
Effect of Instruction Fetch and Memory Scheduling on GPU Performance

Nagesh B. Lakshminarayana Hyesoon Kim

School of Computer Science

Georgia Institute of Technology

{nagesh.bl, hyesoon.kim}@gatech.edu

Abstract
GPUs are massively multithreaded architectures designed to ex-

ploit data level parallelism in applications. Instruction fetch and

memory system are two key components in the design of a GPU. In

this paper we study the effect of fetch policy and memory system on
the performance of a GPU kernel. We vary the fetch and memory

scheduling policies and analyze the performance of GPU kernels.

As part of our analysis we categorize applications as symmet-

ric and asymmetric based on the instruction lengths of warps. Our
analysis shows that for symmetric applications, fairness based fetch

and DRAM policies can improve performance. However, asymmet-

ric applications require more sophisticated policies.

1. Introduction
Modern GPUs are designed for throughput computing.

They take advantage of the data parallelism available in ap-

plications by executing a large number of threads in paral-

lel. Modern GPUs support concurrent execution of 1000s of
threads, which results in high Gflop/s. To take advantage of

this high computation power, using GPUs for compute inten-
sive applications (GPGPU [10]) is very popular.

GPUs contain multiple Multithreaded processors called

Streaming Multiprocessors (SMs). The SMs execute the

threads in a GPU kernel in Single Instruction Multiple Thread
(SIMT) fashion. SIMT is a form of SIMD execution where

the same instruction is fetched and executed for a group of

threads. Each thread in the group operates on its own data
item. In an SM, threads are grouped into units called Warps

and are executed together. A Warp is a group of n threads

(in the Tesla architecture [8] on which our GPU simulations
are based, n is 32) and represents the basic unit of execution

in a GPU. Each SM can typically support several warps at the

same time. Thus, each SM could be executing 100s of threads
in a MT fashion. Whenever threads are being executed to-

gether, the question of resource sharing arises. Even in GPUs,
resource allocation is an important problem.

In any multithreaded (MT) architecture, one way to implic-

itly control the resources allocated to each thread is via instruc-

tion fetch. The fetch policy allows direct control of progress
made by a thread. By fetching more instructions for a thread,

the thread can be made to execute faster than other threads in

the system. In an SM, since threads are grouped and executed
together as warps, fetch policy can be used to control the re-

source allocated to each warp. Ideally, the fetch policy should

be aware of the progressmade by eachwarp assigned to an SM
and should assignmore resources towarps that are lagging be-

hind. In case of applications with asymmetric threads/warps,

the fetch policy should also be aware of how much more a
thread has to execute, the program structure and also the na-

ture of the pending instructions.

Since each SM can execute several warps together, during

the execution of a kernel each SM could be executing 100s of

threads in a MT fashion. These 100s of threads place more se-
vere demands on the memory system than a multi-threaded

application executing on a conventional multi-core CPU. GPU

applications try to reduce the pressure on the memory sys-
tem by having high arithmetic intensity, making use of shared

memory and by having as many coalesced memory accesses

as possible. GPU applications also try to hide memory ac-
cess latency by having a large number of threads execute con-

currently. In spite of these optimizations and mechanisms,

the memory system and in particular, the memory (DRAM)
scheduling policy is crucial to the performance of a GPU ker-

nel.1

In this paper, we study the effect of the two key aspects ex-

plained above - instruction fetch and DRAM scheduling. As

part of our study, we classify applications into symmetric and
asymmetric based on the lengths of the warps in an appli-

cation. Our analyses yield the results that fairness oriented

fetch and DRAM scheduling policies can improve the perfor-
mance of symmetric applications, while the best mechanism

for asymmetric applications varies from application to appli-

cation.

2. Background on GPUs
In this section, we describe our baseline GPU architecture,

especially instruction fetch and thememory system. Our base-

line is based onNVIDIA Tesla architecture used in the GeForce

8-series GPUs [2, 8, 11]. We also compare GPUs with more
familiar Multithreaded (MT) or Simultaneous Multithreaded

(SMT) processors. Our programming model is based on the
CUDA [14] programming language.

2.1. Baseline GPU Architecture
AGPU consists of several StreamingMultiprocessors (SMs)

which are connected to a common memory module called the
device memory. Modern GPUs such as NVIDIA’s GTX280 [7]

typically have about 8-32 SMs. Each SM, usually consists of

about 8 Scalar Processors (SPs). Each SP is a light-weight in-
order processor and shares a common instruction fetch unit

with other SPs in the same SM. The instruction fetch unit

fetches a common, single instruction that will be executed by
all the SPs at the same time. This forms the basis of SIMT exe-

cution. Each SM also has a cache called SharedMemory that is

shared all SPs in the SM. The SharedMemory provides fast ac-
cess to data that is shared between threads of the same block.

1the terms kernel, benchmark and application will be used inter-
changeably

1

Global data and data local to each thread is uncached and is

stored in the device memory.

2.2. Instruction Fetch
In an SM, only one instruction is fetched every fetch cycle

for a warp selected in a round robin fashion from among the

warps currently running on the SM. Warps that are blocked at

a barrier, are waiting for loads/stores to complete, or are wait-
ing for a branch to be resolved are not considered for fetching.

All fetched instructions are placed in a common issue queue

from where they are dispatched for execution. Most instruc-
tions takes 4 cycles, some instructions take 8 cycles, and a few

take more than 8 cycles.

