the overall query optimization algorithm.

As shown in Algorithm 1, the Optimizer operates on a chunk Vi
defined by the start and end frames. It begins by treating the entire

video V as a single chunk (Line 2). Given a chunk c , the Optimizer



picks a λ number of samples from c (Line 4). The Optimizer then

prunes the set of models using the estimator that is built using a

variant of Thompson sampling (Line 5). For the very first chunk, it

does not prune any model. For later chunks, it prunes the ensemble

to three models.

Next, the Optimizer computes reward by measuring consensus

between a model and the reference model on sampled video frames.

It then updates the reward estimates (Line 11). Using the techniques

presented in §4, the Optimizer estimates the required sample size

bound (K) and the benefits of further splitting the chunk based

on the current query plan. If the number of samples (λ) is greater
than the lower bound K , and further splitting does not lower the

query processing time, then the Optimizer returns the current plan

(Line 16). The Optimizer also stops searching for a better plan even

when the chunk is too small (i.e., less than 100 frames). Otherwise,

theOptimizer continues to recursively split the chunk and compute

plans for the resulting sub-chunks (Line 20). We next present two

additional optimizations to reduce the query processing time:

Affinity-based Sampling for Resusing Results. Evaluat-

ing the consensus between models (Line 10) is computationally

expensive as the VDBMS must evaluate those models. We use an

affinity-based sampling technique that enables the Optimizer to

reuse profiling results. In Line 4, instead of using a strict uniform

random sampling algorithm, the Optimizer prioritizes frames over

which other models have already been evaluated. This allows the

Optimizer to reuse profiling results, thereby reducing the number

of model invocations.

Chunk Size Limit. As shown in Line 16, we constrain the size of

the smallest chunk to 100 frames. This corresponds to a maximal

sampling rate of 10% (λ is set to 10 frames based on a sensitivity

analysis shown in §7.7). The reasons are two-fold. First, we config-

ure the other baselines we compare FiGO against to use 10% of the

video frames. To ensure a fair comparison, we also constrain the

maximal sampling rate of FiGO. Second, we empirically found that

this maximal sampling rate strikes a balance between accuracy and

query processing time.

7 EXPERIMENTAL EVALUATION

We seek to answer the following questions in our evaluation:

RQ1 – How effective is FiGO compared to the state-of-the-art

techniques for accelerating queries in VDBMSs?

RQ2 – How does FiGO perform on complex queries with multi-

ple atomic predicates?

RQ3 – What is the impact of the accuracy threshold?

RQ4 – How much does pruning lower optimization time?

RQ5 – How optimal is the plan found by the Optimizer?

RQ6 – How does sample size affect accuracy & processing time?

RQ7 – How does FiGO generalize to another model ensemble?

7.1 Evaluation Setup

Evaluation metrics. Like other VDBMSs [12–14], we measure

accuracy with respect to the reference model (i.e., Det-7). We com-

pute F-1 score of a baseline relative to the results of the reference

model. We report query optimization time, execution time, and

overall processing time (i.e., optimization time + execution time).

Queries. Similar to the query shown in §1, we evaluate the base-

lines on queries that focus on finding frames containing target

object(s). We vary the dataset and the predicate to construct these

queries. We report the average selectivity of these queries in Table 2

(i.e., the fraction of frames that satisfy the predicate(s)).

Evaluated Techniqes.We reimplement these three key tech-

niques used in state-of-the-art DBMSs: (1) model specialization

with filtering (MS-Filter), (2) model cascade (MC), and (3) model

ensemble with coarse-grained optimization (ME-Coarse).

Model Ensemble. FiGO uses the EfficientDet family of object

detection models [28]. In particular, the ensemble consists of eight

models (Det-0∼Det-7) with different accuracy-execution time trade-

offs. All the models are pre-trained on COCO dataset [17]. FiGO

uses these off-the-shelf models to robustly answer diverse queries

over different datasets. We configure the sample size of each chunk

(λ) used by FiGO to 10 frames based on a sensitivity analysis (§7.7).

MS-Filter. With model specialization, we construct a baseline

inspired by PP. The model configuration consists of a lightweight

filter that discards irrelevant frames followed by the heavyweight,

reference model. We configureMS-Filter to picks the optimal filter

based on evaluation on 10% of the frames (elaborated in §7.7). It

picks a filter from Det-0 through Det-6 models, and uses Det-7

as the reference model. We found that directly returning answers

using lightweight model often returns inaccurate results (MS-Skip).

