Characterizing the Execution of Deep Neural Networks on
Collaborative Robots and Edge Devices®

Matthew L. Merck ™ Bingyao Wang" Lixing Liu” Chunjun Jia*
Georgia Tech Georgia Tech Georgia Tech Georgia Tech
Arthur Siqueira Qiusen Huang Abhijeet Saraha Dongsuk Lim
Georgia Tech Georgia Tech Georgia Tech Georgia Tech
Jiashen Cao Ramyad Hadidi* Hyesoon Kim

Georgia Tech
ABSTRACT

Edge devices and robots have access to an abundance of raw data
that needs to be processed on the edge. Deep neural networks
(DNNs) can help these devices understand and learn from this
complex data; however, executing DNNs while achieving high per-
formance is a challenge for edge devices. This is because of the
high computational demands of DNN execution in real-time. This
paper describes and implements a method to enable edge devices to
execute DNNs collaboratively. This is possible and useful because
in many environments, several on-edge devices are already inte-
grated in their surroundings, but are usually idle and can provide
additional computing power to a distributed system. We implement
this method on two iRobots, each of which has been equipped with
a Raspberry Pi 3. Then, we characterize the execution performance,
communication latency, energy consumption, and thermal behavior
of our system while it is executing AlexNet.

CCS CONCEPTS

« Computing methodologies — Machine learning; Distributed
computing methodologies; « Computer systems organization —
Embedded and cyber-physical systems;

ACM Reference Format:

Matthew L. Merck, Bingyao Wang, Lixing Liu, Chunjun Jia, Arthur Siqueira,
Qiusen Huang, Abhijeet Saraha, Dongsuk Lim, Jiashen Cao, Ramyad Ha-
didi, and Hyesoon Kim. 2019. Characterizing the Execution of Deep Neural
Networks on Collaborative Robots and Edge Devices. In Practice and Ex-
perience in Advanced Research Computing (PEARC °19), July 28-August 1,
2019, Chicago, IL, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3332186.3333049

*This work is supported by NSF CSR 1815047.
TEqual contribution to the paper.
Al corresponds to rhadidi@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7227-5/19/07...$15.00
https://doi.org/10.1145/3332186.3333049

Georgia Tech

Georgia Tech
1 INTRODUCTION & MOTIVATION

With the recent advancement of Deep Neural Networks, we are now
able to solve many previously challenging problems [24, 30, 34],
such as Computer Vision [23, 36], Neural Machine Translation [3, 6],
and Video Recognition [35]. At the same time, several physical do-
mains are undergoing fast changes due to such advancements;
some examples include robots [9, 13, 16, 31], Unmanned Aerial Ve-
hicles (UAVs) [29, 37], and Internet-of-Things (IoT) devices [12, 33].
With the widespread applicability and benefits of DNNs, the fast
execution of DNNs on devices that are characterized by tight re-
source constraints and tight real-time requirements is crucial. In
fact, performing DNN computations on the edge is rapidly gaining
grounds due to privacy concerns [4, 21, 25, 27]and unreliable con-
nection of conducting computation on the cloud, strict real-time
resource requirements, and increased opportunity for personaliza-
tion. However, DNN advancement comes with the issue of increased
requirements for computational power on devices where they are
executed [18] and this rapid increase is not expected to slow down.
DNN execution on the edge is especially challenging for low-
performance robots and IoT devices. However, these devices are also
a perfect candidate for DNN computation because of their immedi-
ate access to local raw data (e.g. input from cameras and sensors).
Although the results from processing this raw data could be ex-
tremely beneficial, single devices lack the computational power
to carry out the DNN computation. Currently, users need to up-
load collected data to cloud services to carry out any intensive
computation [11, 26], but the high-sensitivity of some data (e.g.
recordings of home security cameras) raises considerable privacy
concerns [4, 21, 25, 27]. As a result, it is crucial to enable these low-
performance devices to carry out intensive DNN computations.
There have been endeavors to address the high requirements
of DNNSs on a single device, such as weight pruning [18, 28, 39, 40]
and quantization [7, 10, 22, 38]. However, in this paper, we focus
on collaboration between such devices. The reasons for this are:
(1) In several scenarios, there are many devices that are already
integrated within their surroundings, such as smart home cameras,
autonomous vehicles with several sensors, or wide area networks
with a variety of devices. (2) These devices are idle most of the time,
and they contain embedded processors with unused computing
power. Therefore, to achieve faster execution of DNNs, we can
distribute the computations of a single inference (i.e. prediction)

https://doi.org/10.1145/3332186.3333049
https://doi.org/10.1145/3332186.3333049
https://doi.org/10.1145/3332186.3333049

