Memory-level and Thread-level Parallelism Aware GPU
Architecture Performance Analytical Model

Sunpyo Hong Hyesoon Kim
ECE School of Computer Science
Georgia Institute of Technology
{shong9, hyesodr@cc.gatech.edu

Abstract

GPU architectures are increasingly important in the mualtire era due to their high number of parallel pro-
cessors. Programming thousands of massively parallebttgas a big challenge for software engineers, but un-
derstanding the performance bottlenecks of those parpitejrams on GPU architectures to improve application
performance is even more difficult. Current approachesaeealprogrammers to tune their applications by exploiting
the design space exhaustively without fully understantliegperformance characteristics of their applications.

To provide insights into the performance bottlenecks o&jparapplications on GPU architectures, we propose
a simple analytical model that estimates the execution thmassively parallel programs. The key component of
our model is estimating the number of parallel memory retpu@ge call this thenemory warp parallelisjrby con-
sidering the number of running threads and memory bandwigiftsed on the degree of memory warp parallelism,
the model estimates the cost of memory requests, theretnatgsy the overall execution time of a program. Com-
parisons between the outcome of the model and the actualtexetime in several GPUs show that the geometric
mean of absolute error of our model on micro-benchmarks48&and on GPU computing applications is 13.3%.
All the applications are written in the CUDA programming tarage.

1. Introduction

The increasing computing power of GPUs gives them condidetagher peak computing power than
CPUs. For example, NVIDIAs GTX280 GPUs [3] provide 933 Gflepvith 240 cores, while Intel's
Core2Quad processors [2] deliver only 100 Gflop/s. Integgtrgeneration of graphics processors will
support more than 900 Gflop/s [35]. AMD/ATI’s latest GPU (HEY®) provides 2.72 Tflop/s [1]. How-
ever, even though hardware is providing high performancepmding, writing parallel programs to take
full advantage of this high performance computing powetilsasbig challenge.

Recently, there have been new programming languages tmatoareduce programmers’ burden in
writing parallel applications for the GPUs such as Brook}; (8UDA [30], and OpenCL [21]. However,
even with these newly developed programming languagegramamers still need to spend enormous time
and effort to optimize their applications to achieve bepterformance [32]. Although the GPGPU com-

munity [15] provides general guidelines for optimizing &pations using CUDAglearly understanding

various features of the underlying architecture and theaated performance bottlenecks in their appli-
cations is still remaining homework for programmers. THere, programmers might need to vary all the
combinations to find the best performing configurations [32]

To provide insight into performance bottlenecks in madgiyarallel architectures, especially GPU
architectures, we propose a simple analytical model. Theéaihwan be used statically without executing
an application. The basic intuition of our analytical modehat estimating the cost of memory operations
is the key component of estimating the performance of par@lPU applications. The execution time of an
application is dominated by the latency of memory instiutsi but the latency of each memory operation
can be hidden by executing multiple memory requests coaotiyt By using the number of concurrently
running threads and the memory bandwidth consumption, tim&® how many memory requests can be
executed concurrently, which we catlemory warp parallelism (MWP)We also introduceomputation
warp parallelism (CWPR)CWP represents how much computation can be done by othgswanile
one warp is waiting for memory values. CWP is similar to a meetarithmetic intensit§{31] in the
GPGPU community. Using both MWP and CWP, we estimate effectists of memory requests, thereby
estimating the overall execution time of a program.

We evaluate our analytical model based on the CUDA [28, 30§@mmming language, which is C with
extensions for parallel threads. We compare the resultsiooalytical model with the actual execution
time on several GPUs. Our results show that the geometricmmméabsolute errors of our model on
micro-benchmarks is 5.4% and on the Merge benchmarks [233.3%

The contributions of our work are as follows:

1. To the best of our knowledge, we propose the first analyticalel for the GPU architecture. This
can be easily extended to other multithreaded architeztasavell.
2. We propose two new metrics, MWP and CWP, to represent tiiedef warp level parallelism that

provide key insights identifying performance bottlenecks

1A warp is a batch of threads that are internally executedttwgydoy the hardware. Section 2 describes a warp.
2Arithmetic intensity is defined as math operations per mgroperation.
3The Merge benchmarks consist of several media processplgations.

2. Background and Motivation

We provide a brief background on the GPU architecture angnaraming model that we modeled. Our
analytical model is based on the CUDA programming model aed\tVIDIA Tesla architecture [3, 10,

28] used in the GeForce 8-series GPUs.
2.1. Background on the CUDA Programming Model

The CUDA programming model is similar in style to a singl@gram multiple-data (SPMD) software
model. The GPU is treated as a coprocessor that executepalaiel kernel functions.

CUDA provides three key abstractions, a hierarchy of thrgexips, shared memories, and barrier
synchronization. Threads have a three level hierarchy.idiga set of thread blocks that execute a kernel
function. Each grid consists of blocks of threads. Eachlblscomposed of hundreds of threads. Threads
within one block can share data using shared memory and cagrnmdironized at a barrier. All threads
within a block are executed concurrently on a multithreaalethitecture.

The programmer specifies the number of threads per blockhesumber of blocks per grid. A thread
in the CUDA programming language is much lighter weight thahread in traditional operating systems.
A thread in CUDA typically processes one data element at a.tithe CUDA programming model has
two shared read-write memory spaces, the shared memorg apddhe global memory space. The shared
memory is local to a block and the global memory space is addesoy all blocks. CUDA also provides
two read-only memory spaces, the constant space and thedesiace, which reside in external DRAM,

and are accessed via read-only caches.

2.2. Background on the GPU Architecture

Figure 1 shows an overview of the GPU architecture. The GRibitcture consists of a scalable
number ofstreaming multiprocesso$SMs), each containing eigktreaming processdiSP) cores, two
special function units (SFUs), a multithreaded instrutfetch and issue unit, a read-only constant cache,
and a 16KB read/write shared memory [10].

The SM executes a batch of 32 threads together calledrp. Executing a warp instruction applies
the instruction to 32 threads, similar to executing a SIMBtianction like an SSE instruction [18] in

X86. However, unlike SIMD instructions, the concept of wamot exposed to the programmers, rather

hreac

hreac
Mhrea(
Gl

hreac
hreac
threac
hreac
hreac
threac
threac
hreac
hreac
threac
hreac
hreac
threac
hreac
hreac
threac

s

= hreac

Mhrea(
TN

threac
threac
hreac

Streaming Streaming Streaming
Multiprocessor Multiprocessor Multiprocessor Multiprocessor |I-cache
(Multithreaded (Multithreaded (Multithreaded . (Mul
processor) processor) processor) processor) Decoder
t t t t Shared Memory

‘ Interconnection Network ‘

Global Memory (Device Memory)

Jun uonndax3y AWIS

Figure 1. An overview of the GPU architecture

programmers write a program for one thread, and then spduEfyumber of parallel threads in a block,
and the number of blocks in a kernel grid. The Tesla architectorms a warp using a batch of 32
threads [17, 11] and in the rest of the paper we also use a gayatch of 32 threads.

All the threads in one block are executed on one SM togethee €M can also have multiple concur-
rently running blocks. The number of blocks that are runrongone SM is determined by the resource
requirements of each block such as the number of registersi@ared memory usage. The blocks that are
running on one SM at a given time are callective blockdn this paper. Since one block typically has
several warps (the number of warps is the same as the numitiereaids in a block divided by 32), the
total number of active warps per SM is equal to the number opw/per block times the number of active
blocks.

The shared memory is implemented within each SM multipreaess an SRAM and the global memory
is part of the offchip DRAM. The shared memory has very lowessclatency (almost the same as that of
register) and high bandwidth. However, since a warp of 32atls access the shared memory together,
when there is a bank conflict within a warp, accessing theesharemory takes multiple cycles.

2.3. Coalesced and Uncoalesced Memory Accesses

The SM processor executes one warp at one time, and schedares in a time-sharing fashion. The
processor has enough functional units and register reéd/ports to execute 32 threads (i.e. one warp)
together. Since an SM has only 8 functional units, execu@ghreads takes 4 SM processor cycles for

computation instruction.

4In this paper, a computation instruction means a non-memstyuction.

4

When the SM processor executes a memory instruction, itrggggememory requests and switches to
another warp until all the memory values in the warp are re&tially, all the memory accesses within a
warp can be combined into one memory transaction. Unfotalyyahat depends on the memory access
pattern within a warp. If the memory addresses are sequgealiaf the memory requests within a warp
can be coalesced into a single memory transaction. Othere&ch memory address will generate a dif-
ferent transaction. Figure 2 illustrates two cases. The Eianual [30] provides detailed algorithms to
identify types of coalesced/uncoalesced memory acceéseemory requests in a warp are uncoalesced,
the warp cannot be executed until all memory transactiam® the same warp are serviced, which takes

significantly longer than waiting for only one memory reque®alesced case).