So, we do not compare FiGO against this baseline.

MC.We replicate the model cascade approach by connecting all the

eight models in EfficientDet in a sequence. We first optimizeMC

on 10% video frames to determine the optimal confidence thresholds

to use for a given query. During query execution, MC decides to

when to short-circuit the inference based on confidence threshold.

ME-Coarse. This baseline also uses a model ensemble similar to

FiGO. Unlike FiGO,ME-Coarse takes a coarse-grained approach

to optimization. It uniformly samples 10% of the frames from the

entire video and profiles all the models over the sampled frames.

It then picks exactly one model from the ensemble to process the

remaining frames in the video.

Datasets. As shown in Table 2, we evaluate these baselines on

four representative video datasets: (1) UA-DeTrac [31], (2) Jackson-

Town dataset from [14], (3) a subset of BDD100K dataset [33], and

(4) a subset of VIRAT dataset [23].

UA-DeTrac and Jackson-Town. These datasets are obtained

from traffic surveillance cameras. The majority of the objects in

their videos are vehicles: cars, trucks, or buses. These datasets differ

in terms of video length and content. Videos in UA-DeTrac are

relatively short. They are often only 30 seconds long (i.e., 1K video

frames). In contrast, videos in the Jackson-Town dataset are longer.

BDD. Unlike the previous dataset, the BDD dataset consists of

vidoes obtained from dashcams. Since the videos are obtained from

amoving camera, it is more challenging to deliver accurate answers

on them. Videos in the BDD dataset are also comparatively short (∼

1K frames). Besides vehicles, the videos contain many traffic lights.



Query Dataset Predicate

Avg. Video Avg. Chunk Size Qry Proc. Qry Exec. Qry Opt.

Size Sel. Avg. Std. Time (s) Time (s) Time (s)

Q1.1 UA-DeTrac Count(Car)≥4 1404 0.95 273 276 128.8 99.3 29.5

Q1.2 BDD Count(Traffic Light)≥1 1205 0.47 163 69 187.1 149.4 37.7

Q1.3 VIRAT Count(Person)≥2 1316 0.76 149 99 208.7 161.0 47.7

Q1.4 Jackson Count(Car)≥1 10000 0.23 194 515 815.2 571.9 243.3

Q2.1 UA-DeTrac Count(Car)≥4 AND Count(Bus)≥1 1404 0.73 166 150 186.3 141.6 44.7

Q2.2 BDD Count(Traffic Light)≥1 AND Count(Car)≥1 1205 0.46 165 67 190.2 152.3 37.9

Table 2: Query Chacteristics – Properties of queries and their associated video datasets. We first report the average size of videos and the selectivity of the

queries. We then present the average chunk size and standard deviation. We finally report the overall query processing, optimization, and execution time.
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Figure 6: End-to-end Performance – F-1 and query processing time of

all the system across four queries.

VIRAT. To ensure that FiGO works well on objects other than

vehicles, we evaluate it on the VIRAT dataset for pedestrian detec-

tion. We pick a subset of videos from VIRAT that mainly contains

difficult-to-detect human objects in the background of the frames.

These videos range from 400 to 3K frames.

Software and Hardware. We implement FiGO with the Py-

Torch [24] framework. We use a server with 44 CPU cores and

256 GB memory along with one Titan Xp GPU with 12 GB memory.

7.2 RQ1 – End-to-End Performance

In this experiment, we first compare the F-1 score and query

processing time of all the systems. The results are shown in Figure 6.

With FiGO, we set the accuracy threshold α to 0.95 and the error

range t to be 0.03. We evaluate the query on the target video dataset

five times and take the average of collect the metrics. We separately

plot the F-1 score and query processing time on each video. We

also mark the centroid across all videos for a given system using a

scatter plot. The most notable observation is that FiGO outperforms

other systems on both accuracy and query processing time.

Q1.1. The UA-DeTrac dataset contains videos of busy traffic inter-

sections. So the selectivity of this query is high, as shown in Table 2.