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

on several devices. To do so, we use the model-parallelism tech-
niques introduced by Hadidi et al. [12, 13, 15] to collaboratively
execute AlexNet [23], an image-recognition DNN model, on two
iRobots [20]. Our system, as shown in Figure 1, uses two iRobots
that are each equipped with an additional Raspberry Pi 3 [8], which
represents an edge device. To understand the effect of executing
DNNs on the edge, we characterize several behaviors of DNN exe-
cution in our system. In detail, we examine execution performance,
communication latency, energy consumption, and thermal behavior
of our system.

2 EXPERIMENTS

2.1 Experimental Setup

Two iRobot Roomba 600s [20] are used as our robots. Each of the
robots is equipped with one Raspberry Pi 3 [8], the specifications of
which are shown in Table 1. The power source of each Raspberry
Pi 3 is derived from the iRobot’s battery with a voltage converter.
The Raspberry Pi, which is connected to the iRobot’s serial port,
uses the iRobot Create 2 Open Interface [19] to control the iRobot.
In addition to controlling the robot, we utilize each Raspberry Pi
as our computing engine for executing DNNs. On each Raspberry
Pi, with the Ubuntu 16.04 operating system, we use Keras 2.0 [5]
with the TensorFlow 1.0 [1] backend. As shown in Figure 1, we use
a USB digital multimeter, which records measurements to an excel
file once every second, to measure the power consumption of the
Raspberry Pi. In order to measure the power consumption of one
robot, we use the iRobot Open Interface to retrieve battery voltage
and amperage once every 100 ms while performing our experiments.
Each experiment for energy measurement takes around 3 minutes
to finish, which includes some idle time to display the baseline.
Experiments for measuring communication latency are done for 10
minutes, during which the latency of each data packet is recorded.

Table 1: The specification of Raspberry Pi 3 [8].

CPU 1.2 GHz Quad Core ARM Cortex-A53

Memory 900 MHz 1 GB RAM LPDDR2
GPU No GPGPU Capability
Price $35 (Board) + $5 (SD Card)

2.2 Energy & Performance

To understand how DNN distribution affects the power consump-
tion of the Raspberry Pi, in our first set of experiments, we measure

Figure 1: Two iRobot2 equipped with Raspberry Pis.

Merck et al.

the power usage of each Raspberry Pi. In one experiment, as shown
in Figure 2, we measure the power consumption rate of a Rasp-
berry Pi while it is executing the entire AlexNet model. To show
the change in the average power consumption, we also include
a measurement for a certain length of idle period in our graph.
As shown in the graph, the average rate of power consumption is
1.95W during the execution of DNN. The performance of one Rasp-
berry Pi measured running AlexNet is 1.25 inferences per second.
As a result, during our 3-minute-long (180 seconds) experiment
period, approximately 200 inferences are made. In order to show the
difference in power consumption rate of the distributed approach,
we execute AlexNet on two Raspberry Pis and measure the rate of
power consumption on one of the two Raspberry Pis. This time,
the execution is performed by dividing the AlexNet model into two
parts and executing each part on one Raspberry Pi. Figure 3 illus-
trates the trend in rate of power consumption in this experiment.
As seen, although the rate of power consumption of the Raspberry
Pi in the idle period is the same as that of previous experiment,
the average rate of power consumption during the DNN execution
period is now 1.53W, less than that of the previous experiment.
With two Raspberry Pis computing different parts of the model in
parallel, the performance now is approximately 3 inferences per
second. However, the rate of power consumption of each single
device in this experiment is less than when one device performed all
computations. This is because, with the distribution of computing,
(i) less computations are performed per device, (ii) fewer memory
operations are performed per device, (iii) each device has some idle
time as a result of communication latency. Although the power
consumption of the total distributed system has been increased
(power consumption rate for one device running the whole com-
puting process is 1.95W, versus two devices each consuming power

——Power - --Average (DNN) - - Average (All)

N
Nonow

-

Power Consumption (W)
=
wv

o
«n

DNN Execution

Time < 3mins >

Figure 2: Power consumption of a single Raspberry Pi 3 exe-
cuting whole AlexNet.

