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ABSTRACT

GPU architectures are increasingly important in the nedtie era
due to their high number of parallel processors. Perforrmamm
timization for multi-core processors has been a challegeifo-
grammers. Furthermore, optimizing for power consumptgenen
more difficult. Unfortunately, as a result of the high numbgpro-
cessors, the power consumption of many-core processohsasic
GPUs has increased significantly.

Hence, in this paper, we propose an integrated power andrperf
mance (IPP) prediction model for a GPU architecture to tatie
optimal number of active processors for a given applicatidhe
basic intuition is that when an application reaches the peain-
ory bandwidth, using more cores does not result in perfoogaan
improvement.

We develop an empirical power model for the GPU. Unlike most
previous models, which require measured execution timasj-h
ware performance counters, or architectural simulatid®B, pre-
dicts execution times to calculate dynamic power eventsth&fe
use the outcome of IPP to control the number of running caés.
also model the increases in power consumption that resfrivea
the increases in temperature.

With the predicted optimal number of active cores, we shat th

Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

hyesoon@cc.gatech.edu

1. INTRODUCTION

The increasing computing power of GPUs gives them a consid-
erably higher throughput than that of CPUs. As a result, npany
grammers try to use GPUs for more than just graphics apjitsit
However, optimizing GPU kernels to achieve high perforngaisc
still a challenge. Furthermore, optimizing an applicatiomchieve
a better power efficiency is even more difficult.

The number of cores inside a chip, especially in GPUs, is in-
creasing dramatically. For example, NVIDIA's GTX280 [2]9130
streaming multiprocessors (SMs) with 240 CUDA cores, ara th
next generation GPU will have 512 CUDA cores [3]. Even though
GPU applications are highly throughput-oriented, not apleca-
tions require all available cores to achieve the best peréoice.

In this study, we aim to answer the following important ques-
tions: Do we needll cores to achieve the highest performance?
Can we save power and energy by usiager cores?

Figure 1 shows performance, power consumption, and effigien
(performance per watt) as we vary the number of active cbiEise
power consumption increases as we increase the numberexf.cor
Depending on the circuit design (power gating, clock gatetg.),
the gradient of an increase in power consumption also vaFigs
ure 1(left) shows the performances of two different typeapmbli-

we can save up to 22.09% of runtime GPU energy consumption andcations. In Type 1, the performance increases linearlyabee ap-

on average 10.99% of that for the five memory bandwidth-Buhit
benchmarks.
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plications can utilize the computing powers in all the cordew-
ever, in Type 2, the performance is saturated after a cemainber

of cores due to bandwidth limitations [22, 23]. Once the nandf
memory requests from cores exceeds the peak memory bamgdwidt
increasing the number of active cores does not lead to arlpette
formance. Figure 1(right) shows performance per watt. is pia-
per, the number of cores that shows the highest performaece p
watt is called the optimal number of cores.

In Type 2, since the performance does not increase linasilyg
all the cores consumes more energy than using the optimabeum
of cores. However, for application Type 1, utilizing all theres
would consume the least amount of energy because of a reducti
in execution time. The optimal number of cores for Type 1 & th
maximum number of available cores but that of Type 2 is leas th
the maximum value. Hence, if we can predict the optimal numbe
of cores at static time, either the compiler (or the progranman
configure the number of threads/blo€k®s utilize fewer cores, or
hardware or a dynamic thread manager can use fewer cores.

To achieve this goal, we propose an integrated power and per-
formance prediction system, which we cH#iP. Figure 2 shows
an overview of IPP. It takes a GPU kernel as an input and piedic
both power consumption and performance together, whereas p

1active cores mean the cores that are executing a program.
2The termblock, is defined in the CUDA programming model.
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Figure 1: Performance, power, and efficiency vs. # of active
cores (left: performance, middle: power, right: performance
per watt)

ous analytical models predict only execution time or poviéare
importantly, unlike previous power models, IPP does notirecar-
chitectural timing simulations or hardware performanceanters;
instead it uses outcomes of a timing model.
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Figure 2: Overview of the IPP System

Using the power and performance outcomes, IPP predicts the
optimal number of cores that results in the highest perfoiceger
watt. We evaluate the IPP system and demonstrate energygsavi
in a real GPU system. The results show that by using fewerscore

based on the IPP prediction, we can save up to 22.09% and on av-

erage 10.99% of runtime energy consumption for the five mgmor
bandwidth-limited benchmarks. We also estimate the amofint
energy savings for GPUs that employ a power gating mechanism
Our evaluation shows that with power gating, the IPP can save
average 25.85% of the total GPU power for the five bandwidth-
limited benchmarks.

In summary, our work makes the following contributions:

1. We propose what, to the best of our knowledge, is the first an
alytical model to predict performance, power and efficiency
(performance/watt) of GPGPU applications on a GPU archi-
tecture.

. We develop an empirical runtime power prediction model fo
a GPU. In addition, we also model the increases in runtime
power consumption that resulted from the increases in tem-
perature.

. We propose the IPP system that predicts the optimal number
of active cores to save energy.

