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Abstract

To efficiently process visual data at scale, researchers have proposed

two techniques for lowering the computational overhead associ-

ated with the underlying deep learning models. The first approach

consists of leveraging a specialized, lightweight model to directly

answer the query. The second approach focuses on filtering irrele-

vant frames using a lightweight model and processing the filtered

frames using a heavyweight model. These techniques suffer from

two limitations. With the first approach, the specialized model is

unable to provide accurate results for hard-to-detect events. With

the second approach, the system is unable to accelerate queries

focusing on frequently occurring events as the filter is unable to

eliminate a significant fraction of frames in the video.

In this paper, we present Thia, a video analytics system for

tackling these limitations. The design of Thia is centered around

three techniques. First, instead of using a cascade of models, it uses

a single object detection model with multiple exit points for short-

circuiting the inference. This early inference technique allows it

to support a range of throughput-accuracy tradeoffs. Second, it

adopts a fine-grained approach to planning, and processes different

chunks of the video using different exit points to meet the user’s

requirements. Lastly, it uses a lightweight technique for directly

estimating the exit point for a chunk to lower the optimization

time. We empirically show that these techniques enable Thia to

outperform two state-of-the-art video analytics systems by up to

6.5×, while providing accurate results even on queries focusing on

hard-to-detect events.

1 Introduction

Researchers have proposed systems for quickly processing visual

data with a tolerable drop in accuracy [3, 4, 7, 8, 10–13, 16, 23, 24].

These systems detect objects in videos using deep neural networks

(DNNs) [5, 17]. The key challenge that these systems tackle is the

computational overhead of the underlying object detection model.

PriorWork. To efficiently process visual data at scale, researchers

have proposed two techniques. The first approach, presented in

BlazeIt [10], consists of leveraging a specialized, lightweight model

to directly answer the query. The second approach, introduced in

PP [13], focuses on filtering irrelevant frames using a lightweight

model. The frames that pass through the filtering model are then

processed by the heavyweight object detection model (illustrated

in Figure 2). So, these systems accelerate query processing by not
processing a subset of video frames using the heavyweight model.

However, these techniques suffer from two limitations. With the

first approach, the specialized model is unable to provide accurate

results for hard-to-detect events. With the second approach, the

system is unable to accelerate queries focusing on frequently oc-

curring events. This is because the filter is unable to eliminate a

significant fraction of frames in the video.

Another line of research, illustrated in Tahoma [1], focuses on

leveraging a collection of differently sized models to process the

frames based on the complexity of the event. However, using such

a cascade of models comes with two limitations. First, switching

from one model to another in the GPU is expensive. This switching

overhead is further exacerbated if we seek to frequently change

the model to process different subsets (i.e., chunks) of the video to

maximize performance. For instance, loading a Faster-RCNN model

in PyTorch on an NVIDIA Titan Xp GPU takes 2 s (including frame-

work initialization and model loading). Second, using a collection of

models to support different throughput-accuracy tradeoffs does not

scale well due to the large GPU memory footprint of these models.

Prior efforts have mostly focused on altering the design of the

inference pipeline. However, they do not elaborate on how to adapt

this pipeline (e.g., when to use a particular model) based on the

chunk. They choose a single plan for the entire video based on the

profiling results obtained on a set of sampled frames. Such a coarse-

grained approach to query planning does not leverage the variation

in the frequency and detection difficulty of different events in a

video. If objects are difficult to detect, this approach leads to less

accurate results. On the other hand, if objects are easier to detect,

a conservative coarse-grained query plan significantly increases

the query processing time (but returns correct results). We defer a

detailed discussion of these limitations to §3.

Our Approach. In this paper, we present Thia, a video analytics

system for tackling the limitations highlighted above. Thia lever-

ages three techniques to accelerate queries over visual data.

First, it uses a single object detection model with multiple points

for short-circuiting the inference. These exit points (EPs) offer a set
of throughput-accuracy tradeoffs. While processing the query, Thia

uses a shallow EP to quickly process frames that are irrelevant or

contain easy-to-detect events. If the frames contain hard-to-detect

events, then Thia falls back to a deeper EP in the model to deliver

higher accuracy. This Early Inference technique eliminates the

switching overhead and lowers the GPU memory footprint of Thia.

Second, Thia adopts a fine-grained approach to planning. It pro-

cesses different chunks of the video using different EPs to meet both

the performance and accuracy requirements (elaborated in §6.1).

This Fine-Grained Planning technique increases the optimization

time of a query. To lower this overhead, we present a third tech-

nique to quickly decide which EP to use for a given chunk. Thia
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Figure 1: Object Detection Model – Components of the model.

uses a shallow model for Exit Point Estimation instead of run-

ning inference on the sampled frames. We evaluate a set of queries

focusing on events with different levels of frequency and detec-

tion difficulty on two traffic surveillance datasets: UA-DeTrac [21]

and Jackson Town [10]. On all of the queries, Thia outperforms

the state-of-the-art video analytics systems by up to 6.5× with a

tolerable drop in accuracy.

Contributions. Our research makes the following contributions:

• We present the Early Inference technique to construct a

single model that offers a set of throughput-accuracy tradeoffs

for challenging vision tasks like object detection.

• We propose a Fine-Grained Planning technique that works

in tandem with the Early Inference technique.

• We present the Exit Point Estimation technique to reduce

the optimization overhead of the Fine-Grained Planning

technique.

• We implement all of these techniques in Thia and show that

it outperforms two state-of-the-art video analytics systems on

a wide range of queries.

2 Background

We now present an overview of object detection and sampling

techniques used in video analytics systems (§2.1 and §2.2). We later

discuss the key techniques used in state-of-the-art systems (§2.3).

2.1 Object Detection

Object detection models usually contain three components: (1)

backbone network, (2) region proposal network (RPN), and (3)

region of interests network (ROI), as illustrated in Figure 1. The

backbone network extracts the high-level features from a frame.

Then, the RPN and ROI networks determine the location and type

of objects detected in the frame. Data flows from the backbone

network to RPN, and ROI returns the final prediction results (object

category, location within the frame, and confidence score).

In machine learning literature, the oracle model returns the cor-

rect answer to all queries. However, in practice, there is no ground

truth for unseen data. Similar to prior efforts, we assume that the

most accurate model, which also tends to be the most compute-

intensive model, is the oracle model [9–11, 13, 24].

2.2 Sampling

Sampling is a frequently used technique for processing visual data

at scale. By processing only a subset of frames using the object

detection model, a video analytics system lowers the overall query

processing time. For example, BlazeIt [10] uses uniformly random

sampling to process aggregate queries (e.g., counting the average
number of cars within a given period of time).

