
Performance Characterisation and Simulation of
Intel’s Integrated GPU Architecture

Prasun Gera∗, Hyojong Kim∗, Hyesoon Kim∗, Sunpyo Hong†, Vinod George†‡, Chi-Keung (CK) Luk†‡

∗Georgia Institute of Technology
{prasun.gera, hyojong.kim, hyesoon.kim}@gatech.edu

†Intel Corporation
sunpyo.hong@intel.com, vinodmgeorge@gmail.com, chikeung.luk@gmail.com

Abstract—Integrated GPUs (iGPUs) are ubiquitous in today’s
client devices such as laptops and desktops. Examples include
Intel’s HD or Iris Graphics and AMD’s APUs. An iGPU resides
on the same chip as the CPU, which is in contrast to a
conventional discrete GPU that would typically be connected
over the PCI-E bus. Much like discrete GPUs, iGPUs are also
capable of general purpose computation in addition to traditional
graphics roles. Further, iGPUs have some interesting differences
compared to traditional GPUs such as a cache-coherent memory
hierarchy and a shared last level cache with the CPU. Despite
their wide spread use, they are not studied very extensively.
To the best of our knowledge, this paper introduces the first
open source trace generation and microarchitectural simulation
framework for Intel’s integrated GPUs. We characterise the
performance of Intel’s Skylake and Kabylake GPUs through
detailed microbenchmarks, and use the performance evaluations
to guide our models and validate the simulator.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely used for
graphics and general purpose (GPGPU) computation. Popu-
larised by NVIDIA’s CUDA framework for GPGPU program-
ming, the last decade has seen a steady increase in use of GPUs
for high performance computing and machine learning. While
this growth has mostly been tied to conventional discrete GPUs
in the past, a new class of GPUs, integrated GPUs (iGPUs), has
become nearly ubiquitous in client devices such as laptops and
desktops. iGPUs are a part of the same chip as the CPU. Due to
the power, area, and thermal constraints, they are not designed
to outperform their discrete counterparts in the raw compute
throughput. However, compared to their discrete counterparts,
which need to communicate over the PCI-E bus with the CPU,
iGPUs have a much shorter path to the CPU. Further, recent
iGPUs also feature a cache coherent memory hierarchy with
the CPU. They share the last-level cache with the CPU and can
access the large system DRAM, which enables optimisations
such as zero-copy memory objects and pointer sharing. Vendor
neutral frameworks such as OpenCL or OpenGL make it
possible to port code written for discrete GPUs to iGPUs.
These factors make iGPUs attractive candidates not only for
light gaming or media workloads, but also for specific GPGPU
tasks such as inference in machine learning, or offloading wide

†‡ At Intel Corporation at the time of writing

vector operations from the CPU. The energy efficiency of
iGPUs is also seen as a strong point for future Internet of
Things (IoT) devices.

We find that most of the research in the past, including
tooling and infrastructure, has focused on discrete GPUs.
NVIDIA GPUs have been studied extensively, and simula-
tion or emulation frameworks such as GPGPU-Sim [1] and
GPUOcelot [2] have been used for GPGPU research. While
there are similarities between discrete and iGPUs, no public
simulator exists for simulating workloads for Intel iGPUs. To
that end, this paper makes the following contributions:
• We characterise the performance of Intel’s Skylake and

Kabylake iGPUs through a collection of microbench-
marks. In particular, we study the memory characteristics
in detail, and also cover floating point performance and
the thread scheduler’s behaviour.

• To the best of our knowledge, we introduce the first
instruction level trace generation framework for Intel
iGPUs built upon the GT-Pin [3] toolkit. The generated
traces use a portable, simulator agnostic format serialised
as Google Protocol Buffer [4] messages to encourage
interoperability across simulators.

• We develop the iGPU module in MacSim [5], an open
source heterogeneous architecture simulator. We use the
performance characteristics collected earlier to model and
validate the simulator.

II. BACKGROUND

A. Intel’s GPU architecture

We summarise the key characteristics of Intel’s Gen9 iGPU
architecture [6], [7] in Fig. 1. The GPU contains a large num-
ber of execution units (EUs) that perform SIMD computation.
A collection of 8 EUs form a subslice. The subslice also
contains a common instruction cache, and L1 and L2 sampler
caches. Each subslice also contains a memory load/store unit
called the data port. Three subslices are aggregated into one
slice. The slice additionally consists of the L3 data cache,
and a highly banked shared local memory (SLM). The L3
cache is a general purpose cache that is a part of the overall
coherence domain with the CPU, whereas the L1 & L2 caches
and SLM are local to the slice, and are not in the coherence