. We successfully demonstrate energy savings in a rearsyst
by activating fewer cores based on the outcome of IPP.

BACKGROUND ON POWER

Power consumption can be divided into two parts: dynamicgsow
and static power, as shown in Equation (1).

2.

@)

Dynamic power is the switching overhead in transistorst$® i
determined by runtime events. Static power is mainly deitezoh
by circuit technology, chip layout and operating tempematu

2.1 Building a Power Model Using an
Empirical Method
Isci and Martonosi [12] proposed an empirical method todsuil

ing a power model. They measured and modeled the Intel Pentiu
4 processor.

Power = Dynamic_power + Static_power

n
Power = Z(AccessRate(Ci) x ArchitecturalScaling(C;)
i=0
X MaxPower(C;) + NonGatedClockPower(C;)) + IdlePower

@

Equation (2) shows the basic power model discussed in [12]. |
consists of the idle power plus the dynamic power for eacld-har
ware component, where th&axz Power and Architectural Scaling
terms are heuristically determined. For example,: Power is em-
pirically determined by running several training benchksathat
stress fewer architectural components. Access rates aséned
from performance counters. They indicate how often an s&chi
tural unit is accessed per unit of time, where one is the mawim
value.

2.2 Static Power

As the technology is scaled, static power consumption is in-
creased [4]. To understand static power consumption andeeam
ture effects, we briefly describe static power models.

Butts and Sohi [6] presented the following simplified leakag
power model for an architecture-level study.

Pstatic = Vcc - N - Kdesign : fleak (3)

Vee is the supply voltagey is the number of transistors in the
design, andr(design is a constant factor that represents the tech-
nology characteristicsi, ;. is a normalized leakage current for a
single transistor that depends of),, which is the threshold volt-
age. Later, Zhang et al. [24] improved this static power nhoale
consider temperature effects and operating voltagke®theakage,

a software tool. In their modekdesign is no longer constant and

depends on temperature, whefg, ;. is a function of temperature
and supply voltage. The leakage current can be expressbdwaa s
in Equation (4).
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v; is the thermal voltage that is represented:oy ¢, and it depends
on temperature. The threshold voltagg,,, is also a function of

temperature. Sincet2 is the dominant temperature-dependent fac-
tor in Equation (4), the leakage power quadratically insesawith
temperature. However, in a normal operating temperaturgea

the leakage power can be simplified as a linear model [21].

3. POWER AND TEMPERATURE MODELS
3.1 Overall Model

GPU power consumptiona(PU_power) iS modeled similar to
Equation (2) [12] in Section 2. The PU_power term consists of
Runtime_power and Idle Power terms, as shown in Equation (5).
The NonGatedClock Power term is not used in this model, because
the evaluated GPUs do not employ clock gatingiie Power is
the power consumption when a GPU is on but no application is
running. Runtime_power is the additional power consumption re-
quired to execute programs on a GPU. It is the sum of runtime-
powers from all SMsgP_s M s) and GDDR memoryg P_Memory).



Table 1: List of instructions that access each architecturbunit

PTX Instruction Architectural Unit Variable Name

add_int sub_int addc_int subc_int| Int. arithmetic unit RP_Int
sad_int div_int rem_int abs_int

mul_int mad_int mul24_int

mad24_int min_int neg_int

add_fp sub_fp mul_fp fma_fp Floating point unit RP_Fp

neg_fp min_fp Ig2_fp ex2_fp

mad_fp div_fp abs_fp

sin_fp cos_fp rcp_fp sqrt_fp SFU RP_Sfu
rsqrt_fp

xor cnot shl shr mov cvt ALU RP_Alu

set setp selp slct and or

st_global Id.global Global memory RP_GlobalMem
st_local Id.local Local memory RP_LocalMem

Texture cache
Constant cache
Shared memory
Register file

tex

Id_const

Id_shared st_shared

setp selp slct and or xor shr mov
cvt st_global Id_global Id_const
add mad24 sad div rem abs neg
shl min sin cos rcp sqrt rsqrt set
mul24 sub addc subc mul mad cn
Id_shared st_local Id_local tex

All instructions

RP_Texture_Cachd
RP_Const_Cache
RP_Shared
RP_Reg

=

FDS (Fetch/Dec/Sch]) RP_FDS

GPU_power = Runtime_power + Idle Power

n
Runtime_power = Z RP_Component; (6)

i=0
= RP_SMs+ RP_Memory

3.2 Modeling Power Consumption from
Streaming Multiprocessors

In order to model the runtime power of SMs, we decompose the
SM into several physical components, as shown in Equatidn (7
and Table 1. The texture and constant caches are includéstin t
SM_Component term, because they are shared between multiple
SMs in the evaluated GPU system. One texture cache is shared b
three SMs, and each SM has its own constant caglre Const_SM
is a constant runtime power component for each active SMot-m
els power consumption from several units, including I-egcnd
the frame buffer, which always consume relatively constambunt
of power when a core is active.

