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Abstract

Multicore processors have been effective in scaling appli-
cation performance by dividing computation among multi-
ple threads running in parallel. However, application per-
formance does not necessarily improve as more cores are
added. Application performance can be limited due to mul-
tiple bottlenecks including contention for shared resources
such as caches and memory.

In this paper, we perform a scalability analysis of paral-
lel applications on a 64-threaded Intel Nehalem-EX based
system. We find that applications which scale well on small
number of cores, exhibit poor scalability on large number
of cores. Using hardware performance counters, we show
that many performance limited applications are limited by
memory bandwidth on manycore platforms and exhibit im-
proved scalability when provisioned with higher memory
bandwidth. By regulating the number of threads used and
applying dynamic voltage and frequency scaling for mem-
ory bandwidth limited benchmarks, significant energy sav-
ings can be achieved.

Categories and Subject Descriptors D.4.8 [Performance]:
Measurements

General Terms Performance, Measurement

Keywords Manycore, Scalability, Memory bandwidth

1. Introduction

The number of cores in modern processors are rapidly in-
creasing, and this trend is going to continue [3]. However,
application performance does not necessarily improve with
increasing core count. For example, Figure 1 shows the ex-
ecution time for SP (scalar pentadiagonal) benchmark from
NAS parallel benchmark (NPB) suite [6] for different num-
ber of threads. As we see from the figure that execution time
of SP first decreases and then starts to increase with more
number of threads.

The performance of multi-threaded applications on many-
core processors can be limited due to multiple factors. These
bottlenecks could be due to the application structure (e.g.,
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Figure 1. Performance of SP (Scalar Pentadiagonal) bench-
mark degrades with large number of cores

serial fractions, critical sections) or due to contention for
shared architectural resources (e.g., cache, memory). Previ-
ous work has shown that many parallel applications can be
performance limited by available memory bandwidth [11].
For such applications, once memory bandwidth is saturated,
any additional threads spend their time waiting for memory
accesses rather than computing. These additional cores can
actually deteriorate performance due to queuing delays in
memory controllers.

In this paper, we perform a scalability analysis of parallel
applications on a 64-threaded Intel Nehalem-EX server. Our
evaluation platform consists of four eight-core Nehalem-
EX processors with 64GB DDR3 RAM. With the help of
hardware performance counters used for profiling, we show
that the performance of many performance limited appli-
cations is indeed limited by memory bandwidth. We verify
these bandwidth limitations by varying the number of mem-
ory riser cards used to plug memory in, and, thus varying
the available memory bandwidth. Experimental results show
that by increasing the memory bandwidth, applications ex-
hibit performance improvement of upto 53%.

Such memory bandwidth limited applications present
two opportunities for energy savings. First, by using fewer
threads than number of cores and second, by applying dy-



namic voltage and frequency scaling. Our experimental re-
sults show that memory bandwidth limited applications can
save upto 59% energy using optimal number of threads and
upto 17% energy using DVFS.

The main contributions of this paper are as follows.

* We demonstrate memory bandwidth limitations by vary-
ing actual memory bandwidth in a real system that can
run 64 threads.

® We demonstrate and measure two energy saving options
for memory bandwidth limited benchmarks.

2. Bandwidth Measurement and Analysis

In this section, we describe our methodology to analyze the
memory access behavior of parallel applications.

2.1 Measurement Method

For detecting memory bandwidth consumed by an applica-
tion, we use hardware performance counters. Specifically,
we use offcore_response_0 counter ! available on Intel Ne-
halem processor [1] to count total memory accesses by a
single-threaded run of the application. This counter mea-
sures all the requests that are serviced by the memory sub-
system.

Why not LLC-miss counters?

Last level cache (LLC) misses are often used to measure
the memory intensity of an application. However, it does not
provide the correct measure of application’s memory band-
width requirement since it only counts on-demand read/write
requests which do not hit in the L3 cache. It does not mea-
sure the requests sent to the memory subsystem by hard-
ware prefetchers which also compete for memory band-
width. Therefore, use use offcore_response_0 counter which
allows us to measure all the requests including prefetches
that go to memory.