Intel Core

Processor

Intel Processor Graphics

CPU core
CPU

L1$

CPU

L2$

Slice: 24 EUs

L1$ L2$
Sampler L1

$

L2

$

Sampl

er

Subslice: 8 EUs

L1$ L2$
Sampler

Shared Local Memory

(64KB/subslice)

Shared

LLC

(Optional)

On-Package

EDRAM

System

DRAM

Non-coherent Coherent

Slice: 24 EUs

L1$ L2$
Sampler L1

$

L2

$

Sampl

er

Subslice: 8 EUs

L1$ L2$
Sampler

Shared Local Memory

(64KB/subslice)

L3 Data Cache

(512 KB/slice)

L3 Data Cache

(512 KB/slice)

L
3
 F

a
b

r
ic

Fig. 1: Intel’s Gen9 iGPU architecture

mov

mad

mad

mad

…

…

cmp

jmpi

__kernel void compute_gflops_single(...){

...

for(unsigned i =0 ; i < 512; i++){

FUSE(x, y);

FUSE(x, y);

...

}

...

}

EU 0

k k k k k k k

Compile

k

(a) WGs <= hardware threads;

WGs get mapped to different threads

(b) WGs > hardware threads;

WGs get stacked on existing threads

EU 0

k k k k k k k

k

Fig. 2: iGPU scheduler

domain. Some products have more than one slice. In such
designs, multiple slices are connected via an L3 interconnect
fabric which combines the total L3 capacity across the slices
and presents the L3 as a logically monolithic cache. The GPU
and the CPU connect to the shared last level cache (LLC) via
a ring interconnect. The LLC would then connect to an on-
package eDRAM cache if the product has one. The eDRAM
cache would finally connect to the system DRAM, or the LLC
would connect to system DRAM if there is no eDRAM cache.

B. OpenCL

OpenCL is a programming framework used for parallel and
high performance computing with wide device support across
CPUs and GPUs. OpenCL uses a notion of work groups and
work items to express parallelism. A work group consists of
several work items that execute in parallel, and the application
kernel consists of several work groups that execute in parallel.
Work items within a work group have access to local state
and resources in the form of synchronisation primitives and
shared local memory (SLM). There are some noticeable dif-
ferences between Intel’s OpenCL implementation for iGPUs
and NVIDIA’s CUDA implementation for discrete GPUs.
In CUDA terminology, thread blocks, or cooperative thread
arrays (CTAs), are roughly equivalent to OpenCL work groups.
CTAs are assigned to streaming multiprocessors (SMs) based

on the availability of resources such as registers and shared
memory. Each CTA is further divided into groups of 32
threads, known as warps. All the threads within a warp
typically share the same instruction stream. A warp, which
is a collection of scalar threads, is the basic unit that runs
on an SM. The CTA scheduler is responsible for the fast
context switching of warps. The scheduler can pick ready
warps from the same or different CTAs. Note that all the
threads described so far for CUDA are software threads. In
contrast, Intel’s GEN architecture has a well defined notion of
hardware threads. Hardware threads in this context represent
a unit of Simultaneous Multithreading (SMT) scheduling. i.e.,
Each EU is able to simultaneously run 7 hardware threads
in a GEN9 GPU. The global thread dispatcher is responsible
for load balancing thread distribution across the entire de-
vice [6]. Further, each thread runs Single-Instruction-Multiple-
Data (SIMD) instructions with support for predication and
branching. From our experiments, we found that:
• Each OpenCL work group is mapped to a new hardware

thread, up to the maximum supported hardware threads.
• A work group may also be split and mapped to multiple

hardware threads. The main constraint in splitting work
groups is the presence of barriers and shared memory,
which limit where work groups get dispatched.

• If there are more work groups than the maximum sup-
ported hardware threads, the kernel invocations for the
remaining work groups are stacked at the end of existing
hardware threads (Fig. 2).

• Inside a thread, a kernel consists of series of variable
width SIMD instructions. For instance, 16 OpenCL work
items can be mapped to each lane of SIMD-16 instruc-
tion. *

C. GT-Pin

GT-Pin [3] is a binary instrumentation framework for Intel
GPUs. It serves a similar purpose as Pin [8] for CPU work-
loads in that it can be used as the foundation for tasks like
trace generation or other forms of static and dynamic analysis.
We built our trace generation framework on top of the APIs
provided by GT-Pin for the following reasons:
• Trace generation should be agnostic to the OS. GT-Pin

has been tested on GNU/Linux and Windows.
• Trace generation should be agnostic to the programming

framework. Since GT-Pin works at the native binary level,
it can, in principle, be used for any GPU framework.
This will likely be an important factor in the future since
there are some proposals for convergence of OpenCL and
Vulkan APIs [9].