ZSM_Componenti = RP_Int+ RP_Fp+ RP_Sfu
i=0

U]

+ RP_Alu + RP_Texture_Cache + RP_Const_Cache
+ RP_Shared + RP_Reg + RP_FDS + RP_Const_SM

RP_SMs = Num_SMs X Z SM_Component;
i=0

®

Num_S M s: Total number of SMs in a GPU

Table 1 summarizes the modeled architectural componeats us
by each instruction type and the corresponding variableasaim
Equation (7). Allinstructions access the FDS unit (Fetauf3ch).
For the register unit, we assume that all instructions aingshe
register file have the same number of register operands geu
tion to simplify the model. The exact number of register

per instruction depends on the instruction type and the murob
operands, but we found that the power consumption differelue
to the number of register operands is negligible.

Access Rate:As Equation 2 shows, dynamic power consump-
tion is dependent on access rate of each hardware compdseint.
and Martonosi used a combination of hardware performanae-co
ters to measure access rates [12]. Since GPUs do not have any
speculative execution, we can estimate hardware accesdrased
on the dynamic number of instructions and execution timelsowit
hardware performance counters.

Equation (9) shows how to calculate the runtime power foheac
component g Pcomyp) such askP_Reg. RPcomp iS the multiplica-
tion of AccessRatecomp and]\ffawPowercomp. MazxzPowercomp is
described in Table 2 and will be discussed in Section 3.4e MNwit
RP_Const_SM is not dependent 0Access Ratecomp-

Equation (10) shows how to calculate the access rate for each
componentAccessRatecomp. The dynamic number of instructions
per componentAC_per_thcomp) is the sum of instructions that
access an architectural componemtarps_per_SM indicates how
many Warp§ are executed in one SM. We divide execution cycles
by four because one instruction is fetched, scheduled, xexlited
every four cycles. This normalization also makes the marimu
value of theAccessRatecomp term be one.

©)
(10)

RP.omp = MaxPowercomp X AccessRatecomp
DAC_per_thcomp X Warps_per_SM
Exec_cycles/4

AccessRatecomp =

11

) a2

n
DAC _per_thcomp = Z Number_Inst_per_warps,;(comp)
i=0
#Threads_per_block
#Threads_per_warp

#Blocks
#Active_SMs

Warps_per_SM = <

3.3 Modeling Memory Power

The evaluated GPU system has five different memory spaces:
global, shared, local, texture, and constant. The sharedamne
space uses a software managed cache that is inside an SM. The
texture and constant memories are located in the GDDR memory
but they mainly use caches inside an SM. The global memory and
the local memory are sharing the same physical GDDR memory,
hencerP_Memory considers both. Shared, constant, and texture
memory spaces are modeled separately as SM components.

n
RP_Memory = Z Memory_component;
i=0
= RP_GlobalMem + RP_LocalMem

(13)

3.4 Power Model Parameters

To obtain the power model parameters, we design a set of syn-
thetic microbenchmarks that stress different architedtaompo-
nents in the GPU. Each microbenchmark has a loop that repeats
certain set of instructions. For example, the microbenchrttzat
stresses FP units contains a high ratio of FP instructions.

The optimum set 0ffaz Powercomp vValues in Equation (9) that
minimize the error between the measured power and the oetcom
of the equation is searched. However, to avoid searchirgigr a
large space of values, the initial seed value for each actuite unit
is estimated based on the relative physical die sizes ofrtti¢1.2].
Table 2 shows the parameters used f0izPowercomp. Eight

3warp is a group of threads that are fetched/executed togithe
side the GPU architecture.



power components require a special piecewise linear appid2]:

an initial increase from idle to relatively low access rateises a
large granularity of increase in power consumption whileug f
ther increase causes a smaller increase. Spec.Linear ©ahim
dicates whether th@ccessRatecomp term in Equation (9) needs to
be replaced with the special piecewise linear access ratedban
the following simple conversion).1365 « in(AccessRatecomp) +
1.001375. The parameters in this conversion are empirically deter-
mined to have a piecewise linear function.

Table 2: Empirical power parameters

Units MaxPower | OnChip | Spec.Linear
FP 0.2 Yes Yes
REG 0.3 Yes Yes
ALU 0.2 Yes No
SFU 0.5 Yes No
INT 0.25 Yes Yes
FDS (Fetch/Dec/Sch 0.5 Yes Yes
Shared memory 1 Yes No
Texture cache 0.9 Yes Yes
Constant cache 0.4 Yes Yes
Const_SM 0.813 Yes No
[ Global memory [ 52 [ No ] Yes |
[ Cocal memory [ 52 [ No ] Yes |

Figure 3 shows how the overall power is distributed among the
individual architectural components for all the evaluatshch-
marks (Section 5 presents the detailed benchmark deseripsind
the evaluation methodology). On average, the memory, iolkeep,

trend although it is not directly dependent on the numbertfa
SMs. Finally, runtime power can be modeled by taking the nermb
of active SMs as shown in Equation (16)

RP_SMs = Max_SM X logio(a X Active_SMs + 3) (14)
Max_SM = (Num_SMs x Z SM_Component;) (15)
i=0
a = (10— B)/Num_SMs,3 =1.1
Runtime_power = (Max_SM + RP_Memory) (16)

x logio(a X Active_SMs + 3)