Due to this,MS-Filter has very high query processing time demon-

strated in Figure 6. In contrast, bothME-Coarse andMC accelerate

the query on some videos. While ME-Coarse offers a high F-1

score as it is easier to optimize, it leads to higher query processing

time (e.g., 632 s) on videos that require more compute-intensive

models. MC is faster but its F-1 score is lower (e.g., it drops to 0.82

on a video). Compared to other systems, FiGO delivers better F-1

and processing time. We attribute this to two factors. First, FiGO

finds better fine-grained plans that often use faster models. Second,

FiGO uses a sample size bound and ensemble pruning to lower

optimization time, that leads to faster query processing.

Q1.2 and Q1.3. Besides vehicles, we compare the performance of

FiGO against other baselines on more complex objects like traffic

lights and pedestrians. Since these objects are relatively smaller in

the frame, the VDBMS often requires slower, compute-intensive

models to provide accurate predictions. As shown in Figure 6, FiGO

still consistently beatsME-Coarse andMC on both queries (1.8×

and 3.2× on Q1.2 and 1.9× and 1.4× on Q1.3). MS-Filter is compa-

rable to FiGO, as its filter is able to discard many irrelevant video

frames on these low selectivity queries. FiGO is 1.5× and 1.2× faster

thanMS-Filter and delivers 0.06 and 0.01 higher average F-1 score

on Q1.2 and Q1.3, respectively.

Q1.4. Lastly, we compare FiGO against other baselines on a query

that operates on much longer videos. In this case, the processing

time difference between FiGO and other systems is more prominent.

This illustrates the importance of using fine-grained optimization

in tandem with a model ensemble. MS-Filter also has lower query

processing time as the filter is effective in this low query selectivity

(Table 2). In this case, FiGO still shows is 1.4× faster thanMS-Filter

and delivers 0.08 higher F-1 score on average across all videos.

Chunk Size.We report the average chunk size and the standard

deviation of chunk size for each query when the videos are pro-

cessed by FiGO. The results indicate that the Optimizer is effec-

tively adjusting the chunk size based on the queries and the contents

of the videos. For instance, the average chunk size decreases from

299 frames in Q1.1. to 243 frames in Q2.1 due to harder predicate.

7.3 RQ2 – Complex Queries

In this experiment, we examine the performance of FiGO and

other systems on two representative complex queries with multiple
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Figure 7: End-to-end Performance on Complex Queries – F-1 and

query processing time of all the system across two complex queries.

Query

F-1 Qry Proc. Qry Exec. Qry Opt.

Score Time (s) Time (s) Time (s)

ME-Coarse-Join

Q2.1 0.99 691.69 495.38 196.31

Q2.2 0.99 588.30 435.52 152.78

FiGO-Join

Q2.1 0.99 295.17 242.19 52.98

Q2.2 0.99 275.88 238.66 37.22

FiGO

Q2.1 0.98 186.31 141.69 44.62

Q2.2 0.95 190.23 152.36 37.87

Table 3: FiGO vs. FiGO – Join – F-1 score and query processing time

metrics of: (1) FiGO (evaluating predicates together) and (2) FiGO – Join

(evaluating predicates separately).

predicates (Q2.1 and Q2.2 in Table 2). For example, the relational

algebraic plan for Q2.1 is shown below:

σClassif ication< Count(Car)≥4∧Count(Bus)≥1 >(UA-DeTrac)

We tailor the Optimizer to find a model that works well for both
predicates together.

As shown in Figure 7, on both queries, FiGO delivers a lower

query processing time than other systems. As the predicates become

more complex,MC requires significantly longer query processing

time than others. In case of MS-Filter, complex predicates lead to

lower selectivity. So the filter is able to discard more frames using

faster models. However, we observe that this approach suffers from

lower F-1 score compared to FiGO (0.04 and 0.06 points on Q2.1

and Q2.2, respectively). ME-Coarse also suffers from higher query

processing time since it does not leverage intra-video opportunities.

Execution with Join.We next compare the current technique

for jointly evaluating a complex predicate against another technique

that separately evaluates the predicates and joins the results based

on the frame number. With this technique, the algebraic plan for

Q2.1 is given by:

(σClassif ication< Count(Bus)≥1 >(UA-DeTrac))

▷◁
frameID

(σClassif ication< Count(Car)≥4 >(UA-DeTrac))

In this case, the Optimizer in FiGO separately finds the optimal

model for each atomic predicate. After obtaining results from both

models, it joins them to return the final set of frames that satisfies

both atomic predicates.