——Power ---Average (DNN) - --Average (All)

w

N
wn

Power Consumption (W)
-
w

0.5 DNN Execution

Time < 3mins >

Figure 3: Power consumption of a single Raspberry Pi 3 ex-
ecuting AlexNet in a distributed manner (total of two Rasp-
berry Pis).

Characterizing the Execution of DNNs on Robots and Edge Devices

—Power — -Average

a

5.8
5.6
5.4
5.2

4.8

Power Consumption (W)

4.6

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

—Power - -Average

=
o

6.88 W

Power Consumption (W)

Time < 3mins >

(@)

Time < 3mins >

(b)

Figure 4: Power consumption of iRobot in (a) idle mode (stationary) and (b) in movement.

at 1.53W, a total of 3.0W), each individual device in the system
consumes less power.

To further explore the change in power consumption rate and
performance, we studied and now present the results of both the
iRobot and Raspberry Pi power consumption in several common
cases. As mentioned, each iRobot is equipped with a Raspberry
Pi. We measure the power drawn from the iRobot’s battery, which
consists of the power used for Raspberry Pi computation and the
power used for the iRobot’s movements. The first case we studied
is the idle state (no movement) with no computation. Figure 4a
illustrates the power usage behavior in this case, which has an
average power consumption of 5.09 W. The frequent spikes (around
0.8 W) in the figure is caused by the iRobot’s frequent system checks.
To see how physical activity affects power usage, we also measured
the power consumption rate of the iRobot while moving, as shown
in in Figure 4b. The movement profile is random, depending on
the environment. As seen, the average power consumption rate is
6.88 W, around 1.8 W higher than that of the idle state. In addition,
there are spikes as large as 3W in the graph. Compared to the idle
case, the trend in power consumption rate in movement is less
predictable and contains larger spikes.

To measure how the power consumption rate changes when the
robot is executing DNNs, we execute AlexNet on the two Raspberry
Pis in our system. Figure 5a illustrates the power consumption rate
of one iRobot in stationary mode, while it performs the computation
of AlexNet collaboratively with the other iRobot. In this case, the
average power consumption is 7.51 W, and there are spikes around
2 W. Although the profile of power consumption was expected to be
similar to what we observed in Figure 3, the spikes are much larger
than what we hypothesized the idle state would show. We believe
this is due to the unreliability of the iRobot’s battery in sustaining

a constant current to the Raspberry Pi, or alternatively because of
our circuitry in converting the voltage. In summary, DNN execu-
tion increases the power consumption rate from 6.88 W to 7.51 W,
which is a 6% increase. Note that this increase only accounts for the
dynamic power consumption during DNN execution. In fact, the
addition of a Raspberry Pi increases the static power consumption
of the system by approximately 41%, which is derived from the
3.5 W average idle power consumption rate of the iRobot with no
Raspberry Pi, in addition to the 1.5 W average power consumption
rate of the Raspberry Pi.

Figure 5b shows the power consumption rate of one iRobot
in motion while executing AlexNet computations collaboratively.
This case is the closest case to a real-world setting, where the
robots execute the computations of DNNSs in a parallel manner,
which indicates that the result produced by a certain robot might
depend on the computation results of another device that performed
the computation on previous layers of the DNN model. As shown
in the figure (Figure 5b), the average power consumption rate is
9.35 W. Compared to the consumption rate of 5.09 W (Figure 4a)
in the idle case where no computation happens, there is an 85%
increase. Additionally, some spikes are as large as 4.5W in this
experiment. The large spikes suggest that the execution of a DNN
while moving caused greater variation in the power consumption
rate compared to that in the case where the robot is moving without
execution of the DNN (Figure 4b). Such variation (reflected by spikes
in the figure) may limit the Raspberry Pi’s capability to attain a
high performance, because variation of power delivery may lead
to discrepancy in power saving settings in its CPU, leading to
instability.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

—Power - - Average

Power Consumption (W)

2s lZSLWo Y RN w\li“mh NN

Merck et al.