Active_S M s: Number of active SMs in the GPU
3.6 Temperature Model

CPU Temperature models are typically represented by an RC
model [20]. We determine the model parameters empiricajly b
using a step function experiment. Equation (17) modelsitieg
temperature, and Equation (18) models the decaying terypera

Temperature,ise(t) = Idle_temp + & (1 — eft/RC—Rise) 7)

7t/RC_Decay) (18)

Temperaturejecay (t) = Idle_temp + ~ (e

6 = Max_temp — Idle_temp,~y = Decay_temp — Idle_temp

Idle_temp: Idle operating chip temperature
M ax_temp: Maximum temperature, which depends on runtime power
Decay_temp: Chip temperature right before decay

and RP_Const_SM consume more than 60% of the total GPU power.

REG and FDS also consume relatively higher power than other
components because almost all instructions access thise un

3.5 Active SMs vs. Power Consumption

To measure the power consumption of each SM, we design an-
other set of microbenchmarks to control the number of aGiMes.
These microbenchmarks are designed such that only one &éack
be executed in each SM, thus as we vary the number of blocks,
the number of active SMs varies as well. Even though the eval-
uated GPU does not employ power gating, idle SMs do not con-
sume as much power as active SMs do because of low-actigity fa
tors [18] (i.e., idle SMs do not change values in circuits &isro
as active SMs). Hence, there are still significant diffeesnio the
total power consumption depending on the number of active SM
ina GPU.
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Figure 4: Power consumption vs. active SMs

Figure 4 shows an increase in power consumption as we irereas
the number of active SMs. The maximum power delta between
using only one SM versus all SMs is 37W. Since there is no power
gating, the power consumption does not increase linearlyweas

increase the number of SMs. We use a log-based model instead

of a linear curve, as shown in Equation (14). We also model the
memory power consumption following the exact same log-thase
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Figure 5: Temperature effects from power, (top): Measured
and estimated temperature, (bottom): Measured power

Figure 5 shows estimated and measured temperature vagatio
Both the chip temperature and the board temperature areumsehs
with the built-in sensors in the GPU7saz_temp is a function of
runtime power, which depends on application charactesstiVe
discovered that the chip temperature is strongly affecietthé rate
of GDDR memory accesses, not only runtime power consumption
Hence, the maximum temperature is modeled with a combimatio
of them as shown in Equation (19). The model parameters are de
scribed in Table 3. Note thatzemory_Insts includes global and
local memory instructions.

Mazx_temp(Runtime_Power) = (u X Runtime_Power) + A (19)
+ p X MemAccess_intensity
X X Memory_Insts
MemAccess_intensity = (20)

NonMemory_Insts
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Figure 3: Power breakdown graph for all the evaluated benchrarks

Table 3: Parameters for GTX280

Parameter | Value
I 0.120
A 5.5

P 21.505
RC_Rise 35
RC_Decay | 60

3.7 Modeling Increases in Static Power
Consumption
Section 2.2 discussed the impact of temperature on statiempo

consumption. Because of the high number of processors in the

GPU chip, we observe an increase in runtime power consumptio
as the chip temperature increases, as shown in Figure 6.riEd&y
increases in static power consumption, we include the teate
model (Equations (17) and (18)) into the runtime power comsu
tion model. We use a linear model to represent increasesfit st
power as discussed in Section 2.2. Since we cannot congalgh
erating voltage of the evaluated GPUs at runtime, we onlictan
operating temperature effects.
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Figure 6: Static power effects

Figure 6 shows that power consumption increases graduadly o
time after an application starfsand the delta is 14 watts. This
delta could be caused by increases in static power consomgii
additional fan power. By manually controlling the fan spéean
lowest to highest, we measure that the additional fan power c
sumption is only 4W. Hence, the remaining 10 watts of the powe
consumption increase is modeled as the additional statiepo

4The initial jump of power consumption exists when an appiica
starts.

increase that resulted from the increases in temperatugua-£
tion (21) shows the comprehensive power equation over tirae t
includes the increased static power consumption, whictemnigp
on o (the ratio of power delta over temperature delta= 10 /
22)). Note thatrRuntime_power iS an initial power consumption
obtained from (16), and the model assumes a cold starttfiessys-
tem is in the idle state)Temperature(t) in (23) is obtained from
(17) or (18).

GPU_power(t) = Runtime_power(t) + IdlePower (21)
Runtime_power(t) = Runtime_powerg + o X Delta_temp(t) (22)
Delta_temp(t) = Temperature(t) — Idle_temp (23)

4. |PP: INTEGRATED POWER AND
PERFORMANCE MODEL

In this section, we describe the integrated power and perfor
mance model to predict performance per watt and the optiomaln
ber of active cores. The integrated power and performanageino
(IPP) uses predicted execution times to predict power qopson
instead of measured execution times.