BlazeIt

PP

Filter
Pool

Object
Detector

Discard

Obj: Car …
Filter

Selector

Model
Selector

Specialized
Model Pool

Object
Detector

Obj: Car …Or
DataDataData

DataDataData

<Query>

<Query>

Figure 2: Architecture of Video Analytics Systems – Architecture of

two state-of-the-art video analytics systems: (1) PP [13] and (2) BlazeIt [10].

+ MS + MC + FP
✝

+ EI
✝

+ EP-Est
✝

Naive

PP ✔

BlazeIt ✔

Thia-Single
★ ✔

Thia-Multi
★ ✔ ✔

Thia-EI
★ ✔ ✔

Thia
★ ✔ ✔ ✔

MS: Model Specialization,MC: Model Cascade, FP: Fine-Grained

Planning, EI: Early Inference, EP-Est: Exit Point Estimation.

✝: Techniques used in Thia. ★: Variants of Thia.

Table 1: Qualitative Comparison of Video Analytics Systems – Key

characteristics of state-of-the-art video analytics systems.

Thia uses sampling for a different purpose (elaborated in §6). A

chunk is a continuous segment of frames within a video. Thia’s

Optimizer constructs plans at chunk-level granularity (instead of

video-level granularity) to lower the query processing time. Query

processing time consists of two components: (1) optimization time,

and (2) execution time. During the optimization phase, Thia gen-

erates a plan for each chunk. During the execution phase, it runs

these plans.

2.3 State-of-the-Art Systems

Table 1 lists the key characteristics of several state-of-the-art video

analytics systems: (1) PP [13], (2) BlazeIt [10] (3) Miris [2], (4)

Tahoma [1], and (5) Panorama [24]. We present the benefits and

limitations of the first two systems in §1. Their architectures are

illustrated in Figure 2.

Miris [2] is a video analytics system that focuses on multi-object

tracking. It uses coarse-grained sampling to gain a high-level per-

spective of the video and then gradually increases the sampling

rate to improve the accuracy of tracking. Thia differs from Miris

in two ways. First, it is tailored for object detection. Second, it only

samples for query planning (not for query execution). In §7.7, we

illustrate the benefits of other optimizations in Thia by comparing

it against a variant of Thia that only uses Fine-Grained Planning

(Thia-Single in Table 1).

Tahoma [1] is another closely related analytics system. It con-

structs a model cascade by combining a chain of image classification

models and determines when to short-circuit the inference based on
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Query SQL

Predicate

Frequency

Predicate

Difficulty

Q1

Select frameID
From UA-DeTrac
Where Count(Car) >= 4;

Frequent Easy

Q2

Select frameID
From UA-DeTrac
Where Count(Truck) >= 1;

Frequent Hard

Q3

Select frameID
From UA-DeTrac
Where Count(Bus) >= 4;

Rare Hard

Q4

Select frameID
From Jackson-Town
Where Count(Car) >= 4;

Rare Hard

Table 2: List of Queries – Queries with varying frequency and levels of

difficulty in detecting events.

the confidence score of prediction of each model. Unlike Tahoma,

Thia is geared toward object detection. So, the inference result

consists of a set of confidence scores for all the objects present in

the frame. It is challenging to short-circuit the inference pipeline

based on a set of confidence scores. In Thia, the Early Inference

technique is guided by query accuracy (not model accuracy). In §7.7

and §7.8, we illustrate the limitations of using a model cascade by

comparing Thia against a variant of Thia that uses Fine-Grained

Planning along with a model cascade (Thia-Multi in Table 1),

instead of a single Early Inference model
1
.

Panorama [24] is another state-of-the-art video video analytics

system that uses a single model to solve the unbounded vocabulary

problem in object recognition. While this system also offers a set of

throughput-accuracy tradeoffs similar to Thia, it is geared towards

comparing embeddings from two input frames. So, it selects the EP

based on the delta between two embeddings while extracting the

embeddings. Lastly, it clusters these embeddings to recognize the

objects in the input frames. In contrast, Thia uses Early Inference

in the object detection model itself and seeks to reduce optimization

time using the Exit Point Estimation technique.

3 Motivation

In this section, we discuss the limitations of PP and BlazeIt to

motivate the need for Thia. We focus on the four queries described

in Table 2. These queries differ in: (1) frequency of appearance of

target objects in the video, and (2) level of difficulty in providing a

correct answer to a query.

Limitation I – model specialization overhead. Both PP

and BlazeIt rely on specialized models. PP uses a specialized model

as a filter. Since each filter detects only one object category, it needs

to train multiple lightweight models (i.e., filters) during runtime

to support different object categories. BlazeIt uses a specialized

model to directly return the results. A model may directly return

the count of cars in an image, so it must maintain multiple models

for different predicates (e.g., Count(Car) is a predicate). With this

1
Thia-Multi delivers better performance than a naive model cascade due to the

Fine-Grained Planning technique. With a naive model cascade, the system cannot

directly process frames with the optimal model. It must use all the smaller models

before stopping the inference at the optimal model.

Difficulty Precision Recall Throughput

Easy 97.72% 67.98% 12.98×
Hard 100.00% 100.00% 0.93×

Table 3: BlazeIt vs Naive – Key metrics of BlazeIt with respect to a

Naive system that only uses the heavyweight object detector.

model specialization technique, these systems need to train and

maintain models for different objects and predicates, respectively.

We seek to reduce model maintenance overhead by offering a range

of accuracy and query execution time tradeoffs in a single model.

Limitation II – freqent events. The filtering technique

used in the PP system [13] relies on data reduction by the filter to

achieve speedup. Let’s assume the system is processing 𝑁 frames

and that the fraction of frames that is filtered and discarded by the

filter is 𝑟 . Let the costs of running the filter and running the object

detector be𝐶𝑓 and𝐶𝑜 per frame, respectively. To obtain a speedup,

the data reduction rate must satisfy this constraint:

𝑁 (𝐶𝑓 + (1 − 𝑟 ) ·𝐶𝑜 ) < 𝑁𝐶𝑜 ≡ 𝑟 >
𝐶𝑓

𝐶𝑜

This constraint is not met by frequent events (e.g., Q1 in Section 3).

In this case, since 𝑟 is small, the filter slows down the overall pipeline

since it adds additional overhead. As a result, PP is slower than

Naive (i.e., naively running object detector on every frame) for

frequent queries like Q1. PP only provides a 0.93× speedup com-

pared to Naive in this case. Instead, for rare queries like Q3, PP

is able to provide a 1.44× speedup compared to Naive. We seek

to dynamically adjust the query execution pipeline based on the

estimated frequency of the event.

Limitation III – difficult-to-detect objects. BlazeIt [10]

uses a specialized model to directly return aggregates (e.g., number

of cars in an image). This approach does not generalize to complex

visual datasets. The reasons are twofold. First, the specialized model

is designed to be shallow for fast execution. So, it is unable to learn

complex patterns. Second, it relies on an ad-hoc subset of videos for

training, so the lack of positive examples greatly affects the quality

of the model.