• Trace generation should not require the source code of
application or libraries. GT-Pin can instrument binaries at
the native ISA layer, as opposed to an intermediate ISA
layer such as PTX for NVIDIA. PTX based simulation
frameworks such as GPGPU-Sim [1] and GPUOcelot [2]

*At a high level, a CUDA warp can be viewed as a fixed 32-lane wide
instruction while in Intel GPU, the length is variable but typically 16.

2

TABLE I: CPU Parameters

Parameter i7-6700k (SKL) i7-7567U (KBL)

Cores 4 2
Threads 8 4
Base Freq 4.00 GHz 3.50 GHz
Max Turbo Freq 4.20 GHz 4.00 GHz
L1 I-cache (per core) 32 KB 32 KB
L1 D-cache (per core) 32 KB 32 KB
L2 cache (per core) 256 KB 256 KB

TABLE II: iGPU Parameters

Parameter HD 530 (SKL) Iris Plus 650 (KBL)

EUs 24 48
H/W Threads per EU 7 7
SIMD FP Units per EU 2 2
SIMD FP Width per unit 32 bits 32 bits
Base Freq 350 MHz 300 MHz
Max Dynamic Freq 1.15 GHz 1.15 GHz
Number of Slices 1 2
Number of Sub-Slices 3 6
L3 data cache 512 KB 1 MB
SLM (per sub-slice) 64 KB 64 KB

TABLE III: Shared Resources

Parameter i7-6700k +
HD 530 (SKL)

i7-7567U +
Iris Plus 650 (KBL)

LLC 8 MB 4 MB
eDRAM N/A 64 MB
DRAM DDR4 2133 MHz DDR4 2133 MHz

need the source code of applications to produce PTX
output, which is not always available for a lot of libraries.
This makes simulation of modern workloads challenging.
While SASSI [10] enables instrumentation of NVIDIA’s
native SASS ISA, it still needs PTX as a starting point.

III. PERFORMANCE MODELLING

We use a collection of microbenchmarks written in OpenCL
to understand the performance characteristics of Skylake
(SKL) and Kabylake (KBL) iGPU architectures. The specifi-
cations for the hardware used for these experiments are listed
in Tables I, II & III. There are not too many significant dif-
ferences micro-architecturally between Skylake and Kabylake.
However, the two processors that we used are of different
types, one being a desktop processor (i7-6700k (SKL)), and
the other being a mobile processor (i7-7567U (KBL)) from
a Next Unit of Computing (NUC) device. That makes the
comparison interesting nonetheless since the two processors
allocate their power, thermal and area budgets differently. The
mobile KBL processor trades off CPU resources for GPU
resources since its primary use is media centred. The KBL
processor has 2 cores as opposed to 4 in SKL and lower CPU
clocks, but it has twice the number of EUs in its GPU and
additional eDRAM cache. We contrast the results between
them in our experiments when the comparison is resource
oriented. When the trends are similar, we focus only on the
SKL desktop processor for brevity.

0

100

200

300

400

500

600

700

800

900

G
FL

O
P

S

Work Groups

iGPU Floating Point Characteristics

HD 530 SP (SKL) HD 530 DP (SKL) Iris Plus 650 SP (KBL) Iris Plus 650 DP (KBL)

Fig. 3: Each Work Group is comprised of 32 Work Items. SP
= Single Precision, DP = Double Precision. Vertical dotted
lines represent the minimal work groups that achieve peak
throughput for the two GPUs

A. Floating Point Performance

In this microbenchmark, we use fused multiple and add
(MAD) instructions to characterise the floating point perfor-
mance of the GPUs. Each work group (WG) is comprised of
32 work items (WIs), and we vary the number of WGs, while
measuring the throughput as Giga floating point operations per
second (GFLOPs). We found empirically that 32 WIs per WG
were sufficient to reach close to the peak throughput. At lower
WIs, some instructions get masked at runtime, which would
need more WGs to saturate throughput. The results of this
experiment are presented in Fig. 3. The two dotted vertical
lines represent the minimal number of work groups, 96 and
192, for which the hardware achieves peak GFLOPs for the
two GPUs.