4.1 Execution Time and Access Rate
Prediction

In Section 3, we developed the power model that computes ac-
cess rates by using measured execution time informaticedi€¥
ing power at static time requires access rates in advancethkr
words, we also need to predict the execution time of an agjdic
to predict power. We used a recently developed GPU analyiica
ing model [9] to predict the execution time. The model is tyie
explained in this section. Please refer to the analytiogihg model
paper [9] for the detailed descriptions.

In the timing model, the total execution time of a GPGPU ap-
plication is calculated with one of Equations (24), (25)d §86)
based on the number of running threads, MWP, and CWP in the
application. MWP represents the number of memory requbksats t
can be serviced concurrently and CWP represents the nunfiber o
warps that can finish one computational period during one angm
access period. N is the number of running warpsem_L is the
average memory latency (430 cycles for the evaluated GPhl-arc
tecture). Mem_cycles is the processor waiting cycles for memory
operations.Comp_cycles is the execution time of all instructions.
Repw iS the number of times that each SM needs to repeat the same
set of computation.



Casel: If (MWP is N warps per SM) and (CWP is N warps per SM)
Comp_cycles

(Mem_cycles + Comp_cycles + EMem,_insts

X (MWP — 1)) (#Repw)
(24)

Case2: If (CWP>= MWP) or (Comp_cycles> Mem_cycles)

Comp_cycles

(Mem_cycles x -
MW P #Mem_insts

X (MWP — 1))(#Repw)
(25)
Case3: If (MWP> CWP)

(Mem_L + Comp_cycles X N)(# Repw) (26)

IPP calculates the AccessRate using Equation (27), where th
predicted execution cycle®fedicted_Ezec_Cycles) are calculated
with one of the Equations (24),(25), and (26).

DAC _per_thcomp x Warps_per_SM

A Rate, =
ceessitatecomp Predicted_Exec_Cycles/4

@7

4.2 Optimal Number of Cores for Highest
Performance/Watt

IPP predicts the optimal number of SMs that would achieve the
highest performance/watt. As we showed in Figure 1, thegperf
mance of an application either increases linearly (in thise; the
optimal number of SMs is always the maximum number of cores)
or non-linearly (the optimal number of SMs is less than theima
mum number of cores). Performance per watt can be calcutgted
using Equation (28).

(work /execution time(# of cores)

per f. per watt(cores) = (power (# of cores))

(28)

Equations (24),(25), and (26) calculate execution timeaoAg
the three cases, only Case 2 has a memory bandwidth limised ca
Case 1is used when there are not enough number of runniragithre

in the system, and Case 3 models when an application is compu-

tationally intensive. So both Cases 1 and 3 would never réeeh

peak memory bandwidth. To understand the memory bandwidth

limited case, let's look at MWP more carefully. The followgin
equations show the steps in calculating MWR¥ P is the number

of memory requests that can be serviced concurrently. As/isho
in Equation(29), MWP is the minimum affw P_Without_BW,
MWP_peak_BW, andN. N is the number of running warps. If
there are not enough warps, MWP is limited by the number of run
ning warps. If an application is limited by memory bandwidth
MWP is determined by w P_peak_BW, Which is a function of

a memory bandwidth and the number of active SMs. Note that
Departure_delay represents the pipeline delay between two con-
secutive memory accesses, and it is dependent on both themem
system and the memory access types (coalesced or uncalesce
applications.

MWP = MIN(MW P_Without_BW, MW P_peak_BW, N) (29)
Mem_Bandwidth
MW P_peak_BW = = - (30)
BW _per_warp X #ActiveSM
F x Load_byt
BW per warp — req oad_bytes_per_warp 31)
Mem_L
MW P_Without_BW _full = Mem_L/Departure_delay 32)

MW P_Without_BW = MIN(MW P_Without_BW_full, N) (33)

We could Calculatél(perf. per watt(# of active cores) —_oto
d(# of active cores)

find the optimal number of cores. However, we observed thet¢ on
MW P_peak_BW reachesn, the application usually reaches the
peak bandwidth. Hence, based on Equation (30), we conchade t
the optimal number of cores can be calculated using theviolip
equations to simplify the calculation.

if (1) (MWP == N) or (CWP==N) or
(2) MWP > CWP or
(3) MWP < MWP_peak_BW
Optimal # of cores = Maximum available # of cores

else

(34)

Mem_Bandwidth

Optimal f =
ptimal # of cores BW per_warp) x N

4.3 Limitations of IPP

IPP requires both power and timing models thereby inheritin
the limitations from them. Some examples of limitationsluie
the following: control flow intensive applications, asynineap-
plications, and texture cache intensive applications.

IPP also requires an instruction information. However, t®Rs
not require an actual number of total instructions. It ciltes only
access rates that can be easily normalized with an inputsilzta
Nonetheless, if an application shows a significantly défgrbe-
havior depending on input sizes, IPP needs to consider the in
size effects, which will be addressed in our future work.