We compare these two techniques on Q2.1 and Q2.2. We also im-

plement join withME-Coarse for comparison (as it is the strongest
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Figure 8: Impact of Accuracy Threshold – F-1 score and query process-

ing time metrics under different accuracy thresholds.

baseline). We report the average F-1 score and query processing

time metrics associated with these systems in Table 3. Our results

demonstrate that there is a tradeoff between these two approaches.

First, evaluating each predicate separately improves F-1 score. This

is because combining multiple predicates together complicates the

process of estimating the sample size bound. In contrast, evaluating

multiple predicates together in the Optimizer lowers query pro-

cessing time (due to lower optimization time and execution time).

Better support for complex predicates is beyond the scope of this

paper. We plan to explore this problem in the future.

7.4 RQ3 – Impact of Accuracy Threshold

In this experiment, we investigate how the accuracy threshold

affects the F-1 score and query processing time. We use Q1.4 that

operates on longer videos. This allows us to better illustrate the im-

pact of the accuracy threshold and the associated sample size bound.

We evaluate FiGO across three accuracy thresholds: 0.95, 0.9, and

0.8. Across all cases, we configure the tolerable error range t to 0.03.
FiGO executes Q1.4 100 times. We report the min, 25% percentile,

median, 75% percentile, and max of results of all executions.

As shown in Figure 8, when we lower the accuracy threshold,

the final query F-1 score is reduced as expected. This is because the

sample size bound computed by the Optimizer is highly correlated

with the final F-1 score. We note that FiGO does not provide a strict

accuracy guarantee. In addition, we observe that the variance of F-1

score increases when accuracy threshold is lowered. This is because

while the Optimizer may find a good plan with fewer samples, it

often ends up with a sub-optimal plan.

Besides F-1 score, we also evaluate the query processing time of

FiGO under different accuracy thresholds.We discover that speedup

increases when the threshold is lowered. The reasons are two-fold.

First, fewer samples are needed by the Optimizer when the system

has a lower accuracy threshold, leading to lower optimization time.

Second, with fewer samples, the Optimizer often picks a faster, less

accurate model for processing the chunk. Thus, a sub-optimal plan

also results in lower execution time.

7.5 RQ4 – Optimization Time

In this experiment, we examine the efficacy of model pruning in

reducing the optimization time. We focus on three systems: ME-

Coarse, FiGO - no pruning, and FiGO. FiGO - no pruning differs

from FiGO in that it picks the best model from all the models in

the ensemble. Similar to FiGO, it also chunks the video during

optimization. We measure the optimization time of all the queries

across these three systems. We report the average time spent on
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Figure 9: Optimization Time – Comparison of optimization overhead of
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Figure 10: Plan Optimality – Comparison of query execution time with

respect to that of the FiGO plan across four systems.

query optimization over five runs. We normalize the optimization

time of each system against that of ME-Coarse.

The most notable observation shown in Figure 9 is that model

pruning further reduces the optimization overhead. The reduction

in optimization time depends on the query (e.g., Q1.1 vs. Q1.3). This
is because optimization time is unevenly distributed over different

models (i.e., evaluating a compute-intensive model costs more than

evaluating a faster model). If the system prunes more compute-

intensive models, the reduction in is more significant.

Q1.1. This query only requires a faster model. So FiGO prunes

all the compute-intensive models. Thus, ensemble pruning lowers

optimization time by 2× as shown in Figure 9.

Q1.3. Correctly detecting pedestrian objects in Q1.3 is much harder.

This is only feasible with compute-intensive object detection mod-

els. So, on this query, FiGO only prunes the faster models (must

keep the slower models to meet the accuracy constraint). So, the

impact of pruning on optimization time is smaller than that in Q1.1.

Discussion. As listed in Table 2, optimization time accounts for

∼25% of the total query processing time. So, the optimization over-

head is non-trivial compared to the total processing time. To further

reduce the optimization overhead, we consider training a selector
model that is a fast deep neural network to directly estimate which

model to use (instead of relying on the profiling step). Nevertheless,

this approach suffers from two limitations. First, it is challenging to

obtain enough training data. Second, the collected training dataset

often has a skewed distribution. Due to its ineffectiveness, we do

not include its results in this paper.