2.2 Predicting Bandwidth Saturation Point

The behavior of memory bandwidth limited applications can
be modeled using Equation 1 [11]:

Tl BW total
T, = — wh = ——= 1
— where ' = o v (1)

BWihread = of fecore_response 0 x cache_line_size (2)

Here T, represents application’s execution time with n
threads and n’ denotes the number of threads which sat-
urate memory bandwidth. n’ is calculated by diving total
available memory bandwidth BW,,,; by bandwidth con-
sumed by a single thread BWyj,cqq- We obtain BWyia:
experimentally and BWy,,cqq by multiplying cache line
size with total number of memory requests measured using
performance counters as shown in Equation 2. Application

' We use any_request and local_dram masks with the counter.

performance scales linearly until it saturates available band-
width (n threads). After this point, any increase in number
of threads does not result in performance gain. Therefore,
we use Equation 1 to predict the optimal number of threads
(n”) for execution.
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Figure 2. Modeling performance of memory bandwidth
limited applications using hardware performance counters

To verify the applicability of Equation 1, we use a mul-
tithreaded microbenchmark where each thread sequentially
accesses (read or write) a large local array. Figure 2 shows
the modeled and measured performance of read and write
microbenchmarks as a function of number of threads. We
can see from the figure that Equation 1 captures the exper-
imental behavior closely. The difference between the mea-
sured and modeled values is due to queuing delays in mem-
ory controllers under high contention. We also note that read
and write benchmarks show significantly different behavior.
This is due to the fact each memory write operation causes
two memory accesses, first to fetch data into the cache and
then second, to write modified data back into memory during
write-back. This effectively doubles the bandwidth require-
ment.

3. Evaluation & Analysis

In this section, we present our experimental results for a
scalability analysis of real world parallel applications. Our
evaluation platform is a 64-threaded server consisting of
four eight-core Intel Nehalem-EX processors with 64GB of
DDR3 RAM (system architecture is shown in Figure 3 and
configuration details are provided in Table 1). Processors ac-
cess memory using a memory riser card interface which pro-
vides a read bandwidth of 10GBps. By varying the number
of riser cards used, we can vary the total amount of mem-
ory bandwidth available. All the energy results presented are
measured using Wattsup power meter. Our system has idle
power consumption of 484W. We use OpenMP implementa-
tion of NAS Parallel Benchmarks (NPB) [6] for our evalua-
tion. Input size for all the benchmarks except IS is class C.
For IS, we use class D since class C experiments run for a
very short period.
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Figure 4. Scalability curve for NPB applications (x-axis = threads (1-32), y-axis = normalized performance (higher is better)).
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Figure 3. Architecture of our evaluation system

3.1 Performance Analysis
3.1.1 Single Riser Card

We first present results for the configuration when only one
memory riser card is used. We run each benchmark by vary-
ing the number of threads from zero to 32 in multiples of
four. Table 2 shows the number of threads for each appli-
cation which provides the maximum performance. The ta-
ble also contains results for the number of threads which
minimize energy consumption. As we can see, different ap-
plications show peak performance with different number of
threads. EP (embarrassingly parallel) benchmark scales well
to 32 threads, while MG and SP do not scale beyond 8 cores.

Processor Nehalem-EX
H/W threads 64
Cores 32
Cores per socket 8
CPU Frequency 2.26GHz
LLC size 24MB
Memory 64GB DDR3
DIMMs 8
Memory riser cards 1-4

Table 1. Configuration of the evaluation platform

Figure 4 shows resultant scalability curves for each applica-
tion.

No. of Threads
Max. Min.
Performance | Energy
BT 32 16
CG 12 12
EP 32 32
FT 20 16
IS 20 16
LU 24 16
MG 8 8
Sp 8 8
UA 12 8

Table 2. Optimal number of threads for maximum perfor-
mance and minimum energy

We use Equation 1 and 2 to predict the optimal number of
threads (n”) for each application. Table 3 shows the predicted



number of threads along with memory bandwidth consumed
by each NPB application. The bandwidth is measured using
hardware performance counters as described in the previous
section. From a comparison of this predicted value with the
measured thread count (maximum performance column) in
Table 2, we observe that the prediction method provides
close results for all the other benchmarks except FT and IS.

