FPL’19 Demo-Night Submission — Cover Page
Capella: Customizing Perception for Edge Devices
by Efficiently Allocating FPGAs to DNNs

Authors:
Younmin Bae, Georgia Institute of Technology, Atlanta, GA, USA
Ramyad Hadidi, Georgia Institute of Technology, Atlanta, GA, USA
Bahar Asgari, Georgia Institute of Technology, Atlanta, GA, USA
Jiashen Cao, Georgia Institute of Technology, Atlanta, GA, USA
Hyesoon Kim, Georgia Institute of Technology, Atlanta, GA, USA

Main Objectives and Relevance to FPL community:

This work seeks to achieve the following two objectives. First, we show the feasibility of implementing
large-scale DNN models on the limited resources of edge devices by using cost-efficient computation
engines. Second, we use novel edge-tailored models for distributing the DNNs across more-than-one
devices without paying for extra communication overhead. The open-source PYNQ™ and TVM
project assists us to implement Capella on Xilinx Zynq® systems on chips (SoCs). We have released
our implementation from DNN model definition and its training to FPGA code in our Github®. We
hope our effort in suggesting the implementation of systolic arrays on low-cost FPGAs for Edge
application would be appreciated by FPL community.

“https://github.com/parallel-ml/Capella-FPL19-SplitNetworksOnFPGA

The short biography of the presenter:

Hyesoon Kim is an associate professor in the School of Computer Science at the Georgia Institute
of Technology. Her research interests include high-performance, energy-efficient heterogeneous
architectures; interaction between programmers, compilers, and microarchitectures; and developing
tools to help parallel programming. Kim has a PhD in computer engineering from the University of
Texas at Austin. She is a member of IEEE and the ACM.

Logistical Requirements:

o Access to power outlet.
o Access to wired Ethernet connection (required for code demonstration on Github).
o Presenter brings:

— Two PYNQ boards.

— Network Switch



Capella: Customizing Perception for Edge Devices
by Efficiently Allocating FPGAs to DNNs

Ramyad Hadidi"
Georgia Tech

Younmin Bae
Georgia Tech

Abstract— Deep neural networks (DNNs) have seen resurgent
attraction to be implemented in edge applications. However,
such implementations are not easy to achieve because execution
of DNNs often require more resources than those provided by
individual edge devices. On the other hand, relying on model-
level distribution methods to implement a DNN on connected
edge devices leads to costly communication overheads. To utilize
available in-the-edge resources with less communication over-
head, we propose using edge-tailored models comprised of nearly-
independent narrow DNNs, the inference of which are accelerated
using small cost-efficient RISC-based engines. We implement
these engines on PYNQ™ boards as a platform that mimics the
limited resources of edge devices. We create the narrow DNNs
based on the available resources of PYNQ boards, and allocate
each narrow DNN to one engine, implemented in an FPGA.
We compare the communication overhead of our implantation
against the state-of-the-art model-level distribution methods.

Index Terms—Edge Computing, FPGA, DNN.

I. CUSTOMIZING PERCEPTION FOR EDGE DEVICES

To utilize the limited compute resources of edge devices
with very slight communication between them, this paper
customizes perception for edge devices [1], [2] by efficiently
allocating FPGAs to DNNs (Capella). To do so, we divide all
layers of the original model into n (n: number of devices)
equal parts but the pre-final layer. Then, nearly-independent
narrow DNNs are created by removing the connections be-
tween the branches. The new model needs to be retrained
to sustain accuracy. Since the extra connections are removed,
each branch has less than 1/n of original parameters. There-
fore, the memory and computation resources required by
each branch are less than those required by partitions created
by data- and model-parallelism methods. As an example,
Figure la illustrates splitting VGG-S into two branches. As
Figure 1b illustrates, Capella assigns the computations of a
branch to the FPGA of a PYNQ™ board. The computations

*All correspondence to rhadidi @gatech.edu.

(O Input/Output @Convolution @Maxpool @ Flatten @ Fully Connected
VGG-S split into

two branches: CK:

The implementation
on two PYNQ boards: !

The FPGA of PYNQ 1

The FPGA of PYNQ 2

Fig. 1. Splitting VGG-S into two narrow DNNs.

Bahar Asgari
Georgia Tech

Jiashen Cao
Georgia Tech

Hyesoon Kim
Georgia Tech

of the final layer are assigned to the ARM processor of one
of the PYNQ boards to reduce unnecessary data movements.
In this example, the two branches only need to communicate
to exchange their final partial results. Thus, the amount of
communication is comparable to the communication required
by partitions created by data parallelism and is much less
than that required by model parallelism. The ARM processors
handle the communication operations.

II. RISC-BASED ENGINE

The computations of each branch are implemented using a
RISC-based engine from TVM stack [3] on the FPGA of a
PYNQ board. After training the DNN model in MxNet, we
use TVM compiler to create RISC-based instructions to be
executed on the engine. The RISC-based instructions perform
the operations on tensor registers. Instructions get executed
in a general matrix-matrix multiplication (GEMM) core on
the processing engine for matrix operations by concurrently
processing data through buffers and queues. Data is partitioned
and tiled to increase the data-reuse rate and minimize accesses
to memory. Finally, the outputs are transferred to the main
memory to be processed by the ARM processor.

III. EXPERIMENTAL STUDIES

We explore the performance and energy efficiency of imple-
menting Capella on PYNQ boards by examining metrics of
inference-per-second and energy-per-inference. Our demo is
on ResNet-18 model trained on ImageNet dataset and split
in two. The outcome narrow and original models are then
launched to the PYNQ boards for evaluation. Our result for
ResNet-18 shows 2.4 x higher throughput for our edge-tailored
implementation. We also customize and train VGG16 and
AlexNet models on ImageNet dataset as further studies for
our edge-tailored models. Generally, we observe around 5%
accuracy loss for the split in two models with half of the
memory and computation footprint. We released our PYNQ
implementation with accompanying MxNet model on Github'.

REFERENCES

[1] R. Hadidi et al., “Distributed perception by collaborative robots,” IEEE
RA-L and IROS’18, vol. 3, Oct 2018.

[2] R. Hadidi et al., “An edge-centric scalable intelligent framework to
collaboratively execute dnn,” SysML’19 Demo, Palo Alto, CA, 2019.

[3] T. Chen et al.,, “Tvm: end-to-end optimization stack for deep learning,”
arXiv preprint arXiv:1802.04799, 2018.

Thttps://github.com/parallel-ml/Capella-FPL19-SplitNetworksOnFPGA