4.4 Using Results of IPP

In this paper, we constrain the number of active cores based o
output of IPP by only limiting the number of blocks inside gaph-
cation, since we cannot change the hardware or the threadisch
uler. If the number of active cores can be directly contebligy
hardware or by a runtime thread scheduler, compilers orrarog
mers do not have to change their applications to utilize fewees.
Instead, IPP only passes the information of the number ofrabt
cores to the runtime system, and either the hardware ormanti
thread scheduler enables only the required number of coreasve
energy.

5. METHODOLOGY

5.1 Power and Temperature Measurement

The NVIDIA GTX280 GPU, which has 30 SMs and uses a 65nm
technology, is used in this work. We use the Extech 38080 DAC/
Power Analyzer [1] to measure the overall system power aopsu
tion. The raw power data is sent to a data-log machine evéry 0.
second. Each microbenchmark executes for an average ofc10 se
onds.

Since we measure the input power to the entire system, we have
to subtractrdiepower_System (159W) from the total system input
power to obtainePU_Power.® Theldie_Power value for the eval-
uated GPU is 83W. The GPU temperature is measured with the
nvclock utility [16]. The command "nvclock -i* outputs board and
chip temperatures. Temperature is measured every second.

S|dlePower_System is obtained by measuring system power wit
another GPU card whose idle power is known



5.2 Benchmarks

To test the accuracy of our IPP system, we use the Merge bench-

marks [15, 9], five additional memory bandwidth-limited bbn
marks (Nmat, Dotp, Madd, Dmadd, and Mmul), and one computa-
tional intensive (i.e., non-memory bandwidth limited) bbmark

(Cmem). Table 4 describes each benchmark and summarizes the

characteristics of them.
To calculate the number of dynamic instructions, we use a GPU
PTX emulator, Ocelot [13]. It also classifies instructiopés.

6. RESULTS

6.1 Evaluation of Runtime Power Model

Figure 7 compares the predicted power consumption with the
measured power value for the microbenchmarks. Accordifdge
ure 3, the global memory consumes the most amount of power.
MB4, MB8, and MEM benchmarks consume much greater power
than the FP benchmark, which consists of mainly floating tgain
structions. Surprisingly, the benchmarks that use textarhe or
constant cache also consume high power. This is becausehaoth
texture cache and the constant cache have higherPower than
that of the FP unit. The geometric mean of the error in the powe
prediction for microbenchmark is 2.5%. Figure 8 shows theeas
rates for each microbenchmark. When an application doelsavat
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Figure 9: Comparison of measured and predicted GPU power
consumption for the GPGPU kernels
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Figure 10: Dynamic access rate of the GPGPU kernels

many memory operations such as the FP benchmark, dynamic ac-
cess rates for FP or REG can be very close to one. FDS is one wherP.2 ~ Temperature Model

an application reaches the peak performance of the machine.
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Figure 7: Comparison of measured and predicted GPU power
consumption for the microbenchmarks
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Figure 8: Dynamic access rate of the microbenchmarks

Figure 11 displays the predicted chip temperature over fome
all the evaluated benchmarks. The initial temperature fc5the
typical GPU cold state temperature in our evaluated sysféhe
temperature is saturated after around 600 secs. The pealetem
ture depends on the peak run-time power consumption, andés/
from 68°c (the INT benchmark) to 78 (SVM). Based on Equa-
tion (22), we can predict that the runtime power of SVM would
increase by 10W after 600 seconds. However, for the INT bench
mark, it would increase by only 5W after 600 seconds.
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Figure 11: Peak temperature prediction for the benchmarks.
Initial temperature: 57 °C

6.3 Power Prediction Using IPP

Figure 9 compares the predicted power and the measured power Figure 12 shows the power prediction of IPP for both the mi-

consumptions for the evaluated GPGPU kernels. The geametri
mean of the power prediction error is 9.18% for the GPGPU ker-

crobenchmarks and the GPGPU kernels. These are equivalent t
the experiments in Section 6.1. The main difference is theat S

nels. Figure 10 shows the dynamic access rates. The completetion 6.1 requires measured execution times while IPP uses pr

breakdown of the GPU power consumption is shown in Figure 3.
Bino and Conv have lower global memory access rates thamspthe
which results in less power consumption than others. Seulds

are high performance applications. This explains why thayeh
high REG and FDS values. All the memory bandwidth-limited
benchmarks have higher power consumption even though they h
relatively lower FP/REG/FDS access rates.

dicted times using the equations in Section 4. Using preditines
could have increased the error in prediction of power valles
since the error of timing model is not high, the overall ewbthe

IPP system is not significantly increased. The geometricnoda
the power prediction of IPP is 8.94% for the GPGPU kernels and
2.7% for the microbenchmarks, which are similar to usind esa
ecution time measurements.



Table 4: Characteristics of the Evaluated Benchmarks (Al mans arithmetic intensity.)