In spite of supporting multiple hardware threads, all of

MT [4], SMT [19] and SM employ a single fetch unit. How-
ever, the behavior of the fetch unit is different in each archi-

tecture. In MT, multiple instructions are fetched for the same

thread in each cycle. In SMT, multiple instructions are fetched
for multiple threads in the same cycle, and in an SIMT, a sin-

gle common instruction is fetched for multiple threads. The

fetch unit is critical to the performance of each architecture.
MT and SMT fetch policies try to fetch ”high quality” instruc-

tions [18, 13] into the pipeline. High quality instructions could

be instructions from threads with least number of unresolved
branches, or from threads with least number of instructions

in the pipeline. The goals of these policies is to fetch instruc-
tions that have high probability of being executed or fetch in-

structions from threads that will not clog the pipeline. Their

bottomline is to share the pipeline resources between different
hardware threads as efficiently as possible. Fetch in SMs is dif-

ferent, since each thread gets its own pipeline, the fetch policy

does not have to worry about sharing of functional units or
other pipeline structures between the threads. The fetch pol-

icy tries to increase throughput by fetching from a different

ready warp every fetch cycle.

2.3. Memory System
Each SM has access to a hierarchy of memories. In addi-

tion to the device memory, an SM can access registers, shared

memory, constant cache and texture cache. All except the de-
vice memory, are located within the SM and thus have very

short access latencies. Access to device memory takes 100s of

cycles. Memory requests from a warp are handled together.
When memory requests from the threads of a warp are se-

quential,2 the memory requests can be combined into fewer

transactions. These kind of accesses are called coalesced mem-
ory accesses. However, if the memory addresses are scattered,

each memory request generates a separate transaction, called

uncoalesced memory accesses.

2.3.1. Merging of Memory Requests In addition to coa-
lescing, multiple memory requests can be combined into fewer

number of memory transactions at various levels in hardware.
Figure 1 shows the levels at which merging of memory re-

quests can happen in a GPU. Requests from different SPs in-

side an SM are held in the Memory Request Queue in the

2The CUDA manual [15] provides detailed algorithms to identify
types of coalesced/uncoalesced memory accesses

SM. Subsequent requests that overlap with requests already

present in the Memory Request Queue are merged with exist-
ing requests. This represents intra-core merging. Requests from

different SMs are accumulated in the Memory Request Buffer

in the DRAM controller. If a core makes a request that overlaps
with a request already in the Memory Request Buffer, then the

new request is merged with the old request. This is an exam-

ple of inter-core merging.

Core 1

Req 1: addr A

Req 3: addr C

Req 2: addr B
Req 4: addr A

Mem Request QueueStream
Processors

Core

Req 1: addr A

Req 3: addr C

Req 2: addr B
Req 4: addr A

Mem Request buffer

Core 2

Core 3 Memory controller

(b)(a)

Figure 1. Request mering (a) intra-core merging (b) inter-c ore

merging

We evaluate several fetch and memory scheduling policies,
below is a brief description of the evaluated policies. All oracle

based polices (ALL, BAR, MEM BAR, FRFAIR and REMINST)

are new polices that we introduce in this study.

2.4. Fetch Policies
1. Round Robin (RR) - RR is the fetch policy that is used
in current GPUs. Instructions are fetched for warps in

a round robin manner. When sufficient number of blocks

are assigned to an SM, RR ensures that SMs are kept busy
without wasting cycles waiting for memory accesses to

complete.

2. ICOUNT - This is the ICOUNT policy proposed by

Tullsen et al. [18] for SMT processors. For each warp,
the number of fetched, but undispatched instructions is

tracked. In the next fetch cycle, an instruction is fetched

for the warp with the fewest number of undispatched in-
structions. ICOUNT policy tries to increase the through-

put of the system by giving higher priority to faster exe-

cuting threads.

3. Least Recently Fetched (LRF) - In the next fetch cycle,

LRF policy fetches an instruction for the warp for which
instructions have not been fetched for the longest time.

LRF policy tries to ensure that starvation of warps does

not occur.

4. Fair (FAIR) - Fair ensures that instructions are fetched for
warps in a strictly fair manner. In the next fetch cycle

an instruction is fetched for the warp for which the min-

imum number of instructions have been fetched. This
policy ensures that all warps progress in a uniform man-

ner, this increases the probability of merging of memory

requests if warps are accessing overlapping regions in
memory or regions that are close to each other.

5. Oracle-All (ALL) - This is the first of the three ora-
cle based fetch policies used. In the next fetch cycle,

the Oracle-All policy fetches an instruction for the warp

which has the most instructions remaining for its com-
pletion. Oracle-All gives higher priority to longer warps

and tries to ensure that all warps finish at the same time.

When the application is symmetric, Oracle-All behaves
similar to FAIR. Figure 2 shows the kernel structures for

which the different oracle based policies are designed.

Longer columns represent longer warps. For the warps
shown in Figure 2(a), Oracle-All prioritizes warp-0 over

other warps since it is the longest warp.

Figure 2. Kernel structures for which different Fetch polic ies are

designed

6. Oracle-Bar (BAR) - The Oracle-Bar policy fetches an in-

struction for the warp which has the most instructions

remaining to its next barrier. If all barriers have been
crossed or if the application has no barriers, then the in-

structions remaining for the completion of the warp are

considered. The idea of BAR policy is giving more re-
sources to warps that have the most work before the next

barrier. This could reduce the average time for which

warps have to wait at barriers for other warps to reach
the barrier and thus improve the performance. The BAR

policy is designed for applications with warps as shown

in Figure 2(b). Since warp-0 has to execute more than the
other warps to reach the barrier, BAR gives it higher pri-

ority over other warps.

7. Oracle-Mem Bar (MEM BAR) - The Oracle-Mem Bar

policy is similar to the Oracle-Bar policy but gives higher
priority to warps which have more memory instruc-

tions remaining to the next barrier (or completion). If
warps have the same number of memory instructions

then MEM BAR behaves identical to BAR. The idea be-

hind MEM BAR is similar to that of the BAR policy, to
reduce the waiting time of warps at barriers. In Fig-

ure 2(c), MEM BAR prioritizes warp-0 and warp-2 since

they have more memory instructions until the next bar-
rier compared to warp-1 and warp-3.