H/W Counter Mem. B/'W Predicted
(mem access/sec) (GBps) Threads (n')

BT 3668970 0.23 42
CG 10178300 0.65 15
EP 0.0786434 ~0 64
FT 2718470 0.17 57

1S 4964500 0.31 31
LU 6883500 0.44 22
MG 19362500 1.2 8

SP 13861000 0.88 11
UA 11922700 0.76 13

Table 3. Memory bandwidth consumed by a single-
threaded run measured using performance counters and pre-
dicted optimal number of threads.

FT (fast fourier transform) and IS (integer sort) bench-
marks show poor scalability in experiments, while predic-
tion results show them to be highly scalable. This behavior
can be explained as follows: The model in Equation 1 as-
sumes that applications have a uniform memory access pat-
tern. However, this is not true for FT and IS which have
periodic peaks of memory accesses followed by durations
of low memory accesses. Only these peaks saturate mem-
ory bandwidth and are not scalable, while the other parts of
the computation are scalable. Therefore, a prediction that is
based upon average memory bandwidth consumption will
provide an incorrect prediction. For correct estimation, the
prediction method needs to take these phases into account
for applications with large differences in their memory ac-
cess frequency over time. We plan to explore this as part of
our future work.

3.1.2 Multiple Riser Cards

To further explore the impact of memory bandwidth on
these benchmarks, we distribute the memory in our system
across four riser cards and, thus, effectively quadruple the to-
tal memory bandwidth and perform the experiments again.
With two or three riser card configurations, our system be-
comes asymmetric in terms of mapping from quad-socket
CPU cores to two or three memory nodes. Therefore, we
only report results with four riser cards.

Figure 5 shows the resultant performance improvement
for this configuration. As we see from the figure, all the ap-
plications except EP show high performance improvement
with four riser cards. EP (embarrassingly parallel) does not
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Figure 5. Performance improvement due to increase in
memory bandwidth by using multiple memory riser cards.
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Figure 6. Improved scalability in FT due to high memory
bandwidth (higher is better).

exercise memory subsystem and does not show any perfor-
mance improvement with four riser cards. Table 4 lists the
corresponding optimal number of threads for maximum per-
formance with one and four riser card configurations. Many
applications show improved scalability upto 28-32 threads
with four riser cards. For example, Figure 6 shows a com-
parison of the scalability behavior of FT with two configu-
rations. With four riser cards, FT performance scales to 28
threads which was scalable to only 20 threads with one riser
card.

No. of Threads
One Four
Riser Card | Riser Cards

BT 32 32
CG 12 24
EP 32 32
FT 20 28
IS 20 28

LU 24 32
MG 8 28
SP 8 12

UA 12 32

Table 4. Applications show better scalability when memory
bandwidth bottleneck is removed by using four riser cards.



3.1.3 PARSEC Evaluation

We perform a similar scalability experiment with PARSEC
parallel benchmarks [2] as well. Figure 7 reports perfor-
mance gains of using four riser cards over over one riser
card. Unlike NPB, PARSEC benchmarks show smaller per-
formance gains which implies that these applications are
not limited by memory bandwidth. Some applications even
show worse performance with four riser cards. This behav-
ior is due to NUMA nature of the platform with four riser
cards and resultant NUMA latency penalty caused by data
sharing and periodic load balancing performed by the linux
scheduler.

% Performance Gains

Figure 7. PARSEC benchmarks are not limited by memory
bandwidth as they show little performance gain with multi-
ple memory riser cards.

3.2 Energy Analysis

In this section, we discuss two opportunities to reduce the
energy consumption of memory bandwidth limited applica-
tions and show experimental results.
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Figure 8. Energy savings using fewer threads than cores

3.2.1 Regulating Number of Threads

Parallel applications do not benefit from any additional
threads once memory bandwidth is saturated. However,
these additional threads add to the power consumption. By
regulating the number of threads used to run an applica-
tion, its power consumption can be reduced. Figure 8 shows
energy savings for all the NPB applications that can be
achieved by using optimal number of threads as compared to
running an application with as many threads as CPU cores.