7.6 RQ5 – Plan Optimality

We refer to the plan that delivers the smallest query processing

time with no loss in accuracy with respect to the reference model

as the perfect plan. In this experiment, we study the optimality

of plans generated byME-Coarse, FiGO, and another baseline by

comparing their query execution time against that of the corre-

sponding perfect plan. We examine the FrameDiff baseline in this
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Figure 11: Model Usage Distribution – The distribution of usage of mod-

els in the ensemble across all queries.

experiment. FrameDiff leverages on the frame skipping technique

presented in NoScope [14]. It uses traditional frame-wise structural

similarity index to determine whether inference with the reference

model is necessary for the given frame. We identify the perfect

plan by profiling all the models over every chunk. While this leads

to high optimization overhead, the goal of this experiment is to only

compare the query execution time associated with the resulting

plan. We normalize the execution time metrics of these systems

against that of FiGO.

The results shown in Figure 10 demonstrate that the plans pro-

vided byME-Coarse is sub-optimal compared to the corresponding

perfect plans resulting in large performance gaps. FiGO consistently

outperformsME-Coarse. Execution time of FiGO may be further

improved on Q1.1 and Q1.3. However, getting closer to the perfect

plan will also increase the optimization overhead as it corresponds

to smaller-sized chunks (i.e., high sampling rate). On queries like

Q1.2, FiGO even outperforms the perfect plan. This is because the

Optimizer selects faster models than that required for accurate

predictions leading to tolerable drop in F-1 score. FrameDiff has

higher normalized execution time than other systems. The reasons

are two-fold. First, the target objects may be very small with re-

spect to the entire frame. In this case, frame difference calculated

by traditional algorithm is not able to detect any significant change

in the frame. Second, it must configure the threshold value used to

determine whether frame difference is significant enough to require

inference with the reference model. To ensure tolerable accuracy,

we configure a conservative threshold value, that further increases

the execution overhead.

Model Usage Distribution. Lastly, we examine the distribu-

tion of usage of models in the ensemble across all queries. The

results are shown in Figure 11. The distribution changes across

queries that operate on different datasets. On queries with low se-

lectivity (e.g.,Q1.4), theOptimizer skips several chunks. On queries
with hard-to-detect events (e.g., Q1.2 and Q2.2), it frequently uses

the reference model to reach a high F-1 score. This illustrates that

Optimizer adapts the plan to different queries and datasets.

7.7 RQ6 – Impact of Sampling Rate

In this experiment, we investigate the impact of sampling rate. We

examine these settings for sampling rate: 2%, 5%, 10%, 20% and 50%.

Recall that FiGO always picks fixed number (λ) of samples from

each chunk but varies the size of each chunk. We instead vary the

value of λ: 2, 5, 10, 20, and 50 samples in each chunk.

The results for a representative query (Q1.3) are shown in Fig-

ure 12. With FiGO, if very small number of samples are picked from

each chunk, then the sample size lower bound does not work due
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Figure 12: Impact of Sample Rate – Comparison of the impact of sample

rate on: (1) F-1 score, and (2) Query processing time.
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(hatched pattern) vs execution time breakdown.

Figure 13: Generalization to Other Ensembles – FiGO on different

model ensembles.

to high variance. So, this leads to lower F-1 score (λ == 2). With

ME-Coarse, sampling rate has significant impact on both F-1 score

and query processing time. It lowers processing time by lowering

the sampling rate, but that also lowers the F-1 score. F-1 score of

ME-Coarse does not improve when it surpass 10% sampling rate.

FiGO delivers lower query processing time under the same F-1 score.

WithMS-Filter, a higher sampling rate causes lower F-1 score. The

reason is because in our setting,MS-Filter is able to pick a more

aggressive filtering threshold value, which can incorrectly filter out

positive events. Based on these results, we configure the sampling

rate to 10% in all the other experiments to do a fair comparison

between systems. While other systems may also reduce sampling

rate to lower query processing time (e.g., 5% forME-Coarse), FiGO

is still significantly faster.