2.5. DRAM Scheduling policies
1. First-Come First-Serve (FCFS) - Memory requests are
served in the order they arrive, in a First-Come First-

Serve manner.

2. First-Ready First-Come First-Serve [16] (FRFCFS) - FR-

FCFS gives higher priority to row buffer hits. In case of
multiple potential row buffer hits (or no row buffer hits),

requests are served in a First-Come First-Serve manner.

3. First-Ready Fair (FRFAIR) - FRFAIR is similar to FRFCFS,

except that in case of multiple potential row buffer hits
(or no row buffer hits), request from the warp which has

retired the fewest instructions is served. FRFAIR tries to

ensure uniform progress of warps while continuing to
take advantage of row buffer hits. This policy is more

suitable for symmetric applications than asymmetric ap-
plications.

4. First-Ready Remaining Instructions (REMINST) - Like

FRFCFS and FRFAIR, REMINST also gives higher prior-
ity to row buffer hits. But, in the case of multiple poten-

tial row buffer hits (or no row buffer hits), request from

the warp which has themost instructions remaining to its
completion is served. REMINST gives priority to warps

which have longer execution remaining, this ensures that

all warps finish at the same time.

Many of the fetch and DRAM scheduling policies ex-

plained above try to either ensure that all warps progress uni-

formly or all warps terminate at the same time. The benefits of
doing this are several. This ensures that the occupancy of the

SM remains high and also ensures that when one warp blocks

(on a load, for example), other ready warps from which in-
structions can be scheduled are available. Also, if threads are

accessing overlapping or neighboring memory regions, this

increases the chances of both intra-core and inter-core merg-
ing of memory requests.

3. Experimental Setup
3.1. Simulator
We use an in-house cycle accurate, trace-driven simula-

tor for our simulations. The inputs to the simulator are

traces of GPU applications generated using the recently re-

leased GPUOcelot [12], a binary translator framework for PTX.
The GPUOcelot framework provides libraries for emulation of

GPU (CUDA) applications. It also allows a trace generator

to be attached to GPU applications when they are emulated.
We generate per-warp traces instead of per-thread traces since

in a GPU, threads are scheduled at warp granularity and not
at block/thread granularity. Any divergence exhibited by the

threads in a warp is captured in the generated traces.

Table 1 shows the baseline processor/SM configuration
used in our simulations.

3.2. Benchmarks
Table 2 shows the benchmarks used in our evaluations and

the characteristics of the benchmarks. The first column con-
tains the benchmark names with the kernel names included

in parenthesis. Also included in the table are the average

and standard deviation of the number of instructions in each
warp (avg/std dev of inst.) and the ratio of the length of the

longest warp in the kernel to the length of the shortest warp

(max/min) in the kernel. Arithmetic intensity shown in the
table is the number of non-memory instructions per memory

instruction. We use benchmarks from the CUDA SDK 2.2 [1]

and the Parboil [3] and Rodinia [6] benchmark suites in our
experiments.

Table 1. Baseline processor configuration
Number of cores 8
Front End Fetch width : 1 instruction, 1KB I-cache, stall on branch, 5 cycle decode
Instruction Fetch RR (base)
Execution Core 8-wide SIMD execution unit, in-order scheduling

all instructions have 4-cycle latency except for FP-DIV (32-cycle), FP-Mul (8-cycle)
64KB software manged cache (1 cycle latency), 8 load accesses per cycle

On-chip Caches 1-cycle latency constant cache, 8 load accesses per cycle
1-cycle latency texture cache, 8 load accesses per cycle
2KB row buffer size; DRAM open/close/conflict=70/100/140 cpu cycle; 8 DRAM banks;

Buses and Memory 32B-wide, split-transaction core-to-memory bus at 2.5:1 frequency ratio;
maximum 128 outstanding misses per bank;
bank conflicts, bandwidth, and queuing delays faithfully modeled

Memory scheduling FRFCFS (base)

Classification based on Warp length: Based on instruction
count of the individual warps, benchmarks are classified as ei-

ther symmetric or asymmetric. Benchmarks with a max-warp

length to min-warp length ratio of about 1.02 i.e., 2% diver-
gence, are classified as symmetric. The category of each bench-

mark based on this classification is shown in Table 2.

4. Results
In this section we simulate our benchmarks using different

fetch and DRAM scheduling policies. In our evaluations, we

group applications into symmetric and asymmetric based on
data in Table 2. This helps us understand the nature of differ-

ent types of applications. Within each group of applications,

we roughly order applications in the increasing order of mem-
ory boundedness.

For all experiments, unless otherwise stated, the combina-

tion of RR fetch + FRFCFS DRAM scheduling is used as the
baseline. The execution time is the total execution time of a

kernel (i.e. the time taken to execute all blocks of a kernel

using all cores). Section 4.2 onwards we present data using
FRFCFS DRAM scheduling only.

4.1. Effect of Different Fetch Policies
4.1.1. Symmetric Applications Figure 3 shows the per-
formance of symmetric applications using different fetch poli-
cies with the FRFCFS DRAM scheduling policy. From the

figure we see that all policies other than ICOUNT provide a
performance improvement of about 3-6% on average. Only

3 benchmarks - SimpleGL, BlackScholes, MonteCarlo - show

significant performance improvement. Since all benchmarks
are symmetric, even ALL makes threads progress uniformly,

similar to FAIR and also gives performance similar to FAIR.

For applicationswithout barriers (onlyNBody, MatrixMul and
MonteCarlo have barriers among symmetric applications),

BAR is identical to ALL. In general, since all benchmarks are

symmetric, in addition to FAIR, even ALL, BAR, MEM BAR
make threads progress uniformly.