As shown in Table 3, BlazeIt returns precise answers for easy-to-

answer queries. However, it has a lower recall metric. For hard-to-

answer queries (e.g.,Q3), the specialized model does not offer useful

results. So, the system instead falls back to the object detection

model. In this case, BlazeIt runs the specialized model, resulting

in lower performance than Naive. In contrast, Thia is capable of

selecting an optimal plan with good accuracy and performance

metrics.

Our Approach. In Figure 3, we show two prediction results from

our Early Inference technique (the oracle object detection EP and

a shallow EP, respectively). We observe that the faster EP is still able

to capture the presence of cars, but it is less accurate in two ways.

First, the bounding boxes are not accurate, so multiple bounding

boxes are returned for the same object. Second, it tends to miss

hard-to-detect objects (e.g., objects far away or objects with lights).

If a user queries for an image with exactly four cars, Thia uses

the oracle exit point to satisfy the precision requirement. However,
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(a) Results of oracle EP- 1× speedup. (b) Results of shallow EP- 6× speedup.

Figure 3: Objects Detection Results – Objects detected by (a) oracle, and

(b) shallow EP.
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Figure 4: System Overview – The two major components of Thia are:

(1) Optimizer and (2) Execution Engine. While the Optimizer relies

on Fine-Grained Planning and Exit Point Estimation techniques, the

Execution Engine performs Early Inference.

if the user is only interested in images with cars, Thia uses the

faster exit point to obtain a 6× speedup. We design Thia so that it

carefully chooses the optimal query execution plan for every chunk

of the video to deliver higher accuracy and speedup.

4 System Overview

Figure 4 illustrates the architecture of Thia.

❶ Fine-Grained Planning.When the system gets a query, the

Optimizer uses the Fine-Grained Planning technique to con-

struct a query execution plan. It first splits the entire video into a

set of small chunks. The size of a chunk is determined dynamically

at runtime (covered in §6). For each chunk, the Optimizer chooses

the optimal plan (i.e., when to stop inference in the model). Such a

fine-grained query plan enables Thia to deliver higher accuracy

and throughput compared to a coarse-grained plan for the entire

video. A naive technique for picking the plan consists of running

the model on a set of sampled frames from the chunk. While the

fine-grained plan reduces the query execution time (Thia-EI in Ta-

ble 1), it increases the query optimization time, which hurts the

overall query processing time (discussed in §7.5). To reduce the

optimization time, Thia instead leverages a more lightweight Exit

Point Estimation technique.

❷ Exit Point Estimation. Thia uses Exit Point Estimation

and Fine-Grained Planning techniques in tandem to reduce the

overhead of the Optimizer. The Optimizer uses a shallow neural

network to directly estimate when to short-circuit the inference

in an Early Inference model. It trains an EP estimator for every

unique query executed in the system. We discuss how Thia obtains

data for training the Exit Point Estimation model in §6.

❸ Early Inference. The fine-grained query plan constructed by

the Optimizer consists of a list of chunks and the model chosen for

each chunk. For example, Thia may skip frames 0 through 100, run
EP-1 on frames 101 through 300, and evaluate the oracle EP (i.e.,
EP-3) on frames 300 through 500. The Execution Engine takes

this query plan and uses the Early Inference technique to deliver

different accuracy-performance tradeoffs with a single model.

5 Early Inference

In this section, we present the Early Inference technique. We first

provide an overview of this technique in §5.1. We then illustrate its

utility using a case study with Faster-RCNN [17] in §5.2.

5.1 Overview

We seek to construct a single model with multiple exit points

wherein the inference may be short-circuited to improve perfor-

mance at the expense of accuracy. We do not want to construct a

collection of models to accomplish this goal. The Optimizer dynam-

ically adjusts the EP based on the query. If the query is relatively

easy to answer, Thia delivers higher speedup by stopping the in-

ference earlier (while returning accurate results). We discuss how

Thia estimates the correct EP for a chunk in §6. In this section, we

focus on how we construct a model with multiple EPs.

As discussed in §2.1, object detection models usually rely on a

backbone network that is based on a state-of-the-art image classi-

fication model (e.g., ResNet-50 [6] and VGG-16 [18]). Since these

classification models are tailored for high accuracy, they consist

of a stack of compute-intensive layers that lead to lower inference

throughput. The layers in a backbone network are sequentially

connected to each other. Our key idea is to provide faster detection

results with lower accuracy by using the features from earlier layers

in the backbone network.

Model Cascading vs Early Inference: Researchers have

proposed model cascades for face recognition [19, 20]. Similar to

Early Inference, in a model cascade, the features from earlier

layers in the backbone network are used for face recognition. How-

ever, these techniques differ in two ways. First, face recognition is

a binary classification task (i.e., face exists in the image or not). So,

the additional classification layers are only instrumented in this

approach. Second, these efforts propose a bespoke architecture to

construct the cascade. We instead seek to support early inference

in widely used object detection models.
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Figure 5: Early Inference in Faster-RCNN – Architecture of a Faster-

RCNN model that supports early inference.

To support Early Inference with a general-purpose object de-

tection model, we introduce additional RPN and ROI units in the

earlier layers of the backbone network. We modify the number of

parameters in these units so that they operate on the feature tensor

emitted by the backbone network. As shown in Figure 5, for a given

input, Optimizer may choose to short-circuit the inference using

the newly added units to speed up inference.

5.2 Case Study: Faster-RCNN

Faster-RCNN is a state-of-the-art object detector [17]. We now

discuss how we extend this model to support Early Inference.

We next describe how to generalize the training process to other

models.

Faster-RCNN with Early Inference: The backbone net-

work of Faster-RCNN is the ResNet-50 [6]model. ResNet-50 consists

of five stacked compute blocks, so we extend this model to support

five EPs (we could support fewer or additional EPs if needed by

instrumenting other layers of the backbone network). The default

output of the model corresponds to the fifth EP. We add four addi-

tional EPs that provide a wide set of throughput-accuracy tradeoffs

(i.e., EP-1, EP-2, EP-3, and EP-4 in Figure 5). We refer to EP-5 as the

oracle (since it is the output of the original model). We preserve the

structure of RPN and ROI units as is the case of the oracle. However,

we modify the first layer in these units to work with the output

tensors of the early EPs that vary in size. Table 4 lists the layer

configuration of each EP
2
.

Top-down training: We adopt a novel top-down training tech-

nique for constructing models that support early inference. We

start the training process with the following multi-loss function:

𝐿(𝑥 ;𝑌 ) = 1

|𝐸 |
∑︁
𝑒∈𝐸

𝐿({𝑦𝑐 }, {𝑦𝑡 };𝑌 )

𝐸 represents the set of exit points (including the oracle). 𝐿 denotes

the object detection loss function used in Faster-RCNN [17]. This

training step tunes all EPs.