Each EU can support a maximum of 7 hardware threads,
and we have either 24 or 48 EUs for our SKL and KBL
GPUs respectively. Hence, the GPUs can support a maximum
of 168 or 336 hardware threads respectively. We notice that
the performance scales pretty linearly in the beginning as
we increase the work groups, which suggests a round robin
scheduler between the EUs. We also see periodic dips in
throughput. This is due to the workload imbalance across EUs
for certain WG configurations. There is an imbalance if the
number of active threads across EUs are not uniform, or if the
number of WGs is greater than the number of available EUs,
in which case we see the stacking effect as shown earlier in
Fig. 2. When the workload distribution is not uniform, we can
end up with a subset of EUs being on the critical path, and
the rest being idle. This leads to an overall drop in throughput
as evidenced by the dips in Fig. 3.

The peak theoretical GFLOPS for the hardware can be
calculated as follows:

Max GFLOPS = (EUs)× (SIMD units/EU)

×(FLOPs per cycle/SIMD unit)× (Freq GHz) (1)

Based on the Intel’s documentation [6], the hardware details

3

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 A
cc

es
s

Ti
m

e
(n

s)

Working Set Size (log scale)

CPU Latency Characteristics

i7-6700K (SKL)

i7-7567U (KBL)

L1-D

L2

LLC(SKL)

LLC(KBL) eDRAM(KBL)

Fig. 4: Average access time per access for CPU

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 A
cc

es
s

Ti
m

e
(n

s)

Working Set Size (log scale)

iGPU Latency Characteristics

HD 530 (SKL)

Iris Plus 650 (KBL)

eDRAM(KBL)

LLC(SKL)

L3(SKL) L3(KBL)

LLC(KBL)

Fig. 5: Average access time per access for iGPU

for floating point computation are as follows: Each SIMD unit
is 4-wide with a peak issue rate of 1 MAD instruction per
cycle. The SIMD units are fully pipelined. Each EU has 2 such
SIMD units. Each EU can issue instructions from 4 threads
every cycle. The double precision (DP) throughput of each
SIMD unit is 1

4 (single precision (SP) throughput). The floating
point latency is 4 cycles. A 4-wide MAD operation translates
to 8 operations. Our GPUs have either 24 or 48 EUs, and
a peak frequency of 1.15 GHz. Plugging in these values in
equation 1, we get 24×2×8×1.15 = 441.6 GFLOPs as the
peak SP throughput for the SKL GPU, and 883.2 GFLOPs
for KBL due to twice the number of EUs. The corresponding
DP throughput is scaled down by a factor of 4, which leads
to 110.4 and 220.8 DP GFLOPs respectively. Further, we also
notice that 4 hardware threads per EU are sufficient to hide the
floating point latency of 4 cycles and achieve close to the peak
throughput. At 96 or 192 work groups for the two GPUs, we
are at an occupancy of 4 threads per EU in a fair round robin
schedule, which achieves pretty close to the peak GFLOPs that
we calculated earlier. This is marked by the dotted vertical
lines in Fig. 3. Going beyond that occupancy does not benefit
the throughput.

B. Memory Hierarchy Latency

We use a single threaded random access microbenchmark
to determine the latencies for various levels of the memory

hierarchy. Since the accesses are dependent and random, it
reduces the impact of prefetchers or other optimisation tech-
niques. We vary the working set size for the microbenchmark,
and observe the average access time for each working set size.
It resembles a pointer chasing workload, although we use an
array instead of raw pointers in our code. We create a random
cycle of offsets in the input array such that each access is
cacheline aligned. The pseudo-code for the microbenchmark
is:

i n i t i a l i z e (i n p u t a r r a y) ;
r e s u l t = 0 ;
f o r (i = 0 ; i < n ; i ++){

r e s u l t = i n p u t a r r a y [r e s u l t] ;
}

Listing 1: Cache latency microbenchmark

Figs. 4 and 5 show the average access time at different
working set sizes for both SKL and KBL CPUs as well as
GPUs. Throughout this section, access time refers to the total
time including the miss time from higher levels of the hierar-
chy. We notice that the access times for the entire memory
hierarchy are generally higher for the iGPUs compared to
the CPUs. The GPUs have a much lower frequency than the
CPUs. For instance, the SKL GPU has a base frequency of
350 MHz and maximum frequency of 1.15 GHz, compared to
the base frequency of 4.00 GHz and maximum of 4.20 GHz
for the CPU. Hence, the latency gap in terms of native cycles
is lower than the difference in absolute time. The first general
purpose cache in these iGPUs is the L3 cache. L1 and L2
are specialized sampler caches which are not accessed in this
benchmark. The latency for L3 accesses from GPUs is about
125 ns for SKL, and 144 ns for KBL. The total L3 capacity
for KBL is 1 MB since it has two slices. Next in the hierarchy
is the last level cache (LLC), which is also shared with the
CPU. This also highlights the difference between the latency
of accessing the same resource between the CPU and the GPU.
The access time for the LLC from the CPU is ∼ 10 ns, whereas
from the GPUs, it starts at 212 ns for SKL and 260 ns for KBL.
Further, the access time steadily increases in the LLC region
for the GPUs. The latency curves in the 1 MB - 8 MB range
and 2 MB - 4 MB range for the two GPUs show increasing
access times (Fig. 5) although one would expect the working
set to fit in the LLC. In contrast, the CPU’s curves are pretty
flat in the LLC region (Fig. 4). This leads us to believe that
the GPU is not able to take advantage of the full capacity of
the LLC, and perhaps some capacity is always reserved for
the CPU. Going further down the hierarchy, we notice that,
for KBL, the access time is tempered by the eDRAM cache
in the 4 MB - 64 MB region. The effect on latency is more
pronounced for the CPU than the GPU, where we see the
KBL CPU’s curve fall below the SKL curve in the eDRAM
region (Fig. 4). Similar to the LLC, there is a disparity between
access times from the CPU and GPU to the eDRAM cache,
and the GPU’s access time increases noticeably even in the
eDRAM range. The access time for the eDRAM cache from