The experiment for Figure 4 is identical to the experi-

ment for Figure 3, except that Figure 4 uses FCFS for DRAM
scheduling instead of FRFCFS. On average, none of the com-

binations using FCFS provide any performance improvement

over FRFCFS based policies. Most of the memory intensive
benchmarks (BlackScholes onwards, from left to right) show

performance degradation with FCFS. It is because FRFCFS

performs significantly better than FCFS and none of the fetch
polices can offset the performance degradation due to FCFS.

-30

-20

-10

0

10

20

30

40

50

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

AVG

Figure 3. Performance of Symmetric applications with diffe rent

fetch policies and FRFCFS DRAM scheduling

-30

-20

-10

0

10

20

30

40

50

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

AVG

Figure 4. Performance of Symmetric applications with diffe rent

fetch policies and FCFS DRAM scheduling (baseline: RR + FR-

FCFS)

Results for experiments with FRFAIR and REMINST are
shown in Figure 6 and Figure 7, respectively. Compute in-

tensive benchmarks (GICOV kernel from Leukocyte, cp, mri-

q, mri-fhd) do not show any performance improvement even
with different DRAM policies. However, memory intensive

benchmarks show considerable improvement with FRFAIR

and REMINST policies. These policies like FRFCFS give prior-
ity to row buffer hits. In addition, FRFAIR tries to ensure that

threads progress in a uniform manner. This tends to further

improve performance of symmetric applications by increasing
merging (discussed shortly) and row buffer hits. Since the ap-

plications are symmmetric, REMINST behaves similar to FR-

FAIR and provides similar benefits.

Next, let’s look at why some applications show perfor-
mance improvement for certain policy combinations. Sim-

Table 2. Benchmarks Characteristics(Arith. Int: Arithmet ic Intensity)

Name origin # blocks x #warps per block avg/std dev of inst. max/min sym? Arith. Int.

MonteCarlo (MonteCarloOneBlockPerOption) SDK 2.2 256 x 8 15468 / 24 1.005 symmetric 14.1
MersenneTwister (BoxMullerGPU) SDK 2.2 32 x 4 58638 / 0 1.000 symmetric 4.0
Nbody (integrateBodies) SDK 2.2 32 x 8 153910 / 0 1.000 symmetric 3460.1
BlackScholes (BlackScholesGPU) SDK 2.2 480 x 4 6348 / 30 1.015 symmetric 18.1
MatrixMul (matrixMul) SDK 2.2 40 x 8 299 / 0 1.000 symmetric 19.3
BinomialOptions (binomialOptionsKernel) SDK 2.2 64 x 8 161192 / 5835 1.109 asymmetric 273.5
ConvolutionSeparable (convolutionColumnGPU) SDK 2.2 96 x 4 475 / 72 1.618 asymmetric 16.8
Dxtc (compress) SDK 2.2 64 x 2 10042 / 1330 1.333 asymmetric 287.1
PostProcessGL (cudaProcess) SDK 2.2 1024 x 8 889 / 38 1.206 asymmetric 31.6
ScalarProd (scalarProdGPU) SDK 2.2 128 x 8 869 / 105 1.405 asymmetric 12.1
DwtHaar1D (dwtHaar1D) SDK 2.2 256 x 16 393 / 280 6.348 asymmetric 22.6
Histogram256 (mergeHistogram256Kernel) SDK 2.2 256 x 2 130 / 30 1.590 asymmetric 42.0
Eigenvalues (bisectKernelLarge MultInterval) SDK 2.2 23 x 8 535383 / 345873 183.223 asymmetric 931.8
SimpleGL (kernel) SDK 2.2 1024 x 2 74 / 0 1.000 symmetric 7.6
VolumeRender (d render) SDK 2.2 1024 x 8 2642 / 3491 80.743 asymmetric 694.0
mri-fhd (ComputeFH GPU) Parboil 128 x 8 12073 / 0 1.000 symmetric 861.4
mri-q (ComputeQ GPU) Parboil 128 x 8 18983 / 0 1.000 symmetric 1354.9
cp (cenergy) Parboil 256 x 4 168087 / 0 1.000 symmetric 8844.8
pns (PetrinetKernel) Parboil 18 x 8 338250 / 3909 1.037 asymmetric 20.5
leukocyte (GICOV kernel) Rodinia 596 x 6 52755 / 5 1.001 symmetric 17585.0
leukocyte (dilate kernel) Rodinia 796 x 6 19528 / 533 1.334 asymmetric 3252.5
leukocyte (MGVF kernel) Rodinia 36 x 10 193 / 26 1.489 asymmetric 26.6
cell (evolve) Rodinia 216 x 16 970 / 632 10.490 asymmetric 45.9
needle gpu (needle cuda shared) Rodinia 63 x 1 2503 / 34 1.036 asymmetric 17.9

pleGL and BlackScholes show improvement with FAIR and

the Oracle based mechanisms due to the increase in MLP ex-

posed by these mechanisms and also due to increase in DRAM
row buffer hit ratio due to these mechanisms as shown in Fig-

ures 16 and 20.

ICOUNT policy which performs well on SMTmachines, re-
sults in peformance degradation for most applications. The

vanilla version of ICOUNT does not work well when there

are several threads in the system. ICOUNT repeatedly keeps
fetching for only a subset of the threads in the system while

starving others. This happens because ICOUNT always exam-

ines threads in a particular order and if threads at the begin-
ning of the order have fewer pending or the same number of

pending instructions as other threads, instructions are fetched

for the threads at the beginning of the order. If ICOUNT is cou-
pled together with something like a round-robin mechanism,

it could provide benefit for a greater number of applications.
MatrixMul is one of the few applications which shows benefit

with ICOUNT.MatrixMul is a small kernel with a fewmemory

operations and barriers. All policies other than ICOUNT cause
warps to progress uniformly and warps reach barriers or exe-

cute memory operations at roughly the same time. Because of

this there are a lot of idle cycles. Since threads are progressing
uniformly, I-Cachemisses stall all threads aswell. However, in

the case of ICOUNT policy, the threads diverge considerably,

and thus, even if there is a barrier or an I-Cache miss, some
threads will be ready to execute resulting in reduced idle cyles

and improved performance.