𝐸 represents all possible object detection EPs, including the oracle

EP. We begin with the oracle EP. The reasons for doing this are

twofold. First, the oracle gets the features emitted by the last stage

of the backbone network, so training this EP ensures that all layers

2
We found that upsampling the input channel size to 2048 does not improve accuracy

since the features from earlier EPs are coarse.

Exit Points

Layer Config Performance

Channel Kernel Speedup TPr FNr

EP-1 64 3 × 3 6.90× 87.99% 42.70%

EP-2 256 3 × 3 2.62× 91.65% 26.95%

EP-3 512 3 × 3 2.46× 95.52% 16.22%

EP-4 1024 3 × 3 1.97× 98.17% 6.56%

EP-5 (Oracle) 2048 3 × 3 1.00× 100.00% 0.00%

TPr: True positive ratio. FNr: False negative ratio.

Table 4: Early Inference model knobs – the layer configuration and

performance of each object detection knob in Early Inference model.
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Figure 6: Generalization of Early Inference – Application of the

Early Inference technique to a VGG-16 model for image classification.

converge to the optimal state. Second, we seek to ensure that the

oracle EP in the Early Inference model delivers the same accuracy

as that of the original model. After training the oracle EP, we freeze

all the layer parameters in the backbone network. This ensures

that fine-tuning the shallow EPs later does not affect the previously

tuned EPs. We gradually fine-tune the RPN and ROI units starting

from EP-4 through EP-1.

Throughput-Accuracy Tradeoffs. Table 4 lists the speedup

of shallow EPs with respect to the the oracle EP. For a given video

frame, this Early Inference model offers up to a 6.9× speedup

when we stop the inference at the first EP. Table 4 also summarizes

the true positive and false negative percentage of each EP on the

training dataset with respect to the oracle EP. These metrics are

averaged across all categories. Shallower EPs return more false

negatives and fail to return a few true positives. In other words,

they are more likely to not return a positive frame instead of mis-

classifying a negative frame. If the system were to use a shallow

EP for the entire video or sequence of images, the impact on query

accuracy would be significant. Instead, it must use the oracle EP

on some difficult chunks of the video. We cover this Fine-Grained

Planning technique in §6. In §7, we demonstrate that Thia has

a tolerable accuracy loss using both Early Inference and Fine-

Grained Planning techniques.

Generalization. The Early Inference technique generalizes

to other models (e.g., VGG-16 [18]) and other vision tasks (e.g.,
image classification). This is because most of these deep learning

models contain similar backbone networks that benefit from the

Early Inference technique. Furthermore, the number of EPs may

be increased or decreased based on the complexity of the model.
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❶❷ ❶

Figure 7: Variation of Optimal EP – The fastest, accurate EP in an Early

Inference model for a sequence of chunks in a video.

Figure 6 illustrates another Early Inference model based on

VGG-16 for an image classification task that is trained on the Flower-

102 dataset [14]. Here, EP-1 provides a 4.7× speedup compared to

EP-8 (i.e., the oracle EP). By using all the eight EPs together, the

system achieves a 2.7× speedup compared to the oracle EP with

minimal accuracy loss.

6 Query Planning

We present the Fine-Grained Planning technique in this section.

In §6.1, we make the case for Fine-Grained Planning. In §6.2,

we discuss how Thia samples frames and constructs chunks to

apply this technique. Lastly, in §6.3, we introduce the Exit Point

Estimation technique for reducing the optimization time.

6.1 Motivation

As we discussed in §5.2, the Early Inference model contains a

set of EPs. The goal of the Optimizer is to choose an optimal

(accurate and fast) EP for every fine-grained chunk of the video

at runtime. Our key observation is that the optimal EP changes at

chunk granularity. Figure 7 illustrates the chunk-level query plan

for Q4 in Section 3. The triangles in Figure 7 represent the fastest

(but still accurate enough) EP for every chunk in the video. This

example shows that the optimal EP constantly changes. So, it is

essential to dynamically adjust the query plan at runtime to achieve
both good accuracy and performance.

State-of-the-art systems (e.g., BlazeIt [10] and PP [13]) take a

coarse-grained approach to planning. They choose a single plan

for the entire video based on the accuracy of the model on a set of

sampled frames. The limitations of this technique are twofold.

Performance degradation. Positive events tend to not ap-

pear in every chunk of the video (i.e., selectivity of the predicate is

typically high). If we pick a static plan for the entire video, video

chunks that are less likely to contain positive events or that con-

tain easy-to-detect events are passed to a more compute-intensive

EP. Thus, the system does not leverage the opportunity to further

improve performance by either skipping those chunks or using

less compute-intensive EPs for those chunks. With Fine-Grained

Planning, Thia uses a faster EP or directly skips the entire chunk

(❶ in Figure 7).

Accuracy loss. The distribution of the target event and the ac-

curacy of the model vary across the video. A statically selected,

shallow EP will hurt accuracy by missing hard-to-detect events.

As shown in Figure 7, some chunks require deeper EPs to make

Algorithm 1: Fine-grained query planning.

Input :V - Video data.

EP-List - The list of EPs in the Early Inference model.

P - Precision constraint of the query.

R - Recall constraint of the query.

Output :Return a list of fine-grained plans.

1 video_length← Length(V)
// estimate initial sampling rate.

2 sampling_rate← EstimateSamplingRate(V)
// optimize the query plan.

3 return GetQueryPlan(V, EP-List, P, R, sampling_rate)

4 Function PickBestEP(V_sub, EP-List, P, R)
Output :Return the optimal EP under P and R constraints, and

the rate of positive frames in the sampled subset.

5 Function GetQueryPlan(V, EP-List, P, R, sampling_rate)
Output :A collection of fine-grained plans.

// divide into smaller chunks.

6 sampling_span← 1
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒

7 V_sub← V [0, 1 · 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑠𝑝𝑎𝑛, 2 · 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑠𝑝𝑎𝑛 ...]

8 best_ep, posi_ratio← PickBestEP(V_sub, EP-List, P, R)

// the collection of fine-grained plans.

9 plan← {} if (posi_ratio is sufficient and best_ep is fastest) or
(Length(V) is small) then

10 plan += { V: best_ep }

11 else if posi_ratio is insufficient then

12 plan += { V: skip }

13 else

14 for V_chunk ∈ V do

// double the sampling rate.

15 plan += GetQueryPlan(V_chunk, EP-List, P, R,
2·sampling_rate)

16 return plan

accurate predictions (❷ in Figure 7). With Fine-Grained Plan-

ning, Thia dynamically adjusts the plan based on the difficulty of

detecting the target event.