DR 1“\ DTt \’nl.”ul'

—Power - - Average
12

11

Power Consumption (W)

B O N 0 ©

Time < 3mins >

RN A..u\m‘u.‘III\JI.n.ll|.||.|lwl|nlnm I ‘.u\li.l..,‘m VIATIE

Time < 3mins >

Figure 5: Power consumption of iRobot in (a) idle mode (stationary) while executing AlexNet in distributed manner and (b) in

movement while executing AlexNet in distributed manner.

Table 2 summarizes our results about iRobot average power
consumption in different cases. All the results include the measure-
ments of the average power consumption rate of both the iRobot
and Raspberry Pi. As seen in the table, DNN execution increases
the average power consumption rate by around 2.5 W, which is
50% greater than that in the idle case. It also significantly increases
the strength of spikes, which indicates greater variation in power
consumption rate.

Table 2: iRobot average power consumptions.

Average Power Spike Strength

Scenario ‘ Consumption (W) W)
Idle 5.1 0.8
Movement 6.9 3.0
% Idle 7.5 2
A | Movement 94 4.5

To study the performance gain and energy trends of distributed
computations on Raspberry Pis, we measure the performance and
energy consumption of cases where two, four, or six Raspberry
Pis are executing the AlexNet collaboratively. Figure 6 shows the
average energy consumption rate and performance in different
cases - specifically when two, four or six Raspberry Pis execute the
computation collaboratively - divided into 2 categories: static and
dynamic (static energy is measured when the robot is not moving,
dynamic energy is the inverse). As shown in the chart, we achieve
greater performance as the number of devices involved in the par-
allel computing task increases. There is also a decrease in dynamic
energy consumption, similar to the trend shown in Figures 2 and
3. In contrast to dynamic energy consumption rate, there is an

2 ODynamic Energy [Static Energy

Inference Per Second

(a) Inferences Per Second (b) Dynamic and Static Energy

Figure 6: The inferences per second (a) and power consump-
tion (b) of various systems.

increase in average static energy consumption rate. This is because
each Raspberry Pi contains certain additional parts that consume
extra amounts of energy and are unnecessary for our experiment.
As we use more devices, the total number of unnecessary parts
increases, so the static energy increases accordingly.

2.3 Communication Latency

Communication latency is one of the important factor that affect the
performance of our collaborative DNN computation system. In the
model parallelism technique, the model is divided into several parts
(e.g. convolutional and fully-connected layers). A typical device’s
input data depends on the computation result produced by one
or several devices which are responsible for the computations of
previous layers. The device must wait until the work is done by the
devices it depends on, then combine the computed data it receives
from the other devices as the input and finally start working based
on the processed input. Of course, there is a certain level of com-
munication latency between devices. Latency causes inefficiency in
computing; thus, it should be minimized. As a result, in our study,

Characterizing the Execution of DNNs on Robots and Edge Devices

[} [}

> 0.16 1 I
=017 1 | Mean: 73 ms
Q070 1 Computation Ends I Stdev: 12.26 ms
® [} 7 1
Q9 0.087 1
© 0.06 1 11
a 0.04 1

0.02 1 w

0.00- 4

50 8 90 100 110 120

Arriaval Time (ms)
()
0.16 T— [
E‘g'ig ! | Mean: 81 ms
% 0.10 :Computation Ends /] : Stdev: 34.92 ms
©0.087 1 [
1 1
2 0.0611 1
& 0.04 I 1
0.0241 ?