Some of the policy combinations provide benefit forMonte-
Carlo which is a memory intensive benchmark. Investigations

into the performance improvement of MonteCarlo show that

the improvement is mostly due to the merging of memory re-
quests in thememory request queue of each SM (Section 2.3.1).

In MonteCarlo, threads in a block access consecutive memory

locations and threads with matching indices in each block ac-
cess the same memory locations. Requests from threads in

the same warp are coalesced and reach the memory request

queue. If requests from different warps reach the memory

request queue while the queue contains requests from other
warps to the same or neighboring locations, then the requests

from different warps can be merged. Figure 5 shows the por-

tion of code fromMonteCarlo that causes merging of memory
requests. In line 6, threads with matching indices across differ-

ent blocks access the same memory address (load from array

d Samples). Thus the memory requests generated after coa-
lescing requests from individual threads can be merged since

they can be satisfied by a single request. Thus MonteCarlo has
a lot of potential for merging of requests in an SM. This poten-

tial is realized whenwarps across blocksmake progress in step

with each other. Fetch policies such as FAIR, ALL which cause
warps in symmetric applications to proceed in-step with each

other provide considerable benefit over the default RR fetch

which can cause warps to diverge from each other. This analy-
sis is in agreement with Figure 18 which shows the number of

merged memory requests for symmetric application. We dis-

cuss the merging effect in Section 4.4. FAIR fetch policy pro-
vides the greatest performance improvement for MonteCarlo

by causing more merges than other fetch policies. Since FAIR

strictly ensures that warps progress uniformly, requests from
different warps to the same memory location will reach the

memory request queue at approximately the same time with

high probability, this increases the number of merges.

Benchmark Reason
BlackScholes MLP + DRAM row hits
MonteCarlo Memory request merging
SimpleGL MLP + DRAM row hits
MersenneTwister DRAM row hits

Table 3. Reasons why Symmetric benchmarks show benefit with

different policy combinations

MersenneTwister which is also a memory intensive ap-

...
1 for(iSum = threadIdx.x; iSum < SUM_N; iSum += blockDim.x)
2 {
3 __TOptionValue sumCall = {0, 0};
4 for(int i = iSum; i < pathN; i += SUM_N)
5 {
6 real r = d_Samples[i];
7 real callValue = endCallValue(S, X, r, MuByT,
8 VBySqrtT);
9 sumCall.Expected += callValue;
10 sumCall.Confidence += callValue * callValue;
11 }
12 s_SumCall[iSum] = sumCall.Expected;
13 s_Sum2Call[iSum] = sumCall.Confidence;
14 }
...

Figure 5. MonteCarlo

-30

-20

-10

0

10

20

30

40

50

60

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

AVG

Figure 6. Performance of Symmetric applications with diffe rent

fetch policies and FRFAIR DRAM scheduling

plication shows considerable improvement with FRFAIR and

REMINST DRAM policies due to increase in row buffer hit ra-
tio with these policies.

4.1.2. Asymmetric Applications Figures 8, 9 and 10 show
the performance of asymmetric applications with different

fetch and DRAM scheduling policies. On average, none of
the policy combinations provide performance improvements

over the default combination of RR fetch and FRFCFS DRAM
scheduling.

Some of the compute intensive benchmarks such as di-

late kernel (Leukocyte), Eigenvalues, BinomialOptions do not
show much variation with change in fetch and DRAM poli-

cies. Eigenvalues shows slight decrease in performance with

FAIR and ALL fetch policies due to increase in waiting time at
barriers. Cell, which is a compute intensive benchmark, shows

decrease in performance for all fetch policies except LRF. Cell

is a very asymmetric benchmark. In each block, some warps
are very short compared to the rest of the warps. The max by

min value in Table 2 shows this. Due to the highly asymmet-

ric nature of the warps, the oracle based policies prioritize the
longer warps over the shorter warps resulting in very few in-

structions being fetched for the shorter warps. For Cell, this

increases the number of idle cycles since the number of active
threads is effectively reduced. Since FAIR tries to enforce fair-

ness, it fails due to the asymmetric nature of warps and results
in bad performance.

Some memory intensive benchmarks such as Convolution-

Separable, Histogram256, ScalarProd and pns show consider-

able performance improvement with certain combinations of
fetch and DRAM policies.

-30

-20

-10

0

10

20

30

40

50

60

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

AVG

Figure 7. Performance of Symmetric applications with diffe rent

fetch policies and REMINST DRAM scheduling

-40

-30

-20

-10

0

10

20

30

40

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

AVG

Figure 8. Performance of Asymmetric applications with diff erent

fetch policies and FRFCFS DRAM scheduling

Though ConvolutionSeparable is classified as an asymmet-

ric application, a large number of warps (blocks) in it are iden-

tical. Only the blocks operating on boundary pixels of the im-
age (Convolution is an image processing technique) are dif-

ferent from the rest of the blocks which are identical to each

other. The blocks operating on the boundary pixels are also
identical to each other. Thus ConvolutionSeparable consists of

two groups of identical blocks and tends to behave similar to

symmetric applications showing good performance with fair-
ness oriented mechanisms.

Each warp in Histogram256 is short and has uncoalesced

memory accesses (i.e., 32memory requests) at the beginning of
each warp. Compared to other policies, RR is slow to respond

to completion of I-Cache and Load misses. What we mean

by slow to respond is, when an I-Cache miss or a load miss
is satisfied for a warp, because of the way RR works, there is

a certain delay before RR fetches again for that warp. Other

policies, because of their design respond faster to I-cache miss
or load miss completions. This is one of the key reasons why

RR performs worse compared to other fetch policies. Other
factors such as amount of merging also affect the performance.