A Single Memory Transaction

‘Addr 1 ’ Addr 2

0 0 0 0 1 1 1

Thread 1 Thread 2 Thread 3 Thread4 Thread 5 Thread 6 Thread 32

(a)

Addr 3

Addr 4

Addr 5

Addr 6

O ‘ Addr 32 ‘

Multiple Memory Transactions

Addr 1 Addr 2 Addr3 | e« oo o.
1 0 1 1 1

Thread 1 Thread 2 Thread 3 Thread 31 Thread 32
(b)

Figure 2. Memory requests from a single warp. (a) coalesced m emory access (b) uncoalesced memory access

2.4. Motivating Example

To motivate the importance of a static performance analyesithe GPU architecture, we show an
example of performance differences from three differemsims of the same algorithm in Figure 3. The
SVM benchmark is a kernel extracted from a face classifioasilgorithm [38]. The performance of
applications is measured on NVIDIA QuadroFX5600 [4]. There three different optimized versions of
the same SVM algorithmNaive ConstantandConstant+OptimizedNaiveuses only the global memory,
Constantuses the cached read-only constant memamydConstant+Optimizeclso optimizes memory
accesséson top of using the constant memory. Figure 3 shows the exectime when the number
of threads per block is varied. Even though the number ofatliseper block is varied, the number of
blocks is adjusted to keep the total work the same. The paegnce improvement a€onstant+Optimized

and that ofConstantover theNaiveimplementation are 24.36x and 1.79x respectively. Evenghdhe

5The benefits of using the constant memory are (1) it has arhgmeache per SM and (2) using the constant memory can
reduce register usage, which might increase the numbemnoimg blocks in one SM.
5The programmer optimized the code to have coalesced memoegses instead of uncoalesced memory accesses.

performance of each version might be affected by the numbéreads, once the number of threads

exceeds 64, the performance does not vary significantly.

1400 1

. », &
A | Y 7N 09
1200 L5 ~ SN, *
L 4
\ 08

1000 07
0.6
0.5

0.4 {

03 — -Naive

800

Occupancy

600 A

Execution Time (ms)

400

-4- Naive —A—Constant —e—Constant +
Optimized

0.2 —#A—Constant

0.1 ~-@- Constant+Optimized

o ! 0
4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484

THREADS PER BLOCK THREADS PER BLOCK

Figure 3. Optimization impacts on SVM Figure 4. Occupancy values of SVM

Figure 4 shows SM processor occupancy [30] for the threescabe SM processor occupancy in-
dicates the resource utilization, which has been widelyduseoptimize GPU computing applications.
It is calculated based on the resource requirements forengivogram. Typically, high occupancy (the
max value is 1) is better for performance since many activehning threads would more likely hide
the DRAM memory access latency. However, SM processor @uypdoes nosufficientlyestimate the
performance improvement as shown in Figure 4. First, whemtimber of threads per block is less than
64, all three cases show the same occupancy values everhtbhmigerformances of 3 cases are differ-
ent. Second, even though SM processor occupancy is imprémesbme cases, there is no performance
improvement. For example, the performanceCainstants not improved at all even though the SM pro-
cessor occupancy is increased from 0.35 to 1. Hence, we tiieedroetrics to differentiate the three cases

and to understand what the critical component of perforraasc

3. Analytical Model
3.1. Introduction to MWP and CWP

The GPU architecture is a multithreaded architecture. Edhcan execute multiple warps in a time-
sharing fashion while one or more warps are waiting for mgnvatues. As a result, the execution cost of
warps that are executed concurrently can be hidden. Thedwpanent of our analytical model is finding
out how many memory requests can be serviced and how many warpbe executed together while one

warp is waiting for memory values.

To represent the degree of warp parallelism, we introduae rivetrics, MWP (Memory Warp Paral-
lelism)andCWP (Computation Warp ParallelismMWP represents the maximum number of warps per
SM that can access the memory simultaneously during thegamed from right after the SM processor
executes a memory instruction from one warp (therefore, argmequests are just sent to the memory
system) until all the memory requests from the same warpexxeced (therefore, the processor can exe-
cute the next instruction from that warp). The warp that istvwg for memory values is calledmemory
warpin this paper. The time period from right after one warp seatmory requests until all the memory
requests from the same warp are serviced is called one menawpywaiting period. CWP represents the
number of warps that the SM processor can execute during emeony warp waiting period plusne. A
value one is added to include the warp itself that is waitmrgniemory values. (This means that CWP is
always greater than or equal to 1.)

MWP is related to how much memory parallelism in the systenWWRis determined by the memory
bandwidth, memory bank parallelism and the number of rupmmarps per SM. MWP plays a very im-
portant role in our analytical model. When MWP is higher tiathe cost of memory access cycles from
(MWP-1) number of warps is all hidden, since they are all astgy the memory system together. The
detailed algorithm of calculating MWP will be described iacBon 3.3.1.

CWHP is related to the program characteristics. It is sintbaan arithmetic intensity, but unlike arith-
metic intensity, higher CWP means less computation per mgmeocess. CWP also considers timing
information but arithmetic intensity does not consideritighinformation. CWP is mainly used to decide
whether the total execution time is dominated by computatiast or memory access cost. When CWP
is greater than MWP, the execution cost is dominated by mgmccess cost. However, when MWP is
greater than CWP, the execution cost is dominated by coripnteost. How to calculate CWP will be

described in Section 3.3.2.

3.2. The Cost of Executing Multiple Warps in the GPU architet¢ure

To explain how executing multiple warps in each SM affecesttital execution time, we will illustrate
several scenarios in Figures 5, 6, 7 and 8. A computatiorogenidicates the period when instructions

from one warp are executed on the SM processor. A memoryngajteriod indicates the period when

memory requests are being serviced. The numbers insidedti@dation period boxes and memory
waiting period boxes in Figures 5, 6, 7 and 8 indicate a wagptidication number.

Casel: Case2:

1 3 5 1,7]
21 4 J_ 6 Jas8

Idle cycles

CWP=4 | Memory MWP=2
Waiting period%

<

2 Computation + 4 Memory 2 Computation + 4 Memory
(a) (b)
D 15t Memory period . 1st Computation period

2"d Memory period 2nd Computation period

Figure 5. Total execution time when CWP is greater than MWP: (a) 8 warps (b) 4 warps

3.2.1. CWP is Greater than MWP For Case 1 in Figure 5a, we assume that all the computatioodser
and memory waiting periods are from different warps. Theeyscan service two memory warps simul-
taneously. Since one computation period is roughly onel tbfrone memory waiting warp period, the
processor can finish 3 warps’ computation periods duringroamory waiting warp period. (i.e., MWP
is 2 and CWP is 4 for this case.) As a result, the 6 computatesiogs are completely overlapped with
other memory waiting periods. Hence, only 2 computatiords&amemory waiting periods contribute to
the total execution cycles.

For Case 2 in Figure 5b, there are four warps and each warpwwasdmputation periods and two
memory waiting periods. The second computation period tar snly after the first memory waiting
period of the same warp is finished. MWP and CWP are the samasesIC First, the processor executes
four of the first computation periods from each warp one by @ethe time the processor finishes the first
computation periods from all warps, two memory waiting pds are already serviced. So the processor
can execute the second computation periods for these twoswakfter that, there are no ready warps.
The first memory waiting periods for the remaining two warps still not finished yet. As soon as these
two memory requests are serviced, the processor startetutxthe second computation periods for the
other warps. Surprisingly, even though there are some yiikes between computation periods, the total
execution cycles are the same as Case 1. When CWP is higmeltWéP, there are enough warps that
are waiting for the memory values, so the cost of computgbemods can be almost always hidden by

memory access periods.

For both cases, the total execution cycles are only the suthcoimputation periods and 4 memory
waiting periods. Using MWP, the total execution cycles carcalculated using the below two equations.

We divide Comyp_cycles Dy #Mem _insts t0 get the number of cycles in one computation period.

N
Exec_cycles = Mem_cycles x WP + Comp_p x MW P (l)
Comp_p = Comp_cycles/#Mem_insts (2)

Mem_cycles: Memory waiting cycles per warp (see Equation (18))
Comp_cycles: Computation cycles per warp (see Equation (19))
Comp_p: Execution cycles of one computation period

Mem_insts: Number of memory instructions per warp

N: Number of active running warps per SM

3.2.2. MWP is Greater than CWP In general, CWP is greater than MWP. However, for some cases,
MWP is greater than CWP. Let’s say that the system can se8/ibemory warps concurrently. Again
CWP is still 4 in this scenario. In this case, as soon as thecfiimputation period finishes, the processor
can send memory requests. Hence, a memory waiting periodvaira always immediately follows the
previous computation period. If all warps are independ#td,processor continuously executes another
warp. Case 3 in Figure 6a shows the timing information. Is ti@se, the memory waiting periods are all
overlapped with other warps except the last warp. The tottation cycles are the sum of 8 computation

periods and only one memory waiting period.

Case3:

8 Computation + 1 Memory

S

8 Computation + 1 Memory
(@ (b)
: 1st Memory period . 1st Computation period

2nd Memory period 2nd Computation period
Figure 6. Total execution time when MWP is greater than CWP: (a) 8 warps (b) 4 warps

Even if not all warps are independent, when CWP is higher BfP, many of memory waiting periods

9

are overlapped. Case 4 in Figure 6b shows an example. Eaghhaartwo computation periods and two
memory waiting periods. Since the computation time is d@mninthe total execution cycles are again the
sum of 8 computation periods and only one memory waitingaakeri

Using MWP and CWP, the total execution cycles can be cakedlasing the following equation:

Ezec_cycles = Mem_p + Comp_cycles x N (3)

Mem_p: One memory waiting period (sem_L in Equation (12))

Case 5 in Figure 7 shows an extreme case. In this case, nobeeazomputation period can be finished
while one memory waiting period is completed. Hence, CWRss lthan 2. Note that CWP is always
greater 1. Even if MWP is 8, the application cannot take athga of any memory warp parallelism.
Hence, the total execution cycles are 8 computation pepbgsone memory waiting period. Note that
even this extreme case, the total execution cycles of Caseth@same as that of Case 4. Case 5 happens

whencomp_cycles are longer thanzem _cycles.

Case5:

() () CWP <2
(2] (2 6) (5] Mwp=38

8 Computation + 1 Memory

E Memory period . Computation period

Figure 7. Total execution time when computation cycles are | onger than memory waiting cycles. (8 warps)

3.2.3. Not Enough Warps Running The previous two sections described situations when there a
enough number of warps running on one SM. Unfortunatelynifagplication does not have enough
number of warps, the system cannot take advantage of alablaiwarp parallelism. MWP and CWP

cannot be greater than the number of active warps on one SM.