6.2 Chunking Algorithm

When Thia gets a query, it first splits the given video into a set of

chunks. It then samples a set of frames from each chunk and then

evaluates the accuracy of all the EPs in the Early Inference model

on these sampled frames. Using these results, the system selects

the best EP for each chunk. Lastly, it executes the query using the

selected plan. The key components of the algorithm that Thia uses

for chunking videos are as follows:

❶ Hierarchical Chunking. The two key decisions made by

the Optimizer are: (1) chunk size, and (2) sampling rate (i.e., the
number of frames to pick from a chunk). The system delivers higher

accuracy with a higher sampling rate since more samples allow it to

better estimate the optimal EP for each chunk. However, this hurts

throughput since the system must evaluate the model’s behavior on

more frames, thereby increasing optimization time. Choosing the

chunk size is also a challenging task. This is because the duration
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of an event varies based on the video, so Thia must dynamically

adjust the chunk size at runtime.

To tackle these challenges, Thia takes a hierarchical approach

for picking the chunk size and the sampling rate for each chunk. It

initially uses a large chunk size and a low sampling rate. This allows

the Optimizer to gain a rough understanding of the contents of the

video based on the inference results collected using the sampled

frames. Based on this knowledge, it recursively adjusts the chunk

size and sampling rate.

Algorithm 1 presents the hierarchical, recursive technique used

by the Optimizer. As shown in Line 9, the recursive algorithm

stops when the chunk size is smaller than a threshold or if the

fastest EP has been chosen for a given chunk that contains enough

positive frames. In Line 8, the PickBestEP function returns the rate

of positive frames in a chunk (i.e., posi_ratio) that is obtained
from the oracle EP. It is important to ensure that the chunk has

sufficient positive frames, since the calculated precision and recall

metrics of the EPs do not generalize well without sufficient positive

frames. These constraints bound the optimization time. As shown

in Line 11, if there are very few positive frames, then Thia skips

the entire chunk to reduce both optimization time and execution

time. Lastly, it gradually reduces the chunk size and increases the

sampling rate, as shown in Line 15. The intuition is that if the system

is not able to select a plan based on its coarse-grained understanding

of the chunk, it must sample more frames from that chunk in the

next iteration. By using a small chunk size, the Optimizer is able

to adjust the plans quickly to transient events.

❷ Sampling Rate Bounds. The Optimizer gradually increases

the sampling rate to improve the quality of its plan. However, this

increases the optimization time and may hurt the overall through-

put obtained with the plan. This is because the decrease in the

query execution time is not sufficient to justify the increase in the

optimization time. To overcome this limitation, the Optimizer uses

the following constraint to bound the initial sampling rate (Line 2):

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 2 ⌈log
|𝑉 |
100
⌉ ≤ 0.1

Here, we assume that chunks must contain at least 100 frames

and we seek to bound the final sampling rate to 0.1 even in the

worst-case setting. The maximum depth of the recursive algorithm

is ⌈log |𝑉 |100 ⌉ (sampling rate is doubled in each iteration).

❸ Memoization of Inference Results. In Line 7, the newly

picked samples could be different from those that have already

been evaluated. Evaluating all the EPs on a sample is expensive. To

reduce this overhead, the Optimizer memoizes the inference results

and reuses the results of nearby frames. This technique is illustrated

in Figure 8. Without memoization, the results for the second and

fourth frames must be obtained again when the sampling rate is

increased in the next iteration. Thia instead reuses the results of

nearby frames within the same chunk. With memoization, it picks

the cached results for the third frame instead of running inference

on the fourth frame. Thus, it evaluates only the EPs on the second

frame.

❹ Evaluation-Based EP selection. To select the best EP, as

shown in Line 8, Thia evaluates all the EPs on the sampled frames

and compares them with the oracle EP. It picks the fastest EP that

Level ❶

Level ❷

No Reuse Reuse

Figure 8: Sampling results no reuse vs reuse – an illustrative example

about sampling results about performance saving with no reuse and reuse.

provides 0.8 precision and 0.8 recall. These constraints empirically

offer maximal speedup with minimal accuracy loss (§7.2). Even with

all of these optimizations, evaluating the EPs on a frame comes

with non-trivial optimization time. We next present the Exit Point

Estimation technique for further reducing the optimization time.

6.3 Exit Point Estimation

We seek to reduce the optimization time associated with the Early

Inference technique. As we present in §7.5, it is important to

balance the tradeoff between optimization time and execution time

to improve the overall query processing time.

The Exit Point Estimation technique consists of using a shal-

low, two-layer neural network instead of the evaluation step in

query planning. The neural network directly returns the optimal

EP based on the backbone features. This allows the Optimizer to

eliminate compute-intensive evaluation of all EPs. For example,

with Faster-RCNN, the inputs to the Exit Point Estimation model

are the features emitted by the fifth stage of the Early Inference

model.

To train this neural network, Optimizer uses 200 images from

the training dataset of the Early Inference model along with

the associated EP decision. For robust results, Thia must train a

separate Exit Point Estimation model for each query. However,

the overhead of training this model is tolerable because: (1) it is

a one-time overhead for each query; and (2) training time for the

Exit Point Estimationmodel is negligible compared to total query

processing time due to the simple structure of the model. We defer

an empirical analysis of this optimization to §7.6.

Estimation-Based EP selection. Since the Exit Point Esti-

mation model directly estimates the optimal EP for a video frame,

it does not return precision and recall metrics for all the EPs. So,

the Optimizer extrapolates these metrics based on the estimated

EP. We next discuss how this extrapolation is done.

Let us split the set of sampled frames into two subsets: (1) those

that contain positive events as reported by the oracle EP (Line 9

in Algorithm 1), and (2) those that do not contain positive events.We

define those two subsets as 𝑆 and 𝑆 , respectively. For a given video

frame 𝑥 , let us denote the EP estimation model that outputs the

optimal EP for that frame by 𝑂𝑃𝑇𝐸𝑃 (𝑥). The Optimizer estimates

the number of true positives (TP), false positives (FP), and false
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negatives (FN) for any EP 𝑘 in the Early Inference as:

𝑇𝑃𝑘 =
∑︁
𝑥 ∈𝑆

𝑔(𝑥), 𝑔(𝑥) =
{
1, if 𝑘 ≥ 𝑂𝑃𝑇𝐸𝑃 (𝑥)
0, otherwise

𝐹𝑃𝑘 =
∑︁
𝑥 ∈𝑆

𝑔′(𝑥), 𝑔′(𝑥) =
{
1, if 𝑘 < 𝑂𝑃𝑇𝐸𝑃 (𝑥)
0, otherwise

𝐹𝑁𝑘 =
∑︁
𝑥 ∈𝑆

𝑔′′(𝑥), 𝑔′′(𝑥) =
{
1, if 𝑘 < 𝑂𝑃𝑇𝐸𝑃 (𝑥)
0, otherwise

Our intuition is that a shallow EP is less accurate than a deep EP.