7.8 RQ7 – Generalization to Other Ensembles

We next study the ability of FiGO to generalize to other model

ensembles. We first evaluate FiGO over the Scaled-YOLOv4 en-

semble [30] with five object detection models. The models in the

Scaled-YOLOv4 ensemble deliver similar accuracy to those in Ef-

ficientDet. They support faster inference, but only offer a few

performance-accuracy tradeoffs. We also evaluate FiGO over a hy-

brid ensemble (i.e., Hybrid) that combines all the models in the

EfficientDet and Scaled-YOLOv4 ensembles (13 models in total).

In Figure 13a, we report the average F-1 score comparison be-

tween three model ensembles. The F-1 score of all model ensembles

is evaluated against the reference model in EfficientDet. In Fig-

ure 13b, we report the query processing time of three model en-

sembles. The processing time is normalized to the EfficientDet

model ensemble. We report the time breakdown by showing the

optimization time (hatched pattern) and execution time.

The most notable observation is that the idea of fine-grained

query optimization generalizes to different model ensembles. FiGO

delivers good F-1 scores with all the ensembles. Scaled-YOLOv4

ensemble has lower F-1 score compared to other ensembles, because

of limited model diversity. So, it does not provide smooth tradeoffs

between processing time and F-1 score. In the case of Hybrid, FiGO

is able to pick an optimal query execution plan. The F-1 score of

Hybrid is higher than Scaled-YOLOv4 ensemble, and it has lower

query processing time than EfficientDet ensemble.

8 RELATEDWORK

We present a brief review of related work on query optimization.

DB2’s LEarning Optimizer (Leo) was a pioneering effort in improv-

ing the efficacy of query optimizers [27]. Leo learns from its mis-

takes by adjusting its statistical estimates over time. More recently,

Neo [21] adopts a novel deep neural network-based approach for

finding the optimal plan. It uses a value network for accurately

predicting the latency of partial and complete query plans.

The overhead of query optimization in production DBMSs has

increased over time. Developers of MemSQL reported that opti-

mization time in analytical workloads may even be higher than

query execution time [6]. It is critical for the Optimizer to strike a

balance between optimization and execution time. We discuss how

FiGO tackles this problem in §5.

9 CONCLUSION

We presented, FiGO, a video analytics system for efficiently process-

ing visual data at scale. FiGO couples a model ensemble approach

with fine-grained query optimization. Its Optimizer first splits the

video into a sequence of differently-sized chunks based on a sample

size bound. It then picks a model from the ensemble that delivers

the lowest query execution time while meeting the target accuracy

constraint. Lastly, its Execution Engine processes the remaining

frames within the chunk using the selected model. FiGO prunes

the model ensemble to lower query optimization time. We empir-

ically show that these techniques enable FiGO to outperform the

state-of-the-art approaches for processing queries over videos by

3.3× on average across four video datasets.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback

in improving the paper. This work was supported in part by NSF

(CNS-1815047, IIS-1850342, and IIS-1908984), Cisco, Adobe, and

Alibaba. This work was partially supported by Institute of Infor-

mation and Communications Technology Planning and Evaluation

grant funded by the Korea government (No. 2021-0-00766).

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1815047
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1850342
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1908984


References

[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the

multi-armed bandit problem. In COLT.
[2] Michael R. Anderson, Michael Cafarella, German Ros, and Thomas F. Wenisch.

2019. Physical Representation-Based Predicate Optimization for a Visual Analyt-

ics Database. In ICDE. 1466–1477.
[3] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-

hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam

Madden. 2020. MIRIS: Fast Object Track Queries in Video. In SIGMOD. 1907–1921.
[4] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,

David G Andersen, Michael Kaminsky, and Subramanya R Dulloor. 2019. Scaling

Video Analytics on Constrained Edge Nodes. In SysML.
[5] Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thompson

Sampling. In NeurIPS.
[6] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and

Michael Andrews. 2016. The MemSQL Query Optimizer: A Modern Optimizer

for Real-Time Analytics in a Distributed Database. In PVLDB. 1401–1412.
[7] Anil K Gupta, Ken G Smith, and Christina E Shalley. 2006. The interplay between

exploration and exploitation. Academy of management journal (2006), 693–706.
[8] Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena

Balazinska, Alvin Cheung, and Luis Ceze. 2021. VSS: A Storage System for Video

Analytics. In SIGMOD. 685–696.
[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. In CVPR. 770–778.
[10] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,

Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.

Focus: Querying Large Video Datasets with Low Latency and Low Cost. In OSDI.
269–286.