Case6: T o) o) e B @

8 Computation + 8 Memory

(a)

Case7: 1 1 1 1

5 Computation + 4 Memory

E Memory period . Computation period

Figure 8. Total execution time when MWP is equal to N: (a) 1 war p (b) 2 warps

10

Case 6 in Figure 8a shows when only one warp is running. Alettezutions are serialized. Hence, the
total execution cycles are the sum of the computation andanemaiting periods. Both CWP and MWP
are 1in this case. Case 7 in Figure 8b shows there are twongnmvarps. Let’'s assume that MWP is two.
Even if one computation period is less than the half of one orgwaiting period, because there are only
two warps, CWP is still two. Because of MWP, the total exemutime is roughly the half of the sum of
all the computation periods and memory waiting periods.

Using MWP, the total execution cycles of the above two casesbe calculated using the following

equation:

Exec_cycles =Mem_cycles x N/MW P + Comp_cyclesx
N/MW P + Comp_p(MWP — 1) 4)

=Mem_cycles + Comp_cycles + Comp_p(MW P — 1)

Note that for both cases, MWP and CWP are equal to N, the nuailzetive warps per SM.

3.3. Calculating the Degree of Warp Parallelism

3.3.1. Memory Warp Parallelism (MWP) MWP is slightly different from MLP [13]. MLP represents

how many memory requests can be serviced together. MWPsemiethe maximum number ofarps

in each SM that can access the memory simultaneously duriegr@mory warp waiting period. The

main difference between MLP and MWP is that MWP is countingredmory requests from a warp as
one unit, while MLP counts all individual memory requestpamately. As we discussed in Section 2.3,
one memory instruction in a warp can generate multiple mgnransactions. This difference is very

important because a warp cannot be executed until all valieeseady.

MWP is tightly coupled with the DRAM memory system. In our btigal model, we model the DRAM
system as a simple queue and each SM has its own queue. EeehSAMtconsumes an equal amount of
memory bandwidth. Figure 9 shows the memory model and aitimef memory warps.

The latency of each memory warp is at leasin_L cycles. Departure_delay iS the minimum departure
distance between two consecutive memory warps.n_L is a round trip time to the DRAM, which

includes the DRAM access time and the address and datadrdimsé.

11

Core Memory TIME

Mem_L Departure delay
. --~ 7 Warpl I,'—L\ Departure delay
SM Bandwidth :|]:|:|\\ (warp2 }—L\
! S Tl (Warp3)
SM sl
o o
° ° ° °
o ° - "[Warpl)
B (Warp2)
SM J_Ll_’\“\\ (Warp3)
€) (b)

Figure 9. Memory system model: (a) memory model (b) timeline of memory warps

MWP represents the number of memory warps per SM that canrmiéchduringvem_r cycles. MWP
cannot be greater than the number of warps per SM that reagretik memory bandwidthi(y p_peak_BW)
of the system as shown in Equation (5). If fewer SMs are exeguwvarps, each SM can consume
more bandwidth than when all SMs are executing warps. EoguodB) represents/w p_peak_BW. If
an application does not reach the peak bandwidth, MWP is atitm of Mem_L and departure_delay.
MW P_Without_BW 1S calculated using Equations (10) — (17). MWP cannot begisater than the number
of active warps as shown in Equation (5). If the number ovactiarps is less thamw p_without_BW _fuil,

the processor does not have enough number of warps to unhkzeory level parallelism.

MWP = MIN(MW P_Without_BW, MW P_peak_BW, N) (5)

Mem_Bandwidth
MW P _peak_BW =
WP-pea W BW _per_warp X #ActiveSM (6)

Freq x Load_bytes_per_war
BW _per_warp = 4 yres-p P (7)
Mem_L

Departure_del_uncoal Departure_del_coal

MEM_LD MEM_LD = M L_Coal

_LD = Mem_L_Coa

Addr 1 -

[Addr 2] warpl | Addr T ~ Addr 32]

Addr 3]

warp2 [__Addr 1 ~ Addr 32]

warpl

| Addr 32] warp3

Mem_L_Uncoal
(@ (b)
Figure 10. lllustrations of departure delays for uncoalesc ed and coalesced memory warps: (a) uncoalesced case (b) coal esced case

The latency of memory warps is dependent on memory accesspétoalesced/uncoalesced) as shown
in Figure 10. For uncoalesced memory warps, since one waypests multiple number of transac-
tions #Uncoal_per_mw), Mem_L includes departure delays for glncoal_per_mw number of transactions.
Departure_delay alSO INCludeStUncoal _per _mw NUMbeEr OfDeparture_del_uncoal CyCleS.Mem_LD iS a round-trip
latency to the DRAM for each memory transaction. In this mogen_rp for uncoalesced and coalesced

are considered as the same, even though a coalesced memaoggtrmight take a few more cycles because

12

of large data size.

In an application, some memory requests would be coaleswd@me would be not. Since multiple
warps are running concurrently, the analytical model symysies the weighted average of memory latency
of coalesced and uncoalesced latency for the memory lateney_r). A weight is determined by the
number of coalesced and uncoalesced memory requests as sha&guations (13) and (14). MWP is
calculated using Equations (10) — (17). The parametersingbdse equations are summarized in Table 1.
Mem_LD, Departure_del_coal aNADeparture_del_uncoal are measured with micro-benchmarks as we will show

in Section 5.1.

3.3.2. Computation Warp Parallelism (CWP) Once we calculate the memory latency for each warp,
calculating CWP is straightforward:w p_fuil is when there are enough number of warps. Wherr_fuii

is greater than N (the number of active warps in one 8M is N, otherwisecw p_full becomesw p.

CWP_full = Mem_cycles + Comp_cycles ®)
Comp_cycles
CWP = MIN(CWP_full,N))

3.4. Putting It All Together in CUDA

So far, we have explained our analytical model without sitprbeing coupled with the CUDA pro-
gramming model to simplify the model. In this section, weegxt the analytical model to consider the

CUDA programming model.

3.4.1. Number of Warps per SM The modeled GPU architecture executes 100s of threads enty.
Nonetheless, not all threads in an application can be egda@itthe same time. The processor fetches a
few blocks at one time and then it fetches additional blocksaon as one block retiregrep represents
how many times a single SM executes multiple active numbétaufks. For example, when there are 40
blocks in an application and 4 SMs. If each SM can execute kblooncurrently#rep is 5. Hence,
the total number of warps per SM 4sActive_warps_per_SM (N) times#Rep. N is determined by machine

resources.

3.4.2. Total Execution CyclesDepending on MWP and CWP values, total execution cyclesferdire

application Ezec_cycles_app) are calculated using Equations (22),(23), and (24).»_L is calculated in

13

Equation (12). Execution cycles that consider synchrdiunaeffects will be described in Section 3.4.6.

Mem_L_Uncoal = Mem_LD + (#Uncoal _per_mw — 1) x Departure_del_uncoal (10)
Mem_L_Coal = Mem_LD 11
Mem_L = Mem_L_Uncoal x Weight_uncoal + Mem_L_Coal x Weight_coal (12)
. #Uncoal _Mem_insts
Weight_ = 13
crghi-tncoa (#Uncoal_Mem_insts + #Coal _Mem_insts) ()
Weight coal — #Coal_Mem_insts (14)

(#Coal_Mem_insts + #Uncoal_Mem_insts)

Departure_delay = (Departure_del _uncoal x #Uncoal_per_mw) x Weight_uncoal + Departure_del _coal x Weight_coal

(15)
MW P_Without_BW _full = Mem_L/ Departure_delay (16)
MW P_Without_BW = MIN (MW P_Without_BW _full, # Active_warps_per_SM) a7
Mem _cycles = Mem_L_Uncoal x #Uncoal_Mem _insts + Mem_L_Coal x #Coal_Mem_insts (18)
Comp_cycles = #1ssue_cycles X (#total_insts) (19)
N = #Active_warps_per_SM (20)
. # Blocks
#ltep = # Active_blocks_per _SM x # Active_SM s (21)
If (MWP is N warps per SM) and (CWP is N warps per SM)
. Comp_cycles _
Ezxec_cycles_app = (Mem_cycles + Comp_cycles + FMem_insts X (MWP — 1)) x #Rep (22)
Else if (CWP>= MWP) or (Compcycles > Mem.cycles)
. Comp_cycles _
Exec_cycles_app = (Mem_cycles x WP T Fdlem_insts X (MWP — 1)) x #Rep (23)
Else
Ezxec_cycles_app = (Mem_L + Comp_cycles x N) X #Rep (24)

*All the parameters are summarized in Table 1.

3.4.3. Dynamic Number of Instructions Total execution cycles are calculated using the number of
dynamic instructions. The compiler generates intermediasembler-level instruction, the NVIDIA PTX
instruction set [30]. PTX instructions translate nearlyedo one with native binary microinstructions
later! We use the number of PTX instructions for the dynamic numiberstructions.

The total number of instructions is proportional to the nembf data elements. Programmers must
decide the number of threads and blocks for each input déganilimber of total instructions per thread is

related to how many data elements are computed in one theagtammers must know this information.

’Since some PTX instructions expand to multiple binary ingtions, using PTX instruction count could be one of thererro
sources in the analytical model.