So, for a video frame 𝑥 , the estimated optimal EP (i.e., 𝑂𝑃𝑇𝐸𝑃 (𝑥))
returns correct results. Then, all EPs after the estimated optimal

EP (i.e., k ≥ 𝑂𝑃𝑇𝐸𝑃 (𝑥)) should also return correct results, and vice

versa. Hence, in the case of positive events, a deeper EP 𝑘 than the

estimated optimal EP provides true positive prediction. On the other

hand, a shallower EP 𝑘 than the estimated optimal EP provides false

negative prediction. In the case of negative events, shallower EP 𝑘

than the estimated optimal EP likely results a false positive. With

these projected metrics, the Optimizer derives the precision and

recall metrics for an EP 𝑘 as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
, 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

Lastly, the Optimizer picks the fastest EP that meets the precision

and recall constraints (e.g., 0.8), as discussed earlier.

7 Experimental Evaluation

We seek to answer the following questions in our evaluation:

• How effective is the Early Inference technique in reducing

the query processing time (§7.2)?

• How much does each technique contribute to the overall

performance (§7.3)?

• How effective is the Fine-Grained Planning compared to

the coarse-grained planning (§7.4)?

• What is the time spent on query planning and execution

(§7.5)?

• How effective is the Exit Point Estimation technique in

reducing the optimization time (§7.6)?

• How effective is Thia compared to other state-of-the-art

systems (§7.7)?

• How does the Early Inference technique compare against

the model cascade technique (§7.8)?

7.1 Experiment Setup

Evaluated Systems. Table 1 lists all the video analytics systems

that we compare in our analysis (including the variants of Thia).

In the Naive system, we apply the oracle EP on every frame. We

normalize the accuracymetrics of other systems against those of the

Naive system. We reimplement two other state-of-the-art systems

in our framework for comparative analysis: (1) PP [13], and (2)

BlazeIt [10]. In our implementation, the PP system uses ResNet-

34 [6] to filter out unrelated frames. The BlazeIt system uses a

specialized model (ResNet-34) to accelerate queries.

To better understand the performance of Thia, we examine

three variants of our system: (1) Thia-Single uses only the Fine-

Grained Planning method with the oracle EP. (2) Thia-Multi

also uses the Fine-Grained Planning method along with multiple

EPs. Specifically, we use Faster-RCNN models with three backbone

networks: ResNet-18, ResNet-34, and ResNet-50 [6] as three EPs.

(3) Thia-EI is the closest variant of Thia. It uses the Fine-Grained

Planning along with the Early Inference technique (but does

not use the Exit Point Estimation technique).

Datasets. We evaluate these systems on two datasets: (1) UA-

DeTrac [21], and (2) Jackson-Town dataset from [10]. Both datasets

are obtained from traffic surveillance cameras. We focus on four

vehicle categories in both datasets: Car, Truck, Bus, and Others.

Evaluation metrics. Similar to other video analytics systems [1,

9–11, 13], our evaluation normalizes the results with respect to the

oracle model (Faster-RCNN model backed by ResNet-50). So, we

provide the F-1 score calculated relative to the results of the oracle

model. We also report separate precision and recall metrics for each

query. This is important since a user might require fine-grained

accuracy requirements (e.g., low precision and high recall). We

assume that the decoded video is present on disk.

Queries. To evaluate these systems, we use the four queries listed

in Table 2. Based on the predicate, the frequency of true positive

events and the difficulty of detecting those events vary.

Software andHardware. We implement Thia with the Detec-

tron2 [22] framework in PyTorch [15]. We evaluate these systems

on a server with 44 CPU cores and 256 GB memory along with one

Titan Xp GPU with 12 GB memory.

Model Training. As discussed in §5.2, we construct the Early

Inference model based on Faster-RCNN. We split the UA-DeTrac

dataset into two parts: training and validation subsets. We train

the Early Inference model on the the training subset. We warm

up the training process for 1 epoch, and then each EP in Early

Inference model is trained for 10 epochs in a top-down manner.

Since the Jackson-Town dataset does not have ground-truth labels,

we directly apply the Early Inference model, which is tailored

for the UA-DeTrac dataset. For Thia-Multi, we train three models:

Faster-RCNN based on ResNet-18, Faster-RCNN based on ResNet-

34, and Faster-RCNN based on ResNet-50. Each model is trained

for 10 epochs.

To train the Exit Point Estimation model, we use 1000 images

from the UA-DeTrac training set. We split these images into training

(200 images) and validation subsets. We construct the training so

that the distribution of different EPs is balanced. The training data

for this model consists of backbone features for those video frames,

and the output is the fastest EP that is accurate enough. We quickly

train this shallow network for 20 epochs.

7.2 Impact of Early Inference

In this experiment, we compare the query processing time of Thia-

EI to that of other video analytics systems. The results are shown

in Figure 9. The bottom right corner represents the ideal case (faster

execution with accurate predictions).

Thia-EI. Themost notable observation is that Thia-EI outperforms

other systems on most queries. Thia-EI uses both Early Inference

and Fine-Grained Planning. On Q1 and Q2, since the fraction

of frames filtered out is limited, using an extra specialized model
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Figure 9: Impact of Early Inference – Query processing time and

F-1 scores delivered by Thia-EI, PP, and BlazeIt (bottom right corner

represents the ideal system).
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Figure 10: Usage of EPs in Early Inference model – Percentage of

frames processed using the EPs in the Early Inference model.

before the object detector adds additional execution overhead. Thia-

EI consistently reduces the total runtime and also delivers a higher

F-1 score compared to other systems. In particular, it is 2 – 6× faster
than Naive with a tolerable drop in F-1 score.

BlazeIt. On Q1, BlazeIt outperforms other systems with respect

to query processing time. However, as we discussed in §3, its spe-

cialized model delivers a lower F-1 score. On other queries, since the

F-1 score of the specialized model is too low to be useful, BlazeIt

falls back to the oracle model. Even though the specialized model is

not effective, BlazeIt still evaluates the query with the specialized

model, so the processing time of BlazeIt is higher than that of

Naive for Q2, Q3, and Q4.

PP. PP reduces the processing time on Q3 and Q4. This is because

these two queries focus on relatively rare events. So, the model in

PP is able to filter out a significant fraction of frames to accelerate

query processing.

7.3 Ablation Study

We next examine how the EPs in a model are used by Thia-EI

while processing queries. The results of this experiment are shown
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Figure 11: Ablation study – Contribution of Fine-Grained Planning

and Early Inference techniques to the performance of Thia-EI.

in Figure 10. To better understand the contribution of each tech-

nique to the performance of Thia-EI, we also conduct an ablation

study. We measure the execution time of Thia-Single and Thia-EI

to illustrate the benefits of Fine-Grained Planning and Early

Inference techniques, respectively. The results of this study are

illustrated in Figure 11.