Dxtc andDwthaar1D are asymmetric applications with few

barriers. In addition to the difference in overall lengths, there

is a considerable variation in number of instructions between
consecutive barriers for different warps. Because of this struc-

ture, many of the policies perform badly. FAIR tries to ensure

uniform progress and fails. ALL fetches only for the longest
threads, while BAR (or MEM BAR) fetches only for thread

-40

-30

-20

-10

0

10

20

30

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

AVG

Figure 9. Performance of Asymmetric applications with diff erent

fetch policies and FRFAIR DRAM scheduling

-40

-30

-20

-10

0

10

20

30

%
 R

ed
uc

ti
on

 in
 E

xe
cu

ti
on

 T
im

e RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

AVG

Figure 10. Performance of Asymmetric applications with dif ferent

fetch policies and REMINST DRAM scheduling

with themost instructions (ormemory instructions) to the next

barrier.

Needle, another memory intensive benchmark, slows

down with ICOUNT due to reduction in MLP compared with

other fetch policies.

We plan to investigate in detail the performance of

IMGVF kernel (Leukocyte), pns, ScalarProd and other inter-
esting results that are not discussed here to improve our un-

derstanding of the behavior of GPU applications.

Observations: From the data for asymmetric applications
it is clear that no particular combination of fetch and DRAM

policy can provide good benefit. The fetch or DRAM policy or

the policy combination that can provide benefit is dependent
on the application. To come up with a single policy/policy

combination that can improve the performance of asymmetric

applications we have to study the structure and behavior of
applications more thoroughly.

4.2. Barrier Wait Time of a warp
We measure the average wait time at a barrier for a warp

for both symmetric and asymmetric applications. Intuitively,

the performance of applications would improve if the average
barrier wait is reduced. The BAR andMEM BAR fetch policies

were designed with this goal of reducing average barrier wait

time. In Figures 11 and 12, we show the total barrier wait time
of a warp which is computed from the average wait time.

4.2.1. Symmetric Benchmarks Figure 11 shows the total
of the time spent by a warp at all barriers, waiting for other

0

2

4

6

8

10

12

14

16

18

20

22

T
ot

al
 B

ar
ri

er
 W

ai
t

T
im

e
as

 %
 o

f
T

ot
al

 E
xe

cu
ti

on
 D

ur
at

io
n

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

Figure 11. Total barrier wait time for a warp (average barrie r wait

time x number of barriers x 100 / total execution cycles) for S ym-

metric applications

warps of the same block as a percentage of the total execution

duration of the application. Symmetric applications typically

contain very few or no barriers at all, since most of the warps
tend to be identical. Among symmetric applications, only Ma-

trixMul has significant barrier wait time. Though ICOUNT

has the longest wait time at a barrier for matrix multiplication,
it provides the best performance as well. This is in accordance

with what was explained earlier. ICOUNT causes threads to
diverge considerably compared to other policies and hence

has longer barrier wait time. This is the same reason why

ICOUNT has longer wait time for NBody also.

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60

T
ot

al
 B

ar
ri

er
 W

ai
t

T
im

e
as

 %
 o

f
T

ot
al

 E
xe

cu
ti

on
 D

ur
at

io
n

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

Figure 12. Total barrier wait time for a warp (average barrie r wait

time x number of barriers x 100 / total execution cycles) for A sym-

metric applications

4.2.2. Asymmetric Benchmarks Figure 12 shows the to-
tal time spent by a warp at all barriers for asymmetric appli-

cations. Two of the asymmetric kernels - dilate kernel (Leuko-

cyte) and VolumeRender - do not contain barriers at all. For
many kernels with barriers, BAR and MEM BAR have the

lowest wait times. For some applications, reduction in wait

times does result in better performance and for others reduc-
tion in wait times does not result in performance improve-

ment.

For pns, FAIR causes the longest average barrier wait time
and for Cell, it is FAIR along with LRF. However, for other

benchmarks such as ScalarProd, the fetch policy that causes

the longest average barrier wait time is not the same as the
worst performing fetch policy. For ScalarProd, the worst per-

forming fetch policy is RR while the fetch policies causing the

longest average wait are BAR and MEM BAR. Though larger
barrier wait times increase execution duration, a direct infer-

ence about which mechanism would perform worst cannot be

made based on the barrier wait time with each mechanism.

4.3. Average Latency of Memory Operation

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

A
ve

ra
ge

 M
em

or
y

L
at

en
cy

in
 C

yc
le

s RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

Figure 13. Average latency of memory instructions for Symme tric

applications

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

A
ve

ra
ge

 M
em

or
y

L
at

en
cy

 is
 C

yc
le

s RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

Figure 14. Average latency of memory instructions for Asymm et-

ric applications

Figure 15. Memory latency for different cases : (a) MLP = 1, (b)

MLP > 1

The average latency of a memory access is shown in Fig-

ures 13 and 14. This is the duration taken by a memory
operation to complete once a memory request has been dis-

patched by the SM. We see that some of the compute intensive

benchmarks such as GICOV kernel (Leukocyte), NBody and
cp have low average memory latencies. Others such as mri-q,

mri-fhd and MatrixMul have high latency per memory opera-

tion though they have few memory accesses per warp. This is
because thememory accesses in these kernels are concentrated

in small regions of code, which causes the average latency of

memory operations to increase since the number of running
warps per SM is fairly high (32 warps per SM). The MLP val-

ues (Figure 16) for these applications confirm this. Memory

intensive benchmarks such as BlackScholes and MonteCarlo,
naturally have large number of memory requests and have

longer memory operation latency.