90

100 110 120
Arriaval Time (ms)
(b)
0.16
> 014 Mean: 75 ms

Computation Ends /| 7

w

1
1
]
! tdev: 30.05 ms
i
1
]
]

Probabilit
o
o
o

100 110 120
Arriaval Time (ms)

(©
Figure 7: Histogram of communication latency (a) while ro-
bot is near the station; (b) while robot is away from the sta-
tion; (c) while robot is moving.

we conduct experiments to examine the communication latency
behaviours in a system with collaborative robots.

We measure the communication latency between a robot and its
station under different settings. The robot is performing DNN com-
putations that takes 50 ms. We use a WiFi router with a measured
bandwidth of 94 Mbps. We gather the latency data for 10 minutes,
and calculate the probability of certain levels of latency measured
(in milliseconds). The distribution of communication latency is dis-
played in the corresponding histograms in Figure 7. In the first case,
we measure communication latency for a single robot while it is
near the station. As shown in Figure-7a, the mean latency is 73 ms
while the standard deviation is 12 ms. Most of the latency time mea-
surements center within 65 to 70 milliseconds, although there are
some outliers which are greater than 90 ms. Generally speaking, the
latency is approximately 70 ms when the robot is near the station.
In the second case, we measure the communication latency while
the robot is far from the station. As shown in Figure-7b, the mean
latency is 81ms while the standard deviation is around 34 ms, 2
times greater than that of the near-station case. However, most of
the latency time gathered centers around 70 ms. It is expected that
the variation in latency is greater, because the communication is
less stable as the distance increases. In the third case, we measure
the communication latency when the robot is moving. As shown
in Figure-7c, the mean latency is 75 ms and the standard deviation
is around 30 ms, which is still around 2 times greater than that
of the near-station case. The high variation in latency time when
the robot is moving is caused by frequent changes in the commu-
nication environment and distance. Some obstacles might cause
unpredictable shifts in latency by obstructing the communication.

To see the aggregated latency of executing a DNN model, we mea-
sure the communication latency while five devices run AlexNet [23]

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

.004
0.00 I Mean: 1019 ms
I Stdev: 390.77 ms

Probability
o o
o o
S 8

o
o
S
=

g
=}
o
S

1600 1800 2000

Arriaval Time (ms)

Figure 8: Execution latency histogram on six Raspberry Pi
while executing AlexNet collaboratively.

collaboratively. As shown in Figure-8, the mean latency time is
1019 ms, and the standard deviation is approximately 390 ms. In
the graph, there are three clusters of data: one centered around
700 ms, one around 900 ms, and one around 1200 ms. That is be-
cause the three devices are sharing the computation for a single
fully-connected layer. As seen, for an entire model, the amount and
range of fluctuations is high. Additionally, the reliability issue is
exacerbated by the local networks of these systems, which consist
of low-end equipment. Therefore, the real-time latency of DNN
execution on edge devices is unreliable and varies greatly. As we
observed in Figure-7, this is because of the inherent unpredictability
in the latency of WiFi networks. One result of this unpredictability
is the occasional severed network connection, which can lead to
loss of computation results for a single inference. However, because
of the continuous camera input, losing a single inference is accept-
able. Additionally, there are methods that can be applied to make
inferences more reliable with worsened network connections.

2.4 Device Temperature

To observe the thermal behaviour of edge devices when executing
DNNs, we measured the thermal hotspots on the Raspbery Pi 3
with a thermal camera. In Figure 9, we can see the temperatures
of our device in different conditions. When the device is off, the
temperature of it is around 25.7 Celsius degrees. When the device is
on but in an idle condition, the maximum temperature reaches 46.5
Celsius degrees. The hotspots are results of the CPU, DRAM, and
LAN chips - this is why the center area produces more heat than
the marginal areas. When we perform DNN computations on our
device, the temperature rises up to approximately 62.2 Celsius de-
grees, an increase of 16 degrees Celsius. This temperature increase
can correspond to problems with resolution and performance of
a connected Raspberry Pi Camera, however it does not lead to de-
creased performance of the Raspberry Pi itself, and as the results

Idle DNN
46.5°C

62.2°C
Bl -

Figure 9: Thermal camera pictures of Raspberry Pi 2 in off,
idle, and DNN execution conditions.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

have shown, occurs with increases in the inferences per second of
the system.