[ Benchmark [ Description [[ Peak Bandwidth (GB/s) [ MWP T CWP TAI |
SVM [15] Kernel from a SVM-based algorithm || 54.679 (non-bandwidth limited] 5.875 11.226 | 11.489
Binomial(Bino) [15] American option pricing 3.689 (non-bandwidth limited) | 14.737 | 1.345 | 314.306
Sepia [15] Filter for artificially aging images 12.012 (non-bandwidth limited] 12 12 8.334
Convolve(Conv) [15] | 2D Separable image convolution 16.208 (non-bandwidth limited] 10.982 [ 3.511 43.923
Blackscholes(Bs) [17]| European option pricing 51.033 (non-bandwidth limited) 3 5.472 | 24.258
Matrixmul(Nmat) Naive version of matrix multiplication|| 123.33 (bandwidth limited) 10.764 | 32 3.011
Dotp Matrix dotproduct 111.313 (bandwidth limited) 10.802 | 16 0.574
Madd Matrix multiply-add 115.058 (bandwidth limited) 10.802 | 16 1.049
Dmadd Matrix double memory multiply add || 109.996 (bandwidth limited) 10.802 | 16 1.0718
Mmul Matrix single multiply 114.997 (bandwidth limited) 10.802 | 16 1.060
Cmem Matrix add FP operations 64.617 (non-bandwidth limited] 10.802 | 9.356 12.983

== Measure
=IPP

= easure
—IPP

GPU Power (W)
B

FP MB4 mMB8 MEM INT

CONST TEX SHARED

Nmat Dotp Madd Dmadd Mmul Cmem

Figure 12: Comparison of measured and IPP predicted GPU powecomparison (Left:Microbenchmarks, Right:GPGPU kernels)
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than the MWP values of them, so these benchmarks cannot reach
the peak memory bandwidth. Both SVM's MWP (5.878) and Bs'’s
MWP (3) are less than MWP_peak_BW (10.8). Thus they cannot
reach the peak memory bandwidth also.

To further evaluate our IPP system, we use the benchmarks tha
reach the peak memory bandwidth (the 3rd columnin Table wsho
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Figure 13: GIPS vs. Active Cores
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Note that, all different configurations (in this section)oofe appli-
cation have the exact same amount work. So, as we use feves cor
(i.e., fewer blocks), each core (or block) executes morebemof
instructions. We use Giga Instructions Per Sec (G@R&‘f)tead of ‘
Gflops/s for a metric. 5

Figure 13 shows how GIPS varies with the number of active
cores for both the actual measured data and the predictfdR$o
Only Cmem has a linear performance improvement in both the
measured data and the predicted values. The rest of theranic
show a nearly saturated performance as we increase the nafbe
active cores. IPP still predicts GIPS values accuratelepixtor
Cmem. Although the predicted performance of Cmem does not
exactly match the actual performance, IPP still correctlydicts
the trend. Nmat shows higher performance than other baridwid
limited benchmarks, because it has a higher arithmetiogitg

Figure 14 shows the actual bandwidth consumption of the ex-
periment in Figure 13. Cmem shows a linear correlation betwe
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Figure 14: Average measured bandwidth consumption vs. # of
active cores

its bandwidth consumption and the number of active coresitbu
still cannot reach the peak memory bandwidth. The memordban
widths of the remaining benchmarks are saturated when timbau
of active cores is around 19. This explains why the perforraanf
these benchmarks is not improved significantly after appnately
19 active cores.

Figure 15 shows GIPS/W for the same experiment. The results
6We decide to use GIPS instead of Gflop/s because the perfoeman show both the actual GIPS/W and the predicted GIPS/W usiRg IP
efficiency should include non-floating point instructions. Nmat shows a salient peak point, but for the rest of benchsark
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Figure 15: Performance per watt variation vs. # of active coes
for measured and the predicted values

the efficiency (GIPS/W) has a very smooth curve. As we have ex-
pected, only GIPS/W of Cmem increases linearly in both tha-me
sured data and the predicted data.
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Figure 16: GIPS/W for the GPGPU kernels

Figure 16 shows GIPS/W for all the GPGPU kernels running on
30 active cores. The GIPS/W values of the non-bandwidtttéidni
benchmarks are much higher than those of the bandwidthelimit
benchmarks. GIPS/W values can vary significantly from ayapli
tion to application depending on their performance. Theiltes
also include the predicted GIPS/W using IPP. Except for Bind
Bs, IPP predicts GIPS/W values fairly accurately. The ariotthe
predicted GIPS/W values of Bino and Bs are attributed to tffierd
ences between their predicted and measured runtime penfimen

6.4.1 Energy Savings by Using the Optimal Number
of Cores Based on IPP

ergating is the predicted energy savings if power gating is applied.
The average energy savings funtime cases is 10.99%.
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Figure 17: Energy savings using the optimal number of cores
based on the IPP system (NVIDIA GTX 280 and power gating
GPUs)

6.4.2 Energy Savingsin Power Gating GPUs

The current NVIDIA GPUs do not employ any per-core power
gating mechanism. However, future GPU architectures cenid
ploy power gating mechanisms as a result of the growth in time-n
ber of cores. As a concrete example, CPUs have already made us
of per-core power gating [11].