14

Table 1. Summary of Model Parameters

Model Parameter Definition Obtained
1 | #Threadsperwarp Number of threads per warp 32[30]
2 | lIssuecycles Number of cycles to execute one instruction 4 cycles [17]
3 | Freq Clock frequency of the SM processor Table 3
4 | Mem_Bandwidth Bandwidth between the DRAM and GPU cores Table 3
5 | Mem.LD DRAM access latency (machine configuration) Table 6
6 | Departuredeluncoal Delay between two uncoalesced memory transactions Table 6
7 | Departuredelcoal Delay between two coalesced memory transactions Table 6
8 | #Threadsperblock Number of threads per block Programmer specifies inside a program
9 | #Blocks Total number of blocks in a program Programmer specifies inside a program
10 | #Active.SMs Number of active SMs Calculated based on machine resources
11 | #Active_blocksperSM Number of concurrently running blocks on one SM Calculated based on machine resources [30]
12 | #Active.warpsper.SM (N) | Number of concurrently running warps on one SM Active_blocks per. SM x Number of warps per block
13 | #Totalinsts (#Compinsts + #Meminsts)
14 | #Compinsts Total dynamic number of computation instructions in one#at Source code analysis
15 | #Mem.insts Total dynamic number of memory instructions in one thread Source code analysis
16 | #UncoalMemLinsts Number of uncoalesced memory type instructions in one threa | Source code analysis
17 | #CoalMemLinsts Number of coalesced memory type instructions in one thread Source code analysis
18 | #Synchinsts Total dynamic number of synchronization instructions i ¢hread | Source code analysis
19 | #Coalpermw Number of memory transactions per warp (coalesced access) | 1
20 | #Uncoalper-mw Number of memory transactions per warp (uncoalesced dccess| Source code analysis[16](Table 3)
21 | Loadbytesperwarp Number of bytes for each warp Data size (typically 4B) x #Threadserwarp

If we know the number of elements per thread, counting thebwrmof total instructions per thread is
simply counting the number of computation instructions #relnumber of memory instructions per data
element. The detailed algorithm to count the number of utsions from PTX code is provided in an

extended version of this paper [16].

3.4.4. Cycles Per Instruction (CPI) Cycles per Instruction (CPI) is commonly used to represkeeat t
cost of each instruction. Using total execution cycles, \&a calculate Cycles Per Instruction using

Equation (25). Note that, CPlI is the cost when an instrudsaxecuted by all threads in one warp.

FExec_cycles_app

#T hreads_per_block
#Threads_-per_warp

CPI = (25)

Blocks

#Total _insts X FActive_SMs

3.4.5. Coalesced/Uncoalesced Memory Accessis Equations (15) and (12) show, the latency of mem-
ory instruction is heavily dependent on memory access tWiegether memory requests inside a warp can
be coalesced or not is dependent on the memory system deslgneanory access pattern in a warp. The
GPUs that we evaluated have two coalesced/uncoalesceepdpecified by the Compute capability ver-
sion. The CUDA manual [30] describes when memory requesisnarp can be coalesced or not in more
detail. Earlier compute capability versions have two défeces compared with the later version(1.3): (1)

stricter rules are applied to be coalesced, (2) when mensmyasts are uncoalesced, one warp generates

15

32 memory transactions. In the latest version (1.3), thesrare more relaxed and all memory requests
are coalesced into as few memory transactions as poS$sible.

The detailed algorithms to detect coalesced/uncoalesesdony accesses and to count the number of
memory transactions per each warp at static time are prdvidan extended version of this paper [16].

Additional delay

AT

1 1 <—>]1 1 D
2 .2 2 .2
[3 131 3 3 | 3.3
4 _4 4 4 _4
Synchronization Synchronization
(a) (b)
(T3 1% Memory period @ 1+t Computation period
2nd Memory period 2 Computation period

Figure 11. Additional delay effects of thread synchronizat ion: (a) no synchronization (b) thread synchronization aft er each memory

access period

3.4.6. Synchronization EffectsThe CUDA programming model supports thread synchronindticough
the__synct hr eads() function. Typically, all the threads are executed asyncbusly whenever all the
source operands in a warp are ready. However, if there isréebahe processor cannot execute the in-
structions after the barrier until all the threads reachiheier. Hence, there will be additional delays due
to a thread synchronization. Figure 11 illustrates the tamtthl delay effect. Surprisingly, the additional
delay is less than one waiting period. Actually, the add#iadelay per synchronization instruction is the
multiple of Departure_delay, the number of blocks and (NpWB-1). NpWB, which is newly attuced in
this equation, is the number of parallel warps per block. Njpid/used instead of MWP since warps inside

a block are synchronized. The final execution cycles of aniggtpn with synchronization delay effect

8In the CUDA manual, compute capability 1.3 says all requastscoalesced because all memory requests within each
warp are always combined into as few transactions as pessidbwever, in our analytical model, we use the coalesced
memory access model only if all memory requests are comhitiecne memory transaction.

16

can be calculated by Equation (28).

Synch_cost = Departure_delay x (NpW B — 1) x #synch_insts

X #Active_blocks_per _SM x # Rep (26)
NpW B = MIN(MW P, # Active_warps_per_block) (27)
Ezec_cycles_with_synch = Exec_cycles_app + Synch_cost (28)

3.5. Code Example

To provide a concrete example, we apply the analytical mfmtel tiled matrix multiplication example
in Figure 12 to a system that has 80GB/s memory bandwidth,ZLfed¢fjuency and 16 SM processors.
Let's assume that the programmer specified 128 threads pek t4 warps per block), and 80 blocks for
execution. And 5 blocks are actively assigned to each $Muv¢_blocks_per_sM) instead of 8 maximum

blockg due to high resource usage.

1: MatrixMil Kernel <<<80, 128>>> (M N, P);

20 ...

3: MatrixMil Kernel (Matrix M Matrix N, Matrix P)

4.

5: /1l init code ...

6:

7: for (int a=starta, b=starth, iter=0; a<=enda;
8: at+=stepa, b+=stepb, iter++)

9: {

10: __shared__ float Msub[BLOCKSI ZE] [BLOCKSI ZE] ;
11: __shared__ float Nsub[BLOCKSI ZE] [BLOCKSI ZE] ;
12:

13: Msub[ty][tx] = Melenents[a + wW* ty + tx];
14: Nsub[ty][tx] = N elenments[b + wWN * ty + tx];
15:

16: __syncthreads();

17:

18: for (int k=0; k < BLOCKSIZE; ++k)

19: subsum += Msub[ty][k] * Nsub[k][tx];

20:

21: __syncthreads();

22: '}

23:

24: int index = wN * BLOCKSI ZE * by + BLOCKSI ZE
25: P.elenments[index + WN * ty + tx] = subsum
26:}

Figure 12. CUDA code of tiled matrix multiplication

We assume that the inner loop is iterated only once and thes tagp is iterated 3 times to simplify the
example. HencetCcomp_insts is 27, which is 9 computation (Figure 13 lines 5, 7, 8, 9, 10,113, 14, and

15) instructions times 3. Note thhtl. shar ed instructions in Figure 13 lines 9 and 10 are also counted

9Each SM can have up to 8 blocks at a given time.

17

1: /1 Init Code

2:

3: $OUTERLCOP:

4: Id.global.f32 9%2, [%d23+0]; [/

5: st.shared.f32 [%d14+0], %2; //

6: ld.global.f32 %3, [%d19+0]; //

7: st.shared.f32 [%d15+0], 9%3; //

8: bar.sync 0; /1 Synchroni zati on

9: ld.shared.f32 9% 4, [% d8+0]; // 1nnerloop unrolling
10: Id.shared.f32 %5, [% d6+0]; /1

11: mad.f32 %1, %4, %5 %1, /1
12: // the code of unrolled loop is onmtted

13: bar.sync 0; /1 synchroni zation
14: setp.le.s32 %2, %21, % 24; /1

15: @p2 bra $OUTERLOOP; /1 Branch

16: /1 1ndex cal cul ation

17: st.global .32 [%d27+0], %1; // Store in P.el enents

Figure 13. PTX code of tiled matrix multiplication
as a computation instruction since the latency of accegsbmghared memory is almost as fast as that of
the register file. Lines 13 and 14 in Figure 12 show global nigmaacesses in the CUDA code. Memory
indexes &+wWk t y+t x) and p+wiNx t y+t x) determine memory access coalescing within a warp. Since
a andb are more likely not a multiple of 32, we treat that all the giblmads are uncoalesced [16]. So
#Uncoal _Mem_insts IS 6, aNG#Coal_Mem_insts IS O.

Table 2 shows the necessary model parameters and intetmediaulation processes to calculate the
total execution cycles of the program. Since CWP is gredtan MWP, we use Equation (23) to cal-
culate Ezec_cycles_app. Note that in this example, the execution cost of synchedion instructions is a
significant part of the total execution cost. This is becamseimplified the example. In most real appli-
cations, the number of dynamic synchronization instruis much less than other instructions, so the

synchronization cost is not that significant.

4. Experimental Methodology
4.1. The GPU Characteristics

Table 3 shows the list of GPUs used in this study. GTX280 sup@-bit floating point operations
and also has a later computing version (1.3) that improvesalesced memory accesses. To measure the
GPU kernel execution timesudaEvent Recor d API that uses GPU Shader clock cycles is used. All

the measured execution time is the average of 10 runs.