These two experiments demonstrate that: (1) Fine-Grained

Planning is able to adaptively choose the appropriate EP for each

chunk based on the query and video frames, and (2) Fine-Grained

Planning and Early Inference techniques have significant im-

pact for rare events; but, in the case of frequent events, the speedup

mainly comes from Early Inference.

On Q1, since positive events appear in majority of the video

frames, the impact of Fine-Grained Planning is minimal. When

we add in the Early Inference technique, Thia-EI delivers higher

speedup by using shallow EPs for easy-to-detect events, as shown

in Figure 10. Q1 demonstrates an extreme scenario wherein the

first EP (EP-1) provides correct predictions on all video frames. In

contrast, in the case of Q2, Thia-EI must use multiple EPs due to

harder-to-detect events. Here, the Optimizer reduces the execution

time by carefully choosing the EPs to use. As shown in Figure 10,

while some frames are assigned to the oracle EP, other frames are

assigned to shallow EPs to reduce execution time. By reducing the

execution time, Thia-EI delivers a 4× speedup over Naive.

Unlike queries focusing on frequent events, the Fine-Grained

Planning technique provides more performance benefits in the

case of queries related to rare events, because the Optimizer de-

cides to skip some chunks during execution (Line 11). On Q3 and

Q4, as shown in Figure 11, Fine-Grained Planning leads to a

5× speedup. Nevertheless, the Early Inference technique is still
useful for these queries. Thia-EI carefully assigns certain video

frames to shallow EPs to improve the performance without losing

accuracy. The system is thus accelerated further by 3× when the

Early Inference technique enabled.

7.4 Impact of Fine-Grained Planning

We demonstrate the benefits of Fine-Grained Planning by com-

paring Thia-EI against a system that uses coarse-grained planning

with the same Early Inference model. With coarse-grained plan-

ning, we evaluate all EPs on 10% of the sampled video frames

and pick the EP that meets the precision and recall constraints.

We show a breakdown of the query processing time in Figure 12.

On all queries, Fine-Grained Planning provides a better query

plans than coarse-grained planning so that the execution time is

consistently lower. Moreover, with optimizations like sampling

rate bounds and memoization in Fine-Grained Planning, it does
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Figure 12: Impact of Fine-Grained Planning – Breakdown of query

processing time with fine-grained and coarse-grained planning techniques.
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Figure 13: Variation of Execution Time – Variation of query execution

time across the chunks in the video.

Optimization Time Execution Time

0

2000

4000

6000

Pr
oc

es
si

ng
Ti

m
e 

(s
)

Q1 Q2

Naiv
e

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia
0

2000

4000

6000

Pr
oc

es
si

ng
Ti

m
e 

(s
)

Q3

Naiv
e

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia

Q4

Figure 14: Breakdown of query processing time – Components of

query processing time (optimization time and execution time) associated

with Naive, Thia-Single, Thia-Multi, Thia-EI, and Thia.

not incur higher optimization time than the naive coarse-grained

planning approach.

We next measure the distribution of query execution time over

the fraction of the video being analysed in Figure 13. An even

distribution (e.g., Q1 and Q2) suggests that the same query plan is

used for a large chunk. In contrast, an uneven distribution (e.g., Q3
and Q4) suggests that the plan changes frequently across the video.
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Figure 15: Accuracy of the Exit Point Estimationmodel – Variation

in validation accuracy over training time.

Query Under (%) Over (%)

Q1 0.00 27.29

Q2 20.29 21.42

Q3 28.96 9.64

Q4 7.20 14.40

Table 5: Impact of Exit Point Estimation technique – Accuracy of

of Exit Point Estimation technique relative to Thia-EI.

7.5 Processing Time Breakdown

We now provide a breakdown of the processing time of Thia-EI

and its variants and compare it against Naive. Recall that all sys-

tems except for Naive use the Fine-Grained Planning technique.

Though Thia-Single is only able to use the oracle EP, it is able to

skip frames with no relevant events using Fine-Grained Planning.

The results are shown in Figure 14. Access to a set of EPs allows

both Thia-EI and Thia-Multi to reduce execution time in compar-

ison to Thia-Single and Naive. The reduction in execution time is

more prominent compared to Thia-Single for queries focusing on

more frequent events. While Thia-Multi supports multiple EPs

similar to Thia-EI, Thia-EI supports multiple EPs in a single model.

So, it has a lower GPU memory footprint, as shown in Figure 18. In

addition to that, Thia-EI offers more flexibility in terms of creating

and selecting different EPs. On Q2, due to the limited flexibility of

Thia-Multi, it has lower execution time and also lower accuracy

than Thia-EI.

The cons of using multiple EPs with Fine-Grained Planning is

the increase in optimization time. This is because the Optimizer

has to evaluate all EPs to choose an optimal EP. As illustrated

in Figure 14, the optimization time of Thia-EI and Thia-Multi

is consistently higher than that of Thia-Single. Increasing this

flexibility (i.e., adding more EPs) leads to higher sampling overhead.

Thus, Thia-EI has higher optimization time than Thia-Multi and

both have higher optimization time than Thia-Single. This moti-

vates the need for reducing the optimization time.

7.6 Impact of Exit Point Estimation

Training Time. Since the Optimizer needs to train an estimation

model for every unique query, we first quantify the training over-

head of the Exit Point Estimation technique. Figure 15 shows

the variation in validation accuracy over training time. The model

quickly converges since the Thia uses a small training set (200 sam-

ples) and a two-layer neural network for Exit Point Estimation.



THIA: Accelerating Video Analytics using
Early Inference and Fine-GrainedQuery Planning

Naive PP BlazeIt Thia Variants

1

7

13
Sp

ee
du

p 
(X

) Q1

1

2

3
Q2

1

3

5

Q3

1

3

5
Q4

0.6

0.8

1.0

Pr
ec

is
io

n

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia

0.6

0.8

1.0

Re
ca

ll

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia

0.6

0.8

1.0

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia

0.6

0.8

1.0

Th
ia-

Sin
gle

Th
ia-

Mult
i

Th
ia-

EI
Th

ia

0.6

0.8

1.0

Figure 16: End-to-end Comparison – Comparative analysis of speedup, precision, and recall metrics against state-of-the-art video analytics systems.

It takes less than 5 seconds (0.1% of total processing time) to train

each of these models for all queries.

optimization time. We next investigate the efficacy of the Exit

Point Estimation technique in reducing the optimization time.

We integrate the Exit Point Estimation technique into Thia-EI

to construct Thia. Using the Exit Point Estimation technique,

Thia is able to directly predict an appropriate EP to use for a chunk.