The reported results correspond to the number of threads
shown for minimum energy in Table 2.
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Figure 9. Voltage scaling does not impact performance
when performance is memory bandwidth limited.

3.2.2 Dynamic Voltage and Frequency Scaling

% Energy Savings
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Figure 10. Energy savings by applying DVFS to memory
bandwidth limited benchmarks (with 32 threads).

An application limited by memory bandwidth spends
most of its time waiting for memory accesses. Therefore,
dynamic voltage and frequency scaling (DVFS) can be used
to reduce application’s power consumption with minimal
performance degradation. For example, Figure 9 shows the
effect of DVFS on the performance CG benchmark. We can
see from the figure that DVFS has minimal impact on its
performance after 12 threads which saturate memory band-
width. Figure 10 shows corresponding energy savings of
DVEFS, i.e., running all the cores at a frequency of 1.06GHz.
BT and IS show negative energy savings since DVFS de-
grades their performance severely, resulting into higher en-
ergy consumption. The figure also contains results for a sys-
tem configuration with idle power of 200W.

Since our system has high idle power (484W) due to re-
dundant fans, power supplies and other components, this idle
power component dominates the overall server power con-
sumption which makes energy saving techniques described
above less effective. A system with a lower idle power will
benefit more from these techniques. Also, the optimal op-
erating point (i.e., number of threads and CPU frequency)
for minimum energy consumption is dependent on this idle
power component. A lower idle power component will allow
aggressive idling and scaling techniques to be applied.



Table 5 shows a comparison of the optimal thread count
for NPB applications at two different CPU frequencies. With
a lower frequency, many applications show better scalability
since CPUs at a lower frequency generate memory requests
with slower speed and allow more threads to run together be-
fore saturating memory bandwidth. In this sense, application
of DVFS provides an interesting tradeoff for the optimal ex-
ecution point in the threads and frequency space. Some ap-
plications may benefit from a higher frequency with fewer
threads, while others may benefit from a lower frequency
with higher number of threads. We would like to explore this
tradeoff as part of our future work.

No. of Threads
2.26Hz | 1.06GHz

BT 32 32
CG 12 12
EP 32 32
FT 20 24

IS 20 24
LU 24 28
MG 8 8
SP 8 12
UA 12 20

Table 5. Optimal number of threads increase for many ap-
plications at a lower frequency.

4. Related Work

Substantial previous work has analyzed the sources of poor
scalability in parallel applications. Researchers have used
performance-counters to identify multicore bottlenecks and
optimize applications [4]. Further, it has been shown that
current DRAM technologies will become a performance bot-
tlenecks for scientific applications on manycore processors
[9]. Liu et al. performed an analysis of memory intensity
of parallel applications on a quadcore platform [8]. In com-
parison, our experimental results are based on a large 64-
threaded Intel Nehalem-EX server. Previous work has also
proposed running parallel applications with fewer threads
than cores to achieve maximum performance or minimum
energy. Suleman et al. use compiler techniques to find the
optimum number of threads for the application [11]. Other
approaches run the application with different number of
threads to dynamically determine the appropriate number
of threads [5, 10]. Our results also support their conclusions
stressing the importance of regulating the number of threads
used for multi-threaded applications.

5. Conclusions & Future Work

In this paper, we performed a scalability analysis of paral-
lel applications on a 64-threaded Intel Nehalem-EX based

server. Using hardware performance counters to detect mem-
ory subsystem bottlenecks, we showed that many perfor-
mance limited applications are limited by memory band-
width. When provisioned with higher memory bandwidth by
increasing the number of riser cards, applications show bet-
ter scalability and performance improvements of upto 53%.
We also discussed two opportunities to reduce the energy
consumption of memory bandwidth limited application. By
regulating the number of threads for execution, upto 59% en-
ergy savings and by applying dynamic voltage and frequency
scaling upto 17% energy savings can be achieved.

As part of future work, we plan to extend our scalabil-
ity analysis to other class of applications which may have
bottlenecks due to shared data structures or shared resources
like caches. We would also like to work on building mod-
els to predict the performance of application performance in
these scenarios.
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