18

Table 2. Applying the Model to Figure 12

Model Parameter Obtained Value
Mem._LD Machine conf. 420
DeparturedeLuncoal Machine conf. 10
#Threadsper_block Figure 12 Line 1 128
#Blocks Figure 12 Line 1 80
#Active_blocksperSM | Occupancy [30] 5
#Active_SMs Occupancy [30] 16
#Active.warpsper.SM | 128/32(Table 1) x 5 | 20
#Compinsts Figure 13 27
#UncoalMem.insts Figure 12 Lines 13, 14| 6
#CoalMem.insts Figure 12 Lines 13, 14| 0
#Synchinsts Figure 12 Lines 16, 21| 6=2 x 3
#Coalpermw see Sec. 3.4.5 1
#Uncoalpermw see Sec. 3.4.5 32
Load bytesper.warp Figure 13 Lines 4, 6 128B =4B x 32
Departuredelay Equation (15) 32032 x 10
Mem_L Equations (10), (12) 730420 + (32 — 1) x 10
MWP_without BW_full | Equation (16) 2.28 =730/320
BW_perwarp Equation (7) 0.175GB/S =16 1288
MWP_peak BW Equation (6) 28.57%
MWP Equation (5) 2.28=MIN(2.28, 28.57, 20)
Compcycles Equation (19) 132 cycles=l x (27 + 6)
Mem.cycles Equation (18) 4380 = (730 x 6)
CWPull Equation (8) 34.1854380 + 132) /132
CWP Equation (9) 20 = MIN(34.18, 20)
#Rep Equation (21) 1=80/(16 x 5)

. 38450 = 4380 X 520+
Execcyclesapp Equation (23) % X (2.28 1) 2.28

: 12288=
Synchcost Equation (26) 320 % (2.28 — 1) X 6 x 5

[Final Time | Equation (28) | 5073888450 + 12288 |

4.2. Micro-benchmarks

All the benchmarks are compiled with NVCC [30]. To test thalgtical model and also to find memory
model parameters, we design a set of micro-benchmarksithplysrepeat a loop for 1000 times. We vary
the number of load instructions and computation instrungiper loop. Each micro-benchmark has two

memory access patterns: coalesced and uncoalesced mecnesges.
Table 3. The specifications of GPUs used in this study

Model 8800GTX | Quadro FX5600 | 8800GT GTX280
#SM 16 16 14 30
(SP) Processor Cores 128 128 112 240
Graphics Clock 575 MHz 600 MHz 600 MHz 602 MHz
Processor Clock 1.35 GHz 1.35GHz 1.5GHz 1.3GHz
Memory Size 768 MB 1.5GB 512 MB 1GB
Memory Bandwidth | 86.4 GB/s 76.8 GB/s 57.6 GB/s| 141.7 GB/s
Peak Gflop/s 345.6 384 336 933
Computing Version 1.0 1.0 1.1 1.3
#Uncoalpermw 32 32 32 [16]
#Coalpermw 1 1 1 1

19

Table 4. The characteristics of micro-benchmarks
#inst. perloop| Mbl Mb2 Mb3 Mb4 Mb5 Mb6 Mb7

Memory 0 1 1 2 2 4 6
Comp. (FP) 23(20) | 17(8) | 29(20) | 27(12) | 35(20) | 47(20) | 59(20)

Table 5. Characteristics of the Merge Benchmarks (Arith. in tensity means arithmetic intensity.)

Benchmark Description Input size Comp insts Mem insts Arith. Registers | Shared
intensity memory
Sepia [23] Filter for artificially aging images 7000 x 7000 71 6 (uncoal) 11.8 7 52B
Linear [23] Image filter for computing 9-pixels avgl. 10000 x 10000 111 30 (uncoal) 3.7 15 60B
SVM [23] Kernel from a SVM-based algorithm | 736 x 992 10871 819 (coal) 13.3 9 44B
Mat. (naive) Naive version of matrix multiplication | 2000 x 2000 12043 4001(uncoal) 3 10 88B
Mat. (tiled) [30] Tiled version of matrix multiplication 2000 x 2000 9780 - 24580| 201 - 1001(uncoal)|| 48.7 18 3960B
Blackscholes [30]| European option pricing 9000000 137 7 (uncoal) 19 11 36B

4.3. Merge Benchmarks

To test how our analytical model can predict typical GPGPpliaptions, we use 6 different bench-
marks that are mostly used in the Merge work [23]. Table 5a&xglthe description of each benchmark
and summarizes the characteristics of each benchmark. drhber of registers used per thread and shared
memory usage per block are statically obtained by compiinegcode with-cubinflag. The rest of the

characteristics are statically determined and can be fouRd X code.

5. Results
5.1. Micro-benchmarks

The micro-benchmarks are used to measure the constanblesridat are required to model the mem-
ory system. We vary three parameters:._LD, Departure_del _uncoal, @N0 Departure_del_coal) fOr each GPU
to find the best fitting values. FX5600, 8800GTX and 8800GTtheesame model parameters. Table 6
summarizes the result®eparture_del_coal 1S related to the memory access time to a single memory block.
Departure_del _uncoal 1S lONger thanDeparture_del_coal, due to the overhead of 32 small memory access re-
quests.Departure_del _uncoal fOr GTX280 is much longer than that of FX5600. GTX280 coadss82 thread
memory requests per warp into the minimum number of memocgsx requests, and the overhead per
access request is higher, with fewer accesses.

Using the parameters in Table 6, we calculate CPI for the ovllenchmarks. Figure 14 shows the

Table 6. Results of the Memory Model Parameters

Model FX5600 [GTX280
Mem.LD 420 450
Departuredel.uncoal 10 40
Departuredelcoal 4 4

20

=FX5600(measured)
=FX5600(model)
=GTX280(measured)
=GTX280(model)

Figure 14. CPI on the micro-benchmarks

average CPI of the micro-benchmarks for both measured \atdeestimated value using the analytical
model. The results show that the average geometric meaneoérior is 5.4%. As we can predict,
as the benchmark has more number of load instructions, thenCieases. For the coalesced load cases
(Mb1.C —Mb7.C), the cost of load instructions is almost hidden becaubegbfMWP but for uncoalesced
load cases (MbUC — Mb7.UC), the cost of load instructions linearly increases asniimaber of load

instructions increases.

5.2. Merge Benchmarks

15489 2808 18
13768 2496 — Measured‘ 66
12047 —~—Measured| 2184 -~ Model Aggiﬂ
$10326] - Model | 91872 2ag - Model |
£ 8605 g i £1560/— £42
© 6884 P t— © 12481 o —
E prna = e Mat. (tiled) €30 -
£ 5163 - S I —e— F24
8442 624 et %g | Blackscholes [
1721 Mat. (naive) |— 315 8
08 48 86 144 192 240 268336 384 433 4 0 48 96 144 192 240 288336 384 432 4 0 48 96 144 192 240 288336 384 432 4
Threads per block Threads per block Threads per block
330 1395
——Measured| 60
297 12401 —— Measured 55 +
264 - Model | Model] S Measured|
10851 --Model |
231 — 451
%) »n 930 0 40
£198 E 775 €55
o 165 st . = 775 g £
2 32 L 620 (O LY
El g 251
=o = e B
66 310 [TR
33 Sepa | 155 [Linear | l‘oé svwm_

0 48 96 144 192 240 288 336 384 432 4i
Threads per block

00 48 86 144 192 240 288 336 384 433 4
Threads per block

Figure 15. The total execution time of the Merge benchmarks o

0 48 96 144 192 240 288 336 384 432 4
Threads per block

n FX5600

Figure 15 and Figure 16 show the measured and estimatedt®exetime of the Merge benchmarks on

FX5600 and GTX280. The number of threads per block is varau# to 512, (512 is the maximum value

that one block can have in the evaluated CUDA programs.) Bwvamgh the number of threads is varied,

the programs calculate the same amount of data elementsheénwords, if we increase the number of

threads in a block, the total number of blocks is also reduogufocess the same amount of data in one

21

3080 1050 %g
2772 v 5 945 33
2464] —Measure 840 30 .“Measured
72156 - Model | o 735 [+ Measured 'J?%Z: . mEZZIureG}
£ 1848 £ 630 > Model 521
o 1540 o 525 w18
E1282 e E 420 | Mat. (tled) ED =
= 924 s ~ Vat (nai = 315(— S =1 | Blackscholes
616 at. nalveF 210 o — é
308 105 ——— 3
, . ; ; : ; . ; ; : . . . 0 : T r ; T T T T :
O848 96 144 192 240 288 336 384 433 & O848 96 144 192 540 288 336 384 433 4 0 48 96 144 192 240 288 336 384 432 4
Threads per block Threads per block Threads per block
8 340 }
12 306 —— Measured 39
oe 272 - Model | 39
.50 - Measured| { e
m 2481 + Model ! '17?238 —~37] ——Measured|
EZS E204 2249 - Model |
o %8 IO e 22
E 30 - MYM ., —"——u E - - TSVM
E24 N Ny £ 102 o EB~ S
18 - 68 5 S e S
12 [Sepid— %8 —— =
8 "0 Linear | 3
0 48 96 144 192 240 288 336 384 432 4 0 48 96 144 192 240 288 336 384 432 4i 06 48 86 144 192 40 286 336 384 433 4
Threads per block Threads per block Threads per block

Figure 16. The total execution time of the Merge benchmarks o n GTX280

application. That is why the execution times are mostly ti@e. For the Mat.(tiled) benchmark, as we

increase the number of threads the execution time redueesube the number of active warps per SM

Increases.
100
% =8800GT(measured ==8800GT =
o =8800GT(model) 25 | |=FX5600
=FX5600(measured) =8800GTX
o7] =FX5600(model) 204 | |=GTX280
60 — =8800GTX(measuret N
o s || =8800GTX(model) 2
© . || =GTX280(measured ©
% | | =GTX280(model) 104
20 sl
10
0- 0-
Mat.(naive) Mat.(tiled) SVM Sepia Linear Blackscholes Mat (naive) Mat (tiled) SVM Sepia Linear Blackscholes
Figure 17. CPI on the Merge benchmarks Figure 18. CWP per SM on the Merge benchmarks

Figure 17 shows the average of the measured and estimatedrCHbures 15 and 16 configurations.
The average values of CWP and MWP per SM are also shown indsdilé and 19 respectively. 8800GT
has the least amount of bandwidth compared to other GPUdltirgsin the highest CPI in contrast to
GTX280. Generally, higher arithmetic intensity means IoW#| (lower CPI is higher performance).
However, even though the Mat.(tiled) benchmark has thedsigarithmetic intensity, SVM has the lowest
CPI value. SVM has higher MWP and CWP than those of Mat.(tilsishown in Figures 18 and 19.
SVM has the highest MWP and the lowest CPI because only SVMutigoalesced memory accesses.
MWP in GTX280 is higher than the rest of GPUs because evergthouwost memory requests are not
fully coalesced, they are still combined into as few regsiastpossible, which results in higher MWP. All

other benchmarks are limited yparture_delay, which makes all other applications never reach the peak

22

memory bandwidth.