For memory intensive benchmarks, higher average mem-
ory latency does not necessarily mean bad performance. The

Fetch policy with the highest MLP (policy that causes most

memory operations to be issued close to each other across all
warps executing on all SMs) often has the worst average la-

tency. Since memory requests can be delayed by other re-

quests, the latency of memory operations goes up naturally.
However, memory requests are processed in parallel by the

DRAM controller, this reduces the total contribution of mem-

ory instructions to the total execution duration and improves
performance.

Besides MLP, the average latency is dependant on another

factor - the amount of merging. If the MLP is low, then the av-
erage latency is also going to be low. On the other hand, if the

MLP is high, the average latency is also usually high. How-

ever, if merging of requests is considerable, then the average
latency is going to be lower.

Figure 16 shows the MLP for symmetric applications. We

define instantaneous MLP of the application as the number
memory requests that are active when a new memory request

is issued. We average the instantaneousMLP for eachmemory

request to obtain the averageMLP for the application. GPU ar-
chitecture naturally has high MLP due to high number of con-

currently running threads. Hence, unlike in a single thread

processor, high MLP does not result in better performance.
High MLP usually means memory requests are bursty in na-

ture.

Figure 15 shows howMLP can affect the average latency of
memory instructions. In Figure 15(a), where the MLP is equal

to one, the memory instruction from each warp does not ex-

perience contention from other memory instructions and thus
each can complete in L, M and N cycles. In Figure 15(b),

the memory instruction from each warp has to contend with

memory instructions from other warps. There might be con-
tention for the DRAM bus and channel and bank conflicts as

well. Presence of other requests in the DRAM scheduler also
delays the scheduling of a memory request. Thus in this case,

each memory request takes longer to complete and they com-

plete in X, Y and Z cycles, each of which is going to be longer
than any of L, M and N (assuming no row buffer hits).

4.4. Number of Merges
Figures 18 and 19 show the ratio of memory requests

merged to the number of memory requests. We only show
intra-core merging because inter-core merging is very small.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

A
ve

ra
ge

 M
L

P

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

am
ea

n

Figure 16. MLP for Symmetric applications

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

A
ve

ra
ge

 M
L

P

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

am
ea

n

Figure 17. MLP for Asymmetric applications

Merging of requests reduces the number of requests sent out
to the device memory and thus can help speed up applica-

tions significantly. All applications except MersenneTwister
and BinomialOptions, can derive the benefit of merging. Due

to merging, the execution duration of MonteCarlo with FAIR

and FRFCFS is reduced by 40% when compared to execution
with RR and FRFCFS.

For merging to happen, threads across warps of blocks as-
signed to the same SM should access memory addresses that

are close to each other. In such a situation, two memory re-

quests could be merged if they could be satisfied by a single
memory transaction.

For symmetric applications, enforcing fairness ensures that
memory requests by the same static instruction across differ-

ent warps reaches the memory request queue at about the

same time. If multiple requests can be satisfied by a single
transaction, then the requests are merged. In many GPU ap-

plications, the code is such that the same static instruction

across different warps accessses neighboring or overlapping

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io
 o

f
In

tr
a-

C
or

e
M

er
ge

s
to

 T
ot

al
 M

em
or

y
R

eq
ue

st
s

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

Figure 18. Ratio of intra-core merges for Symmetric applica tions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io
 o

f
In

tr
a-

C
or

e
M

er
ge

s
to

 T
ot

al
 M

em
or

y
R

eq
ue

st
s

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

Figure 19. Ratio of intra-core merges for Asymmetric applic ations

addresses. Thus, by ensuring uniform progress, the amount of

merging and hence the performance can be improved.

4.5. DRAM Row Buffer Hit Ratio
Figures 20 and 21 show the DRAM row buffer hit ratios

for symmetric and asymmetric applications. Intuitively, for

symmetric applications, fairness should improve the DRAM

row buffer hit ratio and improve the performance. However,
though fairness increases the hit ratio, especially for memory

intensive, symmetric applications, it does not result in perfor-

mance improvement always.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
R

A
M

 R
ow

 B
uf

fe
r

H
it

 R
at

io

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

gic
ov

cp nb
od

y
mri-

q

mri-
fh

d

matr
ixm

ul

bla
ck

sc
ho

les

mon
tec

arl
o

sim
ple

gl

mers
en

ne
tw

ist
er_

bo
xm

ull
er

am
ea

n

Figure 20. DRAM row buffer hit ratio for Symmetric applicati ons

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
R

A
M

 R
ow

 B
uf

fe
r

H
it

 R
at

io

RR
ICOUNT
LRF
FAIR
ALL
BAR
MEM_BAR

leu
ko

cy
te_

dil
ate

eig
en

va
lue

s_
mult

int
erv

al

vo
lum

ere
nd

er

dx
tc

bin
om

ial
op

tio
ns

ce
ll_

cu
da

his
tog

ram
25

6

po
stp

ro
ce

ssg
l

leu
ko

cy
te_

mgv
f

dw
tha

ar1
d

pn
s

ne
ed

le_
gp

u

co
nv

olu
tio

ns
ep

ara
ble

sc
ala

rp
ro

d

am
ea

n

Figure 21. DRAM row buffer hit ratio for Asymmetric applicat ions

5. Related Work
Our paper evaluates the performance of different fetch and

DRAM scheduling policies on GPU kernels. To the best of our

knowledge, this is the first work that does the evaluation of

fetch and DRAM policies for GPUs. There have been sev-
eral papers in the past that have evaluated fetch and DRAM

scheduling for SMTs and other architectures. Here we present

SMT-based fetch polices and discuss why those polices would
necessarily not provide benefit in the GPU architectures.