[11] J. L. W. V. Jensen. 1906. Sur les fonctions convexes et les inégalités entre les

valeurs moyennes. Acta Mathematica (1906), 175–193.
[12] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha Sen, and Ion

Stoica. 2018. Chameleon: scalable adaptation of video analytics. In SIGCOMM.

253–266.

[13] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-

tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.

In PVLDB. 533–546.
[14] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale. In

PVLDB. 1586–1597.
[15] Michael N Katehakis and Arthur F Veinott Jr. 1987. The multi-armed bandit

problem: decomposition and computation. Mathematics of Operations Research
(1987), 262–268.

[16] Sanjay Krishnan, Adam Dziedzic, and Aaron J Elmore. 2019. DeepLens: Towards

a Visual Data Management System.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common

Objects in Context. In ECCV. 740–755.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.

In ECCV. 21–37.
[19] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating Machine Learning Inference with Probabilistic Predicates. In SIG-
MOD. 1493–1508.

[20] James G March. 1991. Exploration and exploitation in organizational learning.

Organization science (1991), 71–87.
[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned

query optimizer. In PVLDB. 1705–1718.
[22] Oscar Moll, Favyen Bastani, SamMadden, Mike Stonebraker, Vijay Gadepally, and

Tim Kraska. 2020. ExSample: Efficient Searches on Video Repositories through

Adaptive Sampling. arXiv:2005.09141 [cs] (2020).
[23] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,

Jong Taek Lee, Saurajit Mukherjee, J. K. Aggarwal, Hyungtae Lee, Larry Davis,

Eran Swears, Xioyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Von-

drick, Hamed Pirsiavash, Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song,

Anesco Fong, Amit Roy-Chowdhury, and Mita Desai. 2011. A Large-Scale Bench-

mark Dataset for Event Recognition in Surveillance Video. In CVPR. 3153–3160.
[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. In NeurIPS.
[25] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. In NeurIPS.
91–99.

[26] S.N.Bernstein. 1924. On a modification of Chebyshev’s inequality and of the

error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math (1924).

[27] Michael Stillger, Guy Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO –

DB2’s LEarning Optimizer. In PVLDB. 19–28.
[28] Mingxing Tan, Ruoming Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and

Efficient Object Detection. In CVPR. 10778–10787.
[29] William R. Thompson. 1933. On the Likelihood That One Unknown Probability

Exceeds Another in View of the Evidence of Two Samples. Biometrika (1933),

285–294.

[30] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2021. Scaled-

YOLOv4: Scaling Cross Stage Partial Network. In CVPR. 13029–13038.
[31] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang

Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020. UA-DETRAC: A New

Benchmark and Protocol for Multi-Object Detection and Tracking. In CVIU.
[32] Ioannis Xarchakos and Nick Koudas. 2019. SVQ: Streaming Video Queries. In

SIGMOD. 2013–2016.
[33] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,

Vashisht Madhavan, and Trevor Darrell. 2020. BDD100K: A Diverse Driving

Dataset for Heterogeneous Multitask Learning. (2020).

[34] Yuhao Zhang and Arun Kumar. 2019. Panorama: A Data System for Unbounded

Vocabulary Querying over Video. In PVLDB. 477–491.


	Abstract
	1 INTRODUCTION
	1.1 Limitations
	1.2 FiGO

	2 BACKGROUND
	3 OUR APPROACH
	3.1 Fine-Grained Optimization over Ensemble
	3.2 System Architecture

	4 VIDEO CHUNKING
	4.1 Variable Chunk Size
	4.2 Sample Size Lower Bound
	4.3 Cost Model

	5 ONLINE MODEL ENSEMBLE PRUNING
	5.1 Motivation
	5.2 Connection to Multi-Armed Bandit
	5.3 Ensemble Pruning via Thompson Sampling

	6 QUERY OPTIMIZATION ALGORITHM
	7 EXPERIMENTAL EVALUATION
	7.1 Evaluation Setup
	7.2 RQ1 – End-to-End Performance
	7.3 RQ2 – Complex Queries
	7.4 RQ3 – Impact of Accuracy Threshold
	7.5 RQ4 – Optimization Time
	7.6 RQ5 – Plan Optimality
	7.7 RQ6 – Impact of Sampling Rate 
	7.8 RQ7 – Generalization to Other Ensembles

	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References