Figure 20 shows the average occupancy of the Merge bencemBxcept Mat.(tiled) and Linear, all
other benchmarks have higher occupancy than 70%. Theseshdtv that occupancy is less correlated to
the performance of applications.

The final geometric mean of the estimated CPI error on the ®banchmarks in Figure 17 over all
four different types of GPUs is 13.3%. Generally the errohnigher for GTX 280 than others, because
we have to estimate the number of memory requests that aerajed by partially coalesced loads per
warp in GTX280, unlike other GPUs which have the fixed value 8 average, the model estimates

the execution cycles of FX5600 better than others. This émbge we set the machine parameters using

FX5600.
1 1.0
1 0.9
—8800GT osl
12 —==FX5600 | ——F——— : —
—8800GTX 5
10 ol
= GTX280 Z 06
g g 0.5
g 53¢
— _ _ 8 0.4
o 0.3+
4
0.2+
27 0.1+
0- 0.0+
Mat. (naive) Mat. (tiled) SVM Sepia Linear Blackscholes Mat. (naive) Mat. (tiled) SVM Sepia Linear Blackscholes
Figure 19. MWP per SM on the Merge benchmarks Figure 20. Occupancy on the Merge benchmarks

There are several error sources in our model: (1) We usedyassuaple memory model and we assume
that the characteristics of the memory behavior are sinaitaoss all the benchmarks. We found out that
the outcome of the model is very sensitive to MWP values. (2)assume that the DRAM memory
scheduler schedules memory requests equally for all wafpsWe do not consider the bank conflict
latency in the shared memory. (4) All computation instroies have the same latency even though some
special functional unit instructions have longer laterfgyrt others. (5) For some applications, the number
of threads per block is not always a multiple of 32. (6) The Stres warps as a block granularity. Even
though there are free cycles, the SM cannot start to fetchibleeks, but the model assumes on average

active warps.

23

5.3. Insights Into The Model

The MWP value is limited by three factors: memory level plem inside an application, DRAM
throughput, and bandwidth between SMs and GPU DRAM. Theautittput is dependent on DRAM con-
figuration and the ratio of memory access types (betweersoatl and uncoalesced accesses). To visual-
ize how MWP is affected by three components, we vary the nummbearps and plot the corresponding

MWP values in Figure 21.

50 12

40 10
~—~MWP_Peak_BW

30 -#-MWP_Without_BW

Mwp
Mwp

o N M o ®

20 MWP

——MWP_Peak_BW
-#-MWP_Without_BW
MWP

10

0

123 4 5 6 7 8 9 1011 1213141516 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Warps_per_SM (N) Warps_per_SM (N)

Figure 21. Visualization of MWP for GTX280 (Left:coalesced case, Right:uncoalesced case)

The results show that, uncoalesced memory accesses carsaawate available memory bandwidth.
Increasing the number of warps (through different paraiion techniques or changing the occupancy)
increases MWP until 9 for coalesced case but only 5 for urestald case.

Now, to provide insights into the analytical model, we réuise example in Section 2.4. Figures 22 and
23 show N, MWPRwithout BW, MWP_peak BW, MWP, and CWP foConst ant +Qpt i m zed case and
Nai ve case from Figure 3 respectively. Here, we explain the peréorce behavior with MWPeak BW
and MWPWithout BW instead of MWP, because final MWP is the minimum of those tgrons and
the number of running warps (N) as shown in Equation (5). Limgi MWP term for Figure 22 is 12
(MWP_peakBW), and it is 2 (MWPWithout BW) for Figure 23. The main reason of this difference
is that Const ant +Opt i m zed has coalesced memory accesses,Naitve has uncoalesced mem-
ory accesses. Until N reaches M\WieakBW, which is 40, increasing N reduces execution time for
Const ant +Opt i m zed since more warps can increase memory level parallelism.edewinNai ve,

N is always greater than MWRithout BW, so increasing N does not improve performance since maxi-

mum memory level parallelism is already reached.

24

25 25
CWP_full : 10.69 CWP_full : 76.25

MWP_without_BW : 106

20 20

15 15 A\ A\ A /
H g N/
s =
0 10
—=N
—N) —=-MWP_without_BW
~m-MWP_without_BW 5 MWP_Peak_BW

MWP_Peak_BW S=MWP
—=MWP

“

196 256 324 400 484 4 16 36 64 196 256 324 400 484

4 16 36 64 100 144 100 144
Threads per block Threads per block

Figure 22. MWP, CWP Analysis on the Optimized SVM Figure 23. MWP, CWP Analysis on the Naive SVM

6. Improving the Model and More validations

In this section, we improve the analytical model by considgmore complex cases: independent
memory operations and long-latency computations. We aidate divergent warps and synchronization

effects in more detail.

6.1. Effects of Dependent/Independent Memory Accesses

The Tesla architecture is an in-order processor within gwhistops issuing an instruction from a warp
if not all source operands are ready and switches to anotlaelyrwarp. When a warp generates a global
memory request, if the subsequent instructions do not sgdhecoutcome of the global load (i.e., the subse-
guent instructions are not dependent on the previous menegpyesting instruction), the instructions can
be still issued as long as all the source operands are reahce;1global memory memory requests from
the same warp could be serviced together if they (and inatudil the instructions between two global
load instructions) are not dependent on the first load iottrn. Figure 24 illustrates both cases (depen-
dent instructions and independent instructions). The rerminside the computation and memory periods
indicate warp identification numbers. In the dependerttruigtion case, all memory operations from the
same warp is serialized, but in the independent-instroctesse, memory operations from the same warp
can be still serviced concurrently, thereby increasingaive memory level parallelism (MWP).

To evaluate the effect of dependent/independent memomysaes in actual performance, we design
micro benchmarks, where one benchmark is dependent onekieps value of the memory load (DEP),
but the other is not (INDEP). Both cases have the exact sammeof instructions and instruction
mixtures. Figure 26 shows the execution time of two caseseamurease the number of warps (i.e., all

threads execute the same code, so the total amount of wadoighareased.) When the number of warps

25

Dependent Memory Accesses

I W 1
(2 J°2 2
3)3 3

(a)

Independent Memory Accesses

2 2 @ 1st Computation C st Memory Access
3 3 2nd Computation 2nd Memory Access

Figure 24. lllustration of dependent/independent memory a ccesses

per SM is less than MWP, the execution time of INDEP is muchtsih¢han that of DEP. However, once
N is greater than MWP, both benchmarks take similar exenuiitoe. The main reason is that when there
are enough running warps than available memory-level |edisah, the processor can always find other

ready warps for execution.

40
-6-Measured_DEP
35 -m-Measured_INDEP
MODEL_PW (DEP) 100 T e 50
30 | ><MODEL_NOPW (IND) 90 INDEP ST
’g MODEL_PW (IND) = 80 | N 2 40
i £ 70 35 =
€ P £
E 4 g 60 7 P 30 s
5 = - s g
5 2 a 0 o
g 12 12 g g
i 4 8 2 30 15 8
10 v‘ &5
P 20 10
12 10 5
5
= 12 0 . T T 0
8 Number = MWP
o 16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496
16 32 48 64 80 95 112 128 144 160 176 Threads per block
Threads per block

Figure 26. Effects of dependent/independent memory access es
Figure 25. Model prediction of dependent/independent memo ry

accesses

In our analytical model, we have assumed that all instrastigithin a warp is dependent on the previous
instructions, which results in a serialization of all memeequests from one warp. We improve the
analytical model by introducing,.,, which is the number of parallel warps. Typically, the numbé
parallel warps is the same as the total number of warps (Nueder, when there are independent memory
requests, more number of warps (i.e., more number of menexguasts) can be executed in parallel.
We calculate this effective number of parallel warps by gklting the number of memory independent

requests.

26

. #ind_mem_req
Npw = N x (#mem_req — #ind_mem_req) (29)

#ind_mem_req. NUMber of independent memory requests

#mem_req. NUMber of total memory requests

MW P = MIN(MW P_Without_BW, MW P_peak_BW, Nypu) (30)

This n,,, is only used for calculating MWP. As shown in Equation (38), can affect MWP, only
whenn is less than eitherrw P_without_BW OF MW P_peak_BW, Which explains the behavior in Figure 26.
This is the same case when there are not enough running waeptdn 3.2.3 case). Hence, this scenario
rarely occurs because multiple conditions need to be satifiot enough running warps, and independent
memory requests). Most memory requests are dependent ootit@ne of the previous memory request
inside the same warp, otherwise, programmers could sinmaiyease the number of warps (actually they
should have increased) in application from the beginnimeeslly when there are not enough running
warps.

Figure 25 shows the outcome of two models and actual measahael for two different memory access
cases. (1) independent memory accesses with the origirdgimd ODEL NOPW(IND), (2) independent
memory accesses with the new model: MODEW (IND), and (3) dependent memory accesses with new
model: MODELPW (DEP)° Figure 25 zooms the boxed area in Figure 26. The experimembdstrates
two important behaviors when the number of threads is less48. First, for dependent memory accesses,
the execution time is not increased linearly (almost theegarBecond, the execution time of dependent
memory accesses is much longer than that of the independanbrg accesses. The reason the flat area
exists is when the number of warps is too small, even if wegase the total work, the work takes almost
the same amount of time because the execution time is domditgtmemory operations. The additional
memory requests due to additional warps are all servicedwoently thereby total memory operations
remain the same. The results show that the predicted erpeditie using (25)(MODELPW) estimates

the execution time precisely for these two cases but notthiétold model (MODELNOPW).