3 CONCLUSION

In this paper, we examined and analyzed the effects of executing
deep neural networks collaboratively on edge devices. Our method
uses model parallelism to distribute tasks from DNN layers to Rasp-
berry Pis, which are mounted on and powered by iRobots. Our
measurements showed that while adding additional devices to a
network of edge devices increases static energy, it decreases the
dynamic energy used by each device. It also increases the average
number of inferences performed by each device. We found that
execution of DNNs on a distributed robot system can lead to unpre-
dictable power consumption, which may in turn worsen Raspberry
Pi performance. Another unreliable aspect is the network latency,
which increases and decreases often based on a variety of often
uncontrollable factors. Finally, through our measurement of the
Raspberry Pi temperature during DNN execution, we found that
DNN computation can increase temperature by as much as 16 de-
grees Celsius. For future work, we plan to extend our robot system
to execution YOLO [32] similar to our demo [17] on several Rasp-
berry Pis using pruning methods [2]. Additionally, as discussed,
since distributed computations are susceptible to latency and data
loss, we plan to add robust DNN computations [14] in our system.

REFERENCES

[1] Martin Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. https://www.tensorflow.org/ Software available from
tensorflow.org.

[2] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili. 2019.
LODESTAR: Creating Locally-Dense CNNss for Efficient Inference on Systolic
Arrays. ACM/IEE Design Automation Conference (DAC) - Late Breaking Results,
Las Vegas, NV (2019).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR’15). ACM.

[4] F Biscotti, J Skorupa, R Contu, et al. 2014. The Impact of the Internet of Things

on Data Centers. Gartner Research 18 (2014).

] Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras.

[6] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning. In ICML’8.
ACM, 160-167.

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-
ing Deep Neural Networks with Low Precision Multiplication. arXiv preprint
arXiv:1412.7024 (2014).

[8] Raspberry PI Foundation. 2017. Raspberry Pi 3B+. www. raspber-
rypi.org/products /raspberry-pi-3-model-b/. [Online; accessed 04/01/19].

[9] Alessandro Giusti, Jérome Guzzi, Dan C Ciresan, Fang-Lin He, Juan P Rodriguez,

Flavio Fontana, Matthias Faessler, Christian Forster, Jirgen Schmidhuber, Gianni

Di Caro, et al. 2016. A machine learning approach to visual perception of forest

trails for mobile robots. IEEE Robotics and Automation Letters 1, 2 (2016), 661-667.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. 2014. Compress-

ing Deep Convolutional Networks Using Vector Quantization. arXiv preprint

arXiv:1412.6115 (2014).

[11] Binita Gupta. 2015. Discovering cloud-based services for iot devices in an iot

network associated with a user. US Patent App. 14/550,595.

Ramyad Hadidi, Jiashen Cao, Michael Ryoo, and Hyesoon Kim. 2018. Collabo-

rative Execution of Deep Neural Networks on Internet of Things Device. arXiv

preprint (2018).

[13] Ramyad Hadidi, Jiashen Cao, Michael S. Ryoo, and Hyesoon Kim. 2018. Dis-
tributed Perception by Collaborative Robots. IEEE Robotics and Automation Letters
(RA-L), and International Conference on Intelligent Robots and Systems 2018 (IROS)
3, 4 (Oct 2018), 3709-3716. https://doi.org/10.1109/LRA.2018.2856261

[14] Ramyad Hadidi, Jiashen Cao, Michael S. Ryoo, and Hyesoon Kim. 2019. Robustly

Executing DNNs in IoT Systems Using Coded Distributed Computing. ACM/IEE

Design Automation Conference (DAC) - Late Breaking Results, Las Vegas, NV (2019).

Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael Ryoo, and Hyesoon

Kim. 2018. Musical Chair: Efficient Real-Time Recognition Using Collaborative

I0T Devices. arXiv preprint arXiv:1802.02138 (2018).