To evaluate the energy savings in power gating process@s, w
predict the GPU power consumption as a linear function of the
number of active cores. For example, if 30 SMs consume total
120W for an application, we assume that each core consumes 4W
when per-core power gating is used. There is no reason terdiff
entiate between Runtime+ldle and Runtime power since thepo
gating mechanism eliminates idle power consumption fromdtive
cores. Figure 17 shows the predicted amount of energy sawamg
the GPU cores that employ power gating. Since power consump-
tion of each individual core is much smaller in a power-ggsys-
tem, the amount of energy savings is much higher than in the cu
rent NVIDIA GTX280 processors. When power gating is applied
the average energy savings is 25.85%. Hence, utilizing femher
cores based on the outcomes of IPP will be more beneficial-in fu
ture per-core power-gating processors.

7. RELATED WORK
7.1 Power Modeling

Isci and Martonosi proposed power modeling using empirical
data [12]. There have been follow-up studies that use sirt@zh-
niques for other architectures [7]. Wattch [5] has been lyide
used to model dynamic power consumption using event caainter
from architectural simulations. HotLeakage models leakeagr-
rent and power based on circuit modeling and dynamic evedis [
Skadron et al. proposed temperature aware microarchiteniod-
eling [20] and also released a softwakgtSpot. Both HotLeak-
age and HotSpot require architectural simulators to mogehthic
power consumption. All these studies were done only for CPUs

Sheaffer et al. studied a thermal management for GPUs [19].

Based on Equation (34), IPP calculates the optimal number of In their work, the GPU was a fixed graphics hardware. Fu et al.

cores for a given application. This is a simple way of chogsin
the highest GIPS/W point among different number of cored? IP
returns 20 for all the evaluated memory bandwidth limiteddie
marks and 30 for Cmem.

Figure 17 shows the difference in energy savings betweeunsthe
of the optimal number of cores and the maximum number (30) of
cores.Runtime+|dle shows the energy savings when the total GPU
power is used in the calculatioRuntime shows the energy savings
when only the runtime power from the equation (5) is uslolv-

presented experimental data of a GPU system and evaluaged th
efficiency of energy and power [8].

Our work is also based on empirical CPU power modeling. The
biggest contribution of our GPU model over the previous CPU
models is that we propose a GPU power model that does not re-
quire performance measurements. By integrating an acalytim-
ing model and an empirical power model, we are able to prelaéct
power consumption of GPGPU workloads with only the instruc-
tion mixture information. We also extend the GPU power model



to model increases in the leakage power consumption over, tim Georgia Tech Innovation Grant, Intel Corporation, Micriid®e-
which is becoming a critical component in many-core progess search, and the equipment donations from NVIDIA.

7.2 Using Fewer Number of Cores 9.

Huang et al. evaluated the energy efficiency of GPUs for sci- 1]
entific computing [10]. Their work demonstrated the efficgifor 2]
only one benchmark and concluded that using all the coresqes
the best efficiency. They did not consider any bandwidthtéition (3]
effects.

Li and Martinez studied power and performance considematio  [4]
for CMPs [14]. They also analytically evaluated the optimain-
ber of processors for best power/energy/EDP. However; thaik [5]
was focused on CMP and presented heuristics to reduce design
space search using power and performance models.

Suleman et al. proposed a feedback driven threading mecha- (6]
nism [22]. By monitoring the bandwidth consumption usingaadh 7]
ware counter, their feedback system decides how many thread
(cores) can be run without degrading performance. Unlike ou
work, it requires runtime profiling to know the minimum nunmbe [8]
of threads to reach the peak bandwidth. Furthermore, theyode

strate power savings through simulation without a detgileder [
model. The IPP system predicts the number of cores that esach
the peak bandwidth at static time, thereby allowing the dtenpr [1

thread scheduler to use that information without any ruatprofil-

ing. Furthermore, we demonstrate the power savings by uxsitty (11
the detailed power model and the real system. [12]
[13]

8. CONCLUSIONS

In this paper, we proposed an integrated power and perfarenan  [14]
modeling system (IPP) for the GPU architecture and the GPGPU
kernels. IPP extends the empirical CPU modeling mecharism t
model the GPU power and also considers the increases ingeaka
power consumption that resulted from the increases in teape
ture. Using the proposed power model and the newly-develope [16]
timing model, IPP predicts performance per watt and als@fte
mal number of cores to achieve energy savings. [17

The power model using IPP predicts the power consumption and [18]
the execution time with an average of 8.94% error for theeval
ated GPGPU kernels. IPP predicts the performance per wdtt an
the optimal number of cores for the five evaluated bandwiiiti | [19]
ited GPGPU kernels. Based on IPP, the system can save omgavera
10.99% of runtime energy consumption for the bandwidth tkahi [20]
applications by using fewer cores. We demonstrated the pssve
ings in the real machine. We also calculated the power saving
if a per-core power gating mechanism is employed, and thdtres
shows an average of 25.85% in energy reduction. [21]

The proposed IPP system can be used by a thread scheduler
(power management system) as we have discussed in the jtaper.
can be also used by compilers or programmers to optimize-anog
configurations as we have demonstrated in the paper. In tunefu
work, we will incorporate dynamic voltage and frequency ttoh [23]
systems in the power and performance model.

[15]

[22]

[24]
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