10dependent memory accesses with old model is the same as nés¥ mo

27

6.2. Long Latency Computation Instructions

In our analytical model, we apply different instructiondaties based on the instruction types.

Table 7 summarizes the throughput of instructions basedherCtJDA manual and our experimental
measurement. Throughput of one means that each functioitatan finish one instruction at one time,
which results in 8 Ops/s. Ops/s means the operations pendeay SM.*! M _Factor term is equal to one
when the throughput is 8 Ops/s, and it is proportionatelygased as the throughput is decreased.

Surprisingly, FP (floating-point) operations are fastarthNT operations in GPU architecture. Through-
put for FP operations such as addition, multiplication andtiply-addition is equal to the number of
functional units (i.e., 8 SP processors in the Tesla archite, 8 FP operations per cycle). But instruc-
tions such as modulo and integer multiplication take mudgéw latency, reducing the throughput by the

factors of 4.3 and 35 respectively.

Table 7. Instruction Throughput

[Instructions | Ops/s (M.Factor)[M] [M_Factor [Experiment] |
FPadd FPmul FPmad 8(1) 1
Intadd 8(1) 1
FPdiv 2() 42
Intmul 2(4) 4.3
Intdiv, Modulo Very Costly 30, 35
Comp_cycles = (#1ssue_cycles x M _Factor) x #total _insts (31)

Equation (31) shows the improved calculation for compatatiycles over the previous Equation (19) by
considering variable instruction latency.
6.3. Divergent branches

When a warp diverges (i.e., diverges within 32 threads),ekecution of diverged warps is serial-
ized [30].*? This means that while one path is executed, the threads artlikee path are idle. Figure 27
shows an example. The branch at basic block 1 in the figuregiige Active bitmap mask shows that first
four threads take the taken path while the rest takes théaketn path. Basic block 2 also has a divergent

branch. Hence, there are three paths (B1B2B4B6B7, B1B2B%BB1B3B7) in this example.

10ps/s is used in the CUDA manual._Factor is the term used to model longer-latency instrustion
12several recent studies have focused on reducing unnegédsacycles during divergent execution [12, 37].

28

lint mod = threadldx.x & 31; // modulus !

00000000 ;,If (mod_<_A) ; Bl
q i
H Memory load ! B3
0000XXXX ; FP Operations
) i
(else y 600
. i ! B2 __ 500
000X XXXX0000 | Memory_load £
L if(mod <B) e
oo o E 300
0000%XX ' FP Operations: BS 8
(S S 3 200
 else Y 2
00000000 ! { E B4 100
: FP Operat/bnsi 0
::‘“;Lc““““T““Aa‘: Path Path Path All Paths Measured
O: Active Thread i P Operations B6 (B1B2B4B6B7) (B1B2B5B6B7) (B1B3B7)
X: Non-Active Thread 4 :
i Memory,_store | B7 Model Predictions
Figure 27. lllustration of a divergent execution Figure 28. Effects of divergent branches on the execution ti me

Figure 28 shows the model predictions and the measured @xedime. If the model only takes
execution time of each individual path into account (the finsee bars in the figure), the execution time
is much shorter than the actual execution time. In the cu@&U architecture, all the divergent paths are
serially executed [12]All pathsbar in the figure is the sum of all the paths in the divergenbtiawhich

shows only 6% delta with the actual measured time.

6.4. Effects of Synchronization

The cost of synchronization is modeled in Section 3.4.6gustuations (26) and (28). To evaluate the
synchronization cost in more detail, we compare the perfmee delta between two programs in Figure

29 where the only difference is the barrier instruction (®anc).

Program A (Synchroni zati on)

9: Id.global.f32 % 1, [% 8+0];

10: nov. f32 % 2, 0f41200000;
11: nul .32 %3, %1, % 2;
12: bar.sync 0; /] Synchroni zati on

13: st.global.f32 [% 8+0], 9% 3;
Program B (No Synchroni zati on)

9: Id.global.f32 %1, [% 8+0];
10: nov. 32 % 2, 0f41200000;
11: mul.f32 %3, %1, %2,

12: st.global.f32 [% 8+0], 9% 3;

Figure 29. PTX code for synchronization analysis

Figure 30 shows an experiment where only one SM is active @ree block is used). When there is only
one warp, there should no performance penalty due to synidation. However, in the measured data,
we still observe some minor penalties from th&r . sync instruction. We estimate that this overhead

is coming from the fetch unit or other schedulers. Please tiwt using bar.synch just for one warp is

29

not a typical case which might cause unexpected overheadrammers should not use bar.sync just for
only one warp. Having predicted, as we increase the numb#mreéds (warps) in the core, the cost of
synchronization increases. The model predicts the inocrga®st accurately but with the absolute delta

due to the initial cost difference. In this experiment, wieitionally use only one SM to observe the cost.

350

—-Measured
300 | -=-Model
MWP

250

200

Mwp

150

Synch Cost

100

32 64 96 128 160 192 224 256
Threads per block

T
o B N W A U O N ® ©

Figure 30. synchronization delay: 1 block (1 SM active)

Figures 31 shows the performance delta when all SMs areehctivnning multiple blocks. Resource
usage for each GPU kernel is manually controlled to allotateblocks per SM foBL2 and four blocks
per SM forBL4. In this experiment, we observe both the effect of numberlo€ks and MWP. In-
creasing the number of blocks also increases the cost ohsymization, because memory requests are
delayed by intervention with warps in other blocks. Sinoe tlumber of warps is still less thamw B,
the synchronization cost is increased continuously. Thdehpredictions show that a high-level trend
for synchronization is modeled. The geometric error for B629.65% and 11.42% for BL4. As previ-
ously mentioned in Section 3.4.6, with respect to overatfqenance, synchronization delay cycles are

not significant.

200 [—e-Measured_BL2 12
-=-Model_BL2
Measured_BL4
—<Model_BL4
—~MWP_BL2
MWP_BL4

10

Synch Cost
=
8

32 64 96 128 160 192 224 256
Threads per block

Figure 31. Synchronization delay: 2 vs 4 blocks allocated pe r SM

30

6.5. Limitations of the Analytical Model

Our analytical model does not consider the cost of cacheemisach as I-cache, texture cache, or
constant cache. The cost of cache misses is negligible dabntost 100% cache hit ratio in most of
GPGPU applications. The current G80 architecture doesawva & hardware cache for the global memory.
Typical stream applications running on the GPUs do not h&aag temporal locality. However, if an
application has a temporal locality and a future architecprovides a hardware cache, the model should

include a model of cache. In future work, we will include cachodels.

7. Related Work

We discuss research related to our analytical model in thasaof performance analytical modeling,

and GPU performance estimation.

7.1. Analytical Modeling

There have been many existing analytical models proposexdifeerscalar processors [29, 27, 26]. Most
work did not consider memory level parallelism or even catlieses. Karkhanis and Smith [19] proposed
a first-order superscalar processor model to analyze tHerpgnce of processors. They modeled long
latency cache misses and other major performance botkewvents using a first-order model. They used
different penalties for dependent loads. Recently, Chehfamodit [8] improved the first-order super-
scalar processor model by considering the cost of penditsg diéta prefetching and MSHRs(Miss Sta-
tus/Information Holding Registers). They showed that notleling prefetching and MSHRs can increase
errors significantly in the first-order processor model. téwer, they only showed memory instructions’
CPI results comparing with the results of a cycle accurateikitor.

There is a rich body of work that predicts parallel progrannf@enance prediction using stochastic
modeling or task graph analysis, which is beyond the scopeioivork. Saavedra-Barrera and Culler [33]
proposed a simple analytical model for multithreaded maehiusing stochastic modeling. Their model
uses memory latency, switching overhead, the number oatlsréhat can be interleaved and the interval
between thread switches. Their work provided insights theoperformance estimation on multithreaded
architectures. However, they have not considered synctation effects. Furthermore, the application

characteristics are represented with statistical modeiihich cannot provide detailed performance esti-

31

mation for each application. Their model also providedghss into a saturation point and an efficiency
metric that could be useful for reducing the optimizatiomegs even though they did not discuss that
benefit in their work.

Sorin et al. [36] developed an analytical model to calcuthr®eughput of processors in the shared
memory system. They developed a model to estimate procetdbtimes due to cache misses or re-
source constrains. They also discussed coalesced menfecysahside the MSHR. The majority of their

analytical model is also based on statistical modeling.

7.2. GPU Performance Modeling

Our work is strongly related with other GPU optimizationhe@ues. The GPGPU community pro-
vides insights into how to optimize GPGPU code to increasmang level parallelism and thread level
parallelism [15]. However, all the heuristics are qualtalty discussed without using any analytical mod-
els. The most relevant metric is an occupancy metric thatipes only general guidelines as we showed
in the Section 2.4. Ryoo et al. [32] proposed two metrics thuoe optimization space for programmers
by calculating utilization and efficiency of applicationslowever, their work focused on non-memory
intensive workloads. We thoroughly analyzed both memotgnisive and non-intensive workloads to
estimate the performance of applications. Furthermomr thork just provided optimization spaces to
reduce program tuning time. In contrast, we predict theagitogram execution time. Bakhoda et al. [7]
implemented a GPU simulator and analyzed the performanCJaFA applications using the simulation
output.