4

Requests

LLC

GPU Access Time

~ 20

GPU CPU

(a) 20 intervening CPU requests
b/w GPU requests

Requests

GPU Access Time

>100

GPU CPU

LLC

(b) More than 100 intervening
CPU requests b/w GPU requests

Requests

LLC

CPU Access Time

~ 20

GPU CPU

(c) 20 intervening CPU requests
b/w GPU requests

Requests

LLC

CPU Access Time

~ 10

CPU GPU

(d) 10 intervening GPU requests
b/w CPU requests

Fig. 6: Experimental Setup for Shared LLC interference ex-
periments. Results in Fig. 7

the KBL CPU starts at ∼ 48 ns, whereas for the GPU, it
starts at ∼ 350 ns. Finally, for 128 MB and beyond, we
observe stable average DRAM access times of about 73 ns
and 83 ns for SKL and KBL CPUs, and 355 ns and 422 ns
for the respective GPUs. In addition to lower core frequency,
the higher access times for the GPU could also be a result
of higher interconnection network latency. It is worth noting
that this sort of a single threaded pointer chasing workload is
unusual for a GPU. GPUs are designed for high throughput,
and not low latency.

C. Cache sharing effects between the CPU & GPU

As we saw in subsection III-B, accesses to the shared LLC
show different characteristics for the CPU and the GPU. We
try to understand the effects of potential interference that either
of them may cause on the other. For the next experiment, we
run the benchmark on the CPU and the GPU concurrently, and
measure the latency from one while we vary the interference
from the other. We also vary each agent’s working set to span
sizes that cover the LLC. We use the SKL GPU for these
experiments, and vary the working set from 1–9 MB for each
agent to isolate the effects caused by the shared LLC. Fig. 6
describes the experimental setup. The first scenario that we
evaluate, as depicted in Fig. 6(a), is one in which both the
CPU and GPU use a similar single threaded pointer chasing
workload as III-B, and we measure the GPU’s average access
time per request. We also repeat the same setup in Fig. 6(c),
with the difference that we measure the CPU’s average access
time instead of the GPU’s. In both these cases, more than
20 CPU requests arrive at the LLC for every request from
the GPU due to the difference in raw latencies. Since we
use single threaded dependent accesses for both the agents,
this difference in request rates is determined entirely by the
difference in latencies. We also evaluate two more scenarios.

In Fig. 6(b), we measure the GPU’s access time using the
same method, but increase the interference from the CPU by
using a multi-threaded streaming workload. The difference in
rate of requests is even more pronounced than Fig. 6(a), and
now more than 100 CPU requests arrive between subsequent
GPU requests. Finally, in Fig. 6(d), we measure the CPU’s
average acess time using single threaded dependent accesses,
but the GPU streams data using multiple threads. The GPU is
able to stream out one cacheline every cycle, which translates
to a rate of roughly 1 cacheline every 1 ns. Compared to the
CPU’s access time of roughly 10 ns, we see that the GPU’s
requests arrive at a rate roughly 10 times higher than the CPU
in this scenario.

We present the results of these four experiments in Fig. 7.
We make the following observations from the results:

• In Figs. 7(a) and 7(b), we see that,
– The GPU’s access times in the top left quadrant are

similar in both the figures.
– The GPU’s access time does not increase appreciably

along the horizontal axis in the top left quadrants.
– The GPU’s access time is slightly higher in the first

column than the second column.
– In Fig. 7(b), the GPU’s access time ramps up signif-

icantly in the last few columns.
• In Fig. 7(c) we see that the CPU’s access time is largely

unaffected except