Internet of Things Devices

» Internet of Things (loT) devices

Have access to an abundance of raw data
In home, work, or vehicle
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loT: Raw Data & Processing

» loT is gaining ground with the widespread of
Embedded processors

Ubiquitous wireless networks
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loT: DNN-based Processing

» With deep neural networks (DNNs):

With DNNs loTs can

Process several new data types and
Understand behaviors

Speech, vision, video, and text

» But, DNNSs are resource hungry

Cannot met real-time constraints on loT devices
Several DNNs cannot be executed on IoTs
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Approach 1: Offload to Cloud

» Send the request to cloud services

AWS Platform For loT Solutions
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Why Cloud is not Always a Solution

» Unreliable connections to the cloud
Plus low bandwidth and high latency

» Disconnected Devices

» Privacy

Privacy preserving learning (e.g., differential
orivacy)

Privacy preserving inference (e.g. homomorphic
encryption)

» Personalization
» Federated learning

ces®n  comparch



Approach 2: loT Collaboration

» Distribute computations

with collaboration

To meet demands of DNNs

On top of common DNN
techniques for constrained
devices (e.g., pruning)
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loT Collaboration Pros & Cons

» Assuming DNN performance barrier is solved with
collaboration among loT devices

Not Dependent on Unreliable
Cloud Latencies
Privacy Preserving Accuracy Drop due to
Enables Personalized Data Loss & Device
Insight Failure
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Unreliable Latencies

Challenges Impact

» Histogram of arrival times in 4-node system

performing AlexNet (model parallelism).
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Challenges Impact: Accuracy Drop

» Common to loose data parts due to
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» High Accuracy Drop
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Computation of DNNs

» Each layer’s computations can be represented as
matrix-matrix multiplication (GEMM kernels).

Fully-connected

layer:
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Conv.
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Computation Distribution of DNNs

» Methods distributing computation of a model*
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» Same can be applied on conv. layers*
Channel, spatial , and filter splitting

Hadidi, Ramyad, et al. "Collaborative Execution of Deep Neural Networks eorgia /7% h
on Internet of Things Devices." arXiv preprint arXiv:1901.02537 (2019). Tech !/ COITIpal‘C
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Coded Distributed Computing (CDC)

» Designed for MapReduce workloads (2018)*

» Preforming redundant or coded computer per node
to reduce communication.

L(r)
This work: DNINS on 10T

More Compute / Node

More Reliability

Communication Load

5 = T
Computation Load

* Li, Songze, et al. "A fundamental tradeoff between computation and communication in

distributed computing." IEEE Transactions on Information Theory 64.1 (2018): 109-128 Georgia ";;:;‘ com aI‘Ch
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Using CDC for Robustness

» Add column-wise summation of the weights:

w11 wi2 ’ ai
ay
w21 W22 ot | = a2
2
w11 + W21 W12 + W22 “ a; + as

» The new weights are constant, so done in offline
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» Distribute outputs among nodes
Thus, applicable only to output-splitting methods
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How to Distribute CDC and Recover?

»

» Add column-wise summation of the weights:

Simple example A/,Q‘\A [ vy ]x[ ]

(One Output/d eVice) O O O O Output Splitting for 4 nodes

IDIDY One Failure Tolerance

Recovery A//Q\
Subtraction vs. Multiplication O™0 [ X ]X[ ]

O“0O O 3535

. (0] Splitting f d
You also needs the weights, that £¥® =¥ w0 Fallures Tolerange.

you would not have in the final node

Multiple out/device: Just create a new weight matrix
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Straggler Mitigation & Failure Coverage
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Better Coverage versus with 2-modular redundancy (2MR):

=@=CDC+2MR =& =2MR
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