In [18], Tullsen et al., propose several fetch policies such as

BRCOUNT, MISSCOUNT, ICOUNT. These policies improve
throughput by improving the quality of the instructions that

are fetched. BRCOUNT fetches instructions from threads that

have the least unresolved branches in the pipeline. This en-
sures that the fetched instructions are less likely to be flushed.

ICOUNT fetches instructions from threads that have the least

number of threads in the pipeline. ICOUNT policy favors fast
executing threads. We evaluated the ICOUNT policy in our

paper and found that it performs badly for GPUs. BRCOUNT
and MISSCOUNT cannot be applied to a GPU since we do not

fetch instructions for a warp when we detect either a pending

branch or a load miss for that warp.

Luo et al. [13] evaluate several SMT policies aiming to pro-

vide both throughput and fairness to the threads in the system.

The evaluated policies employ fetch prioritization and fetch
gating to ensure high throughput and fairness. The evaluated

policies include RR, ICOUNT, Low Confidence Branch Predic-

tion Count (LC-BPCOUNT) and variations of these. Though
we evaluate fetch prioritization we do not evaluate fetch gat-

ing. Fetch gating based on instruction count could have been a

possible variation to the evaluated fetch policies, but with the
large issue queue and scheduler window employed in GPU ar-

chitectures we doubt whether fetch gating would have made
much of a difference.

In several works in the past ([17] [5]), long latency loads

are handled either by fetch stalling or by flushing the thread
experiencing the load miss. In our simulations, we fetch-stall

warps experiencing load misses. Flushing warps with load

missed might not be very beneficial since those warps will be
occupying only a small fraction of the front-end resources due

to presence of a large number of warps in the SM.

Eyerman et al. [9] suggest 1) fetch-stalling or flushing
threads on a load miss if they have no MLP, and 2) allocate

more resources to threads on a load miss if they have MLP.
Allocating more resources to the same warp to expose MLP

might provide minor benefits for some applications, but be-

cause most applications are symmetric in the GPU kernels (i.e.
all thread will have the same or similar MLP), this policy will

not be applicable.

6. Conclusion
In this paper, we try to understand the effect of fetch and

DRAM scheduling policies on the performance of GPU ker-

nels. We run GPU kernels with different combinations of
fetch and memory scheduling policies and analyze their per-

formance. The different fetch policies are the default round

robin policy, a fair fetch policy, the ICOUNT policy [18], least
recently fetched policy and also a few oracle based policies.

The memory policies we try include: FCFS, FRFCFS and two

oracle based variations of FRFCFS.

Our experiments yield the following results: (1) Computa-

tion intensive benchmarks are insensitive to fetch and DRAM

scheduling polices since the processor can always find warps
to execute, (2) For symmetric applications, fetch and DRAM

policies which try to provide fairness to warps can improve

performance when compared to the default fetch and DRAM
policies. (3) For asymmetric applications, no single fetch and

DRAM policy combination can provide performance bene-

fit for a good number of the evaluated applications, and (4)
merging effect is significant for some applications and fairness

based policies increase the amount of merging.

Unfortunately, different applications show benefits with
different combinations of fetch and DRAM policies. Sim-

ple straight forward mechanisms would not provide bene-

fit for asymmetric applications even with oracle information.
Mechanisms that are aware of program structure and behavior

would be necessary for asymmetric applications.

In future work, we will further analyze the behavior of
asymmetric applications and try to improve their performance

by coming up with new fetch and DRAM policies.

References
[1] CUDA SDK.

[2] GeForce GTX280. http://www.nvidia.com/object/geforcefamily.html.

[3] Parboil benchmark suite. http://impact.crhc.illinois.edu/parboil.php.

[4] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: a processor ar-
chitecture for multiprocessing. In Computer Architecture, 1990. Proceedings.,
17th Annual International Symposium on, May 1990.

[5] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Optimizing long-
latency-load-aware fetch policies for smt processors. International Journal of
High Performance Computing and Networking, 2(1):45–54, 2004.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
IEEE International Symposium on Workload Characterization, 2009.

[7] N. Corporation. Nvidia products. http://www.nvidia.com/page/
products.html.

[8] E. Lindholm, J. Nickolls, S.Oberman and J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55,
March-April 2008.

[9] S. Eyerman and L. Eeckhout. A memory-level parallelism aware fetch pol-
icy for smt processors. In High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on, pages 240–249, Febru-
ary 2007.

[10] GPGPU. General-Purpose Computation Using Graphics Hardware.
http://www.gpgpu.org/.

[11] John Nickolls, Ian Buck,Michael Garland and Kevin Skadron. Scalable Par-
allel Programming with CUDA.ACMQueue, 6(2):40–53, March-April 2008.

[12] A. Kerr, G. Diamos, and S. Yalamanchili. A characterization and analysis
of ptx kernels. In IEEE International Symposium onWorkload Characterization,
2009.

[13] K. Luo, J. Gummaraju, andM. Franklin. Balancing throughput and fairness
in smt processors. In Performance Analysis of Systems and Software, 2001. IS-
PASS. 2001 IEEE International Symposium on, pages 164–171, 2001.

[14] NVIDIA Corporation. Cuda (compute unified device architecture).
http://www.nvidia.com/cuda.

[15] NVIDIA Corporation. CUDA Programming Guide, April 2009.

[16] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory
access scheduling. In ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, pages 128–138, 2000.

[17] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simul-
taneous multithreading processor. InMICRO 34: Proceedings of the 34th an-
nual ACM/IEEE international symposium onMicroarchitecture, pages 318–327,
2001.

[18] D.M. Tullsen, S. J. Eggers, J. S. Emer, andH.M. Levy. Exploiting Choice: In-
struction Fetch and Issue on an Implementable Simultaneous Multithread-
ing Processor. In ISCA-23, pages 191–202, 1996.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In ISCA-22, pages 392–403, 1995.