In contrast, Thia-EI runs inference using all EPs during optimiza-

tion phase to select the EP. As shown in Figure 14, Thia cuts the

optimization time in half. Recall that Thia uses the object detection

EPs for Fine-Grained Planning. So, the Exit Point Estimation

technique uses the backbone features for choosing a plan for each

chunk. We also measure the overhead of using Exit Point Esti-

mation. This technique introduces a minimal additional overhead

(18 s) even under the highest sampling rate (processing time is in

order of thousands of seconds).

execution time. Lastly, we discuss the impact of the Exit Point

Estimation technique on planning accuracy (i.e., choosing the

optimal EP) and execution time. We measure the planning accu-

racy relative to Thia-EI. In Table 5, Under and Over represent the
percentage of chunks for which the Exit Point Estimation tech-

nique returns a shallower EP and a deeper EP than that returned

by Thia-EI. While shallower estimates hurt query accuracy, deeper

estimates increase execution time. As shown in Figure 14, execution

time increases only negligibly for all queries except for Q1. Since

the Exit Point Estimation technique reduces optimization time,

the total processing time of Thia is lower than that of Thia-EI

on all queries except for Q1. This is because Q1 can be accurately

answered using the first EP (Figure 10), so deeper estimates increase

execution time. We discuss the impact on query accuracy in §7.7.

7.7 End-to-End Comparison

We report the speedup, precision, and recall metrics with respect to

other state-of-the-art systems in Figure 16. The bars on the left side

represent three systems: (1) Naive, (2) BlazeIt, and (3) PP. The
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Figure 17: Model Cascade vs. Early Inference – Comparison of the

query processing time taken by Naive, Model Cascade, Thia-EI, and Thia.

latter two video analytics systems use specialized models. The bars

on the right side represent variants of Thia that use one or more

techniques presented in this paper.

The most notable observation is that systems that have access to

a set of EPs deliver higher performance than those that have access

to a single EP. Unlike Thia-Multi, which maintains a collection

of separate models, the Early Inference technique offers more

flexibility in choosing the optimal EP. However, this technique

increases the optimization time. We overcome this limitation using

the Exit Point Estimation technique.

Thia consistently delivers higher speedup than other systems.

Due to the inaccuracy of the Exit Point Estimation technique,

Thia has a minimal drop in accuracy. The drop in recall is more

prominent because shallow EPs are unable to recognize hard-to-

detect events, which leads to more false negatives. In contrast, the

drop in precision is minimal. On Q1, Thia improves both precision

and recall. This is because the Optimizer augmented with the Exit

Point Estimation technique overestimates the EPs for this query,

leading to an improvement in accuracy.

7.8 Model Cascade vs. Early Inference

As we mentioned in §2.3, Thia-Multi uses a model cascade [1]. It

differs from the naive model cascade technique in that it uses Fine-

Grained Planning to select EPs. In contrast, a naive approach
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Figure 18: Memory Footprint – Comparison of memory footprint of

Thia-EI and Thia-Multi (i.e., a model cascade).
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Figure 19: Optimality of Fine-Grained Planning – Comparison of

execution time of Thia-EI and Thia against that with the optimal plan.

determines whether to stop at an EP based on the a confidence

score of the prediction from the previous EP. Thia-Multi out-

performs the naive approach since shallower EPs in the model

cascade are always executed with the latter technique. As a re-

sult, our Early Inference based systems (i.e., Thia-EI and Thia)

outperform the model cascade approach. Since it is challenging

to construct a confidence-score based system in the case of object

detection, we show the projected performance of the model cascade

approach compared to Thia-EI and Thia in Figure 17. The Early

Inference based system delivers 2× speedup compared to model

cascade.

Using multiple models to construct model cascade also increases

the memory footprint of the system. As shown in Figure 18, the real-

time memory usage of a model cascade increases when we increase

the number of EPs. It has a 5 GB memory footprint with 5 EPs. In

contrast, since the Early Inference model shares parameters and

inference features, it only incurs a 2 GB memory footprint for the

same number of EPs.

7.9 Optimality of Fine-Grained Planning

We now examine the quality of the query plans relative to the

optimal plan by comparing the execution speedup. The optimal plan

is constructed using a brute-force EP selection on every frame (i.e.,
chunk size = 1). The optimal plan is un-achievable in reality because

the brute-force selection on every frame significantly increases

optimization time. The results are shown in Figure 19. The plans

constructed by the Optimizer are 0.3× slower than the optimal

plan. So, there is still potential for improving the quality of the

query plans. We plan to explore techniques for doing so with a

tolerable impact on optimization time in the future.

8 Limitations

Accuracy of Exit Point Estimation model. The Exit Point

Estimation technique uses a simple neural network to model the

optimal EPs distribution. However, the inaccuracy of this model

leads to a minimal drop in overall query accuracy. We plan to study

other techniques to reduce the optimization time in the future. For

example, instead of using a deep learning model, a lightweight sta-

tistical estimator may be sufficient. A challenge with this approach

is that this estimator must accurately map all of the parameters

returned by the object detection model (e.g., a set of bounding boxes
and confidence scores) to the appropriate EP.

Query Support. Currently, Thia supports a limited set of queries.

To support general-purpose video analytics, we will need to add

support for additional types of queries (e.g., aggregate queries). We

plan to integrate the Early Inference and Fine-Grained Plan-

ning techniques into the query execution engine and the query

optimizer of a full-featured video analytics system in the future.

9 Related Work

Model Cascade. Researchers in the area of face detection have

proposed models that support a set of EPs that are geared for differ-

ent accuracy and speed trade-offs [19, 20]. These models return a

binary decision and a confidence score (i.e., whether a face exists).
Based on the confidence score, the model chooses the appropriate

EP. In contrast, Thia uses the estimator to directly pick the EP.

Query planning. The authors of Chameleon [9] observe that

an appropriate query plan is critical to gain high performance and

accuracy. Similar to the Fine-Grained Planning technique, it

adjusts the execution plan at runtime. To reduce the cost of picking

the correct plan, it exploits temporal locality of nearby frames in

the video, thereby reducing the profiling cost. To further reduce

this cost, it uses a clustering algorithm to explore correlation across

videos. Thia instead uses a shallow neural network to directly

estimate the optimal EP to use for a chunk.

10 Conclusion

We presented, Thia, a video analytics system for efficiently pro-

cessing visual data at scale. Thia leverages the early inference tech-

nique to support a range of throughput-accuracy tradeoffs. It then

adopts a fine-grained approach to query planning and processes

different chunks of the video with different exit points to meet the

user’s requirements. Lastly, Thia uses a lightweight technique for

directly estimating the exit point using a shallow deep learning

model to lower the optimization time. We empirically show that

these techniques enable Thia to outperform two state-of-the-art

video analytics systems by up to 6.5×, while providing accurate

results even on queries focusing on hard-to-detect events.
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