Recently, Baghsorkhi et al. [6] proposed a model using a flamskgraph as an abstract interpretation of
a GPU kernel. PDG (program dependence graph) which cordairtsol and data dependence information
is used to predict performance. Kothapalli et al. [22] usedmbination of known models (BSP, PRAM,
QRQW) for predicting GPU performance. Predicting multi@®U performance using a single GPU
performance is proposed by Schaa et al. [34].

Luk et al. [24] empirically modeled the performance of GPG&uplications as a linear model using
run-time information for a dynamic compilation system. N&iins et al. proposed a roofline model to

visualize the performance of multicore architectures [40je roofline model sets an upper bound on the

32

performance of a kernel that depends on memory intensitycantgputation intensity metrics.

Recently, several application programmers have develapgerformance model for specific applica-
tions. Choi et al. [9] proposed a GPU Kernel performance rhoidgparse matrix-vector multiply (SpMV)
kernel for autotuning. The proposed model guides the anioguprocess that is input-matrix dependent.
Meng et al. [25] presented a model for optimizing iteratitensil loops used for image processing, data
mining and physical simulations. Govindaraju et al. [14s#nted a memory model to improve the per-
formance of applications (SGEMM, FFT) by improving texteache usage. The work by Liu et al [39]
modeled the performance of bio-sequence alignment apiplisawritten in GLSL (OpenGL Shading Lan-
guage) [20]. All these models are simplified for specific agtlons where our model is generic to all

GPGPU applications.

8. Conclusions

This paper proposed and evaluated a memory parallelismeaavealytical model to estimate execution
cycles for the GPU architecture. The key idea of the anaytcodel is to find the maximum number
of memory warps that can execute in parallel, a metric whiehcalled MWP, to estimate the effective
memory instruction cost. The model calculates the estih@tel (cycles per instruction), which could
provide a simple performance estimation metric for prograers and compilers to decide whether they
should perform certain optimizations or not. Our evaluatshows that the geometric mean of absolute
error of our analytical model on micro-benchmarks is 5.4% an GPU computing applications is 13.3%.
We believe that this analytical model can provide insights how programmers should improve their
applications, which will reduce the burden of parallel progmers.

9. References

[1] ATI Mobility RadeonTM HD5870 Graphics-Overview. httfwww.amd.com/us/press-releases/Pages/amd-
press-release-2009sep22.aspx.

[2] Intel Core2 Quad Processors. http://www.intel.coraffucts/processor/core2quad.

[3] NVIDIA GeForce series GTX280, 8800GTX, 8800GT. httwww.nvidia.com/geforce.

[4] NVIDIA Quadro FX5600. http://www.nvidia.com/quadro.

[5] Advanced Micro Devices, Inc. AMD Brook+. http://ati.ahtom/technology/streamcomputing/AMD-
Brookplus.pdf.

[6] S.S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropd,\ahW. Hwu. An adaptive performance modeling
tool for gpu architectures. IRPoPR, 2010.

[7] A.Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamda&ttalyzing cuda workloads using a detailed
GPU simulator. INEEE ISPASSApril 2009.

33

[8] X. E.Chen and T. M. Aamodt. A first-order fine-grained niihiteaded throughput model. HPCA, 2009.
[9] J. W. Choai, A. Singh, and R. W. Vuduc. Model-driven autuiig of sparse matrix-vector multiply on gpus. In

PPoPR 2010.

[10] E. Lindholm, J. Nickolls, S.Oberman and J. Montrym. NDVA Tesla: A Unified Graphics and Computing
Architecture IEEE Micro, 28(2):39-55, March-April 2008.

[11] M. Fatica, P. LeGresley, |. Buck, J. Stone, J. Philligs,Morton, and P. Micikevicius. High Performance
Computing with CUDA, SC, 2008.

[12] W. W. L. Fung, |. Sham, G. Yuan, and T. M. Aamodt. Dynamiarp/ formation and scheduling for efficient
gpu control flow. INMICRO, 2007.

[13] A. Glew. MLP yes! ILP no! INnASPLOS Wild and Crazy Idea Session,’@&t. 1998.

[14] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha.&mory model for scientific algorithms on graphics
processors. 115G 2006.

[15] GPGPU. General-Purpose Computation Using Graphicdwie. http://www.gpgpu.org/.

[16] S. Hong and H. Kim. An analytical model for a GPU architee with memory-level and thread-level paral-
lelism awareness. Technical Report TR-2009-003, Atla@ta, USA, 2009.

[17] W. W. Hwu and D. Kirk. Ece 498 al: Applied parallel progmaning, spring 2010.
http://courses.ece.uiuc.edu/ece498/al/.

[18] Intel SSE / MMX2 / KNI documentation. http://www.in®0386.com/simd/mmx2-doc.html.

[19] T. S. Karkhanis and J. E. Smith. A first-order superscatacessor model. IIECA 2004.

[20] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL sligldimguage. http://www.opengl.org/documentation.

[21] Khronos. Opencl - the open standard for parallel prograng of heterogeneous systems.
http://www.khronos.org/opencl/.

[22] K. Kothapalli, R. Mukherjee, S. Rehman, S. Patidar, Ratayanan, and K. Srinathan. A performance predic-
tion model for the cuda gpgpu platform. HiPC, 2009.

[23] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Iger a programming model for heterogeneous
multi-core systems. IASPLOS XII] 2008.

[24] C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting paraliem on heterogeneous multiprocessors with adaptive
mapping. InMicro, 2009.

[25] J. Meng and K. Skadron. Performance modeling and auiorghost zone optimization for iterative stencil
loops on gpus. IMCS '09: Proceedings of the 23rd international conferenoeSmpercomputing2009.

[26] P. Michaud and A. Seznec. Data-flow prescheduling faydanstruction windows in out-of-order processors.
In HPCA, 2001.

[27] P. Michaud, A. Seznec, and S. Jourdan. Exploring imsibn-fetch bandwidth requirement in wide-issue su-
perscalar processors. RACT, 1999.

[28] J. Nickolls, I. Buck, M. Garland, and K. Skadron. ScdéaBarallel Programming with CUDAACM Queue
6(2):40-53, March-April 2008.

[29] D. B. Noonburg and J. P. Shen. Theoretical modeling pesscalar processor performance MiCRO-27,
1994.

[30] NVIDIA Corporation. CUDA Programming Guide, V3.0

[31] M. Pharr and R. Fernand@PU Gems 2Addison-Wesley Professional, 2005.

[32] S.Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ugrgtratton, and W. Hwu. Program optimization space
pruning for a multithreaded gpu. @GO, 2008.

[33] R. H. Saavedra-Barrera and D. E. Culler. An analyticdlison for a markov chain modeling multithreaded.
Technical report, Berkeley, CA, USA, 1991.

[34] D. Schaa and D. Kaeli. Exploring the multiple-gpu desspace. IfPDPS 2009.

[35] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. AbraB. Dubey, S. Junkins, A. Lake, J. Sugerman,

34

R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanralzarallee: a many-core x86 architecture for
visual computingACM Trans. Graph.2008.

[36] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. B¢ Analytic evaluation of shared-memory
systems with ILP processors. IBCA 1998.

[37] D. Tarjan, J. Meng, and K. Skadron. Increasing memorgsrnmnlerance for simd cores. 8C 2009.

[38] C. A. Waring and X. Liu. Face detection using spectrattgrams and SVM$Systems, Man, and Cybernetics,
Part B, IEEE Transactions Qr35(3):467—-476, June 2005.

[39] S. B. Weiguo Liu, Muller-Wittig. Performance prediotis for general-purpose computation on gpus. 2007.

[40] S. Williams, A. Waterman, and D. Patterson. Roofline:iraightful visual performance model for multicore
architecturesCommun. ACM52(4):65-76, 2009.

Algorithms 1 and 2 describe how to to determine the type of mgmaccesses and the number of memory in-
structions for each type. Depending on GPU computing versiee number of memory transactions for uncoalesced
case is different. Algorithm 1 is for versions less than 18 Algorithm 2 is for versions higher than or equal to 1.3.

Algorithm 1 Algorithm to detect coalesced/uncoalesced memory reguest

INPUT

A source code which accesses a global memory is obtained.

(e.g., float localvar = dodata[lndex] where dntlata is a pointer to a global memory)
(Note: Index is a function of induction variables (if anyreéad and block identifiers)

STEP1

If sizeof(localvar) is 4, 8, or 16 bytes, then STEP1 sucegssf

STEP2

If d/d(tx) Index == 1, then STEP2 successful // Incremenghlig of Index with respect to tx
STEP3

Let T be a subset of Index in which beginning thread indicesfohalf-warp are used
(e.g., T = Indeftx=16t, t=0,1,2,...,n such that &= txmax)

If all index values in T are divisible by 16, then STEP3 sustés

OUTPUT

If STEP1, STEP2, STEP3 are all successful, then the memaossads coalesced
Else the memory access is uncoalesced

Algorithm 2 Algorithm to detect the size and the number of memory tratisags (Computing version 1.3

or above)

INPUT

A source code which accesses a global memory is obtained.

(e.g., float localvar = dodata[lndex] where dntlata is a pointer to a global memory)
(Note: Index is a function of induction variables (if anyjréad and block identifiers)
STEP1

N=0

STEP2

Let T be a subset of Index in which beginning thread indicesfohalf-warp are used
(e.g., T = Indeftx=16t, t=0,1,2,...,n such that &= txmax)

If any index value in T is not divisible by 16, then N=N+1

STEP3

Resultincrement = d/d(tx) Index // Incremental value of Memanglex with respect to tx
Resultsize = 32 bytes if sizeof(localvar) is 1 64 bytes if sizeaf@ltvar) is 2 128 bytes if sizeof(localvar) is 4, 8, 16
STEP4

N = N + ceiling[(Resultincrement * 16 * sizeof(localvar)) / Resutize]

OUTPUT

Transactional size = Resugize

Number of memory transactions = N

35