[10

[12

[15

[16

(17

(18

=
)

[20

[21

[22

[23

™
=)

[25

[26

[27

(28]

[29]

@
=

[31

[32

[33]

&
=

(35]

[36]

[37

[38

[39

[40

Merck et al.

Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael S. Ryoo, and Hyesoon
Kim. 2018. Real-Time Image Recognition Using Collaborative IoT Devices. In
Proceedings of the 1st on Reproducible Quality-Efficient Systems Tournament on
Co-designing Pareto-efficient Deep Learning (ReQuEST ’18). ACM, New York, NY,
USA, Article 4.

Ramyad Hadidi, Jiashen Cao, Fei Wu, Tushar Kirshna, Michael S. Ryoo, and
Hyesoon Kim. 2019. An Edge-Centric Scalable Intelligent Framework To Collab-
oratively Execute DNN. Demo for SysML Conference, Palo Alto, CA (2019).

Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.
In 4th International Conference on Learning Representations. ACM.
iRobot Inc. 2019. iRobot Create 2 Open Interface.
shop.adafruit.com/datasheets create_2_Open_Interface_Spec.pdf.
accessed 15/03/19].

iRobot Inc. 2019. iRobot Create 2 Programmable Robot. www.irobot.com/about-
irobot/stem/create-2. [Online; accessed 15/03/19].

Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. 2012.
Future Internet: The Internet of Things Architecture, Possible Applications and
Key Challenges. In FIT’12. IEEE, 257-260.

Urs Késter, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Con-
stable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof; et al. 2017. Flexpoint:
An adaptive numerical format for efficient training of deep neural networks. In
Advances in Neural Information Processing Systems (NIPS). 1742-1752.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classifi-
cation With Deep Convolutional Neural Networks. In 26th Annual Conference on
Neural Information Processing Systems (NIPS). ACM, 1097-1105.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

In Lee and Kyoochun Lee. 2015. The Internet of Things (IoT): Applications,
Investments, and Challenges for Enterprises. Business Horizons 58, 4 (2015),
431-440.

Hui Li and Xiaojiang Xing. 2015. Internet of things service architecture and
method for realizing internet of things service. US Patent 8,984,113.

Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a survey.
Information Systems Frontiers 17, 2 (2015), 243-259.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural pruning. In
Advances in Neural Information Processing Systems (NIPS). 2181-2191.

Huimin Lu, Yujie Li, Shenglin Mu, Dong Wang, Hyoungseop Kim, and Seiichi
Serikawa. 2018. Motor anomaly detection for unmanned aerial vehicles using
reinforcement learning. IEEE internet of things journal 5, 4 (2018), 2315-2322.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena.
2017. From perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. In 2017 ieee international conference on
robotics and automation (icra). IEEE, 1527-1533.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779-788.

Omer Berat Sezer, Erdogan Dogdu, and Ahmet Murat Ozbayoglu. 2018. Context-
aware computing, learning, and big data in internet of things: a survey. IEEE
Internet of Things Journal 5, 1 (2018), 1-27.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

Karen Simonyan and Andrew Zisserman. 2014. Two-Stream Convolutional
Networks for Action Recognition in Videos. In NIPS’14. ACM, 568-576.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations. ACM.

Arti Singh, Baskar Ganapathysubramanian, Asheesh Kumar Singh, and Soumik
Sarkar. 2016. Machine learning for high-throughput stress phenotyping in plants.
Trends in plant science 21, 2 (2016), 110-124.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the Speed
of Neural Networks on CPUs. In Proceeding Deep Learning and Unsupervised
Feature Learning NIPS Workshop, Vol. 1. ACM, 4.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074-2082.

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,
and Scott Mahlke. 2017. Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism. In 44th International Symposium on Computer Architecture
(ISCA). IEEE, 548-560.

www.cdn-
[Online;

https://www.tensorflow.org/
https://github.com/fchollet/keras
https://doi.org/10.1109/LRA.2018.2856261

	Abstract
	1 Introduction & Motivation
	2 Experiments
	2.1 Experimental Setup
	2.2 Energy & Performance
	2.3 Communication Latency
	2.4 Device Temperature

	3 Conclusion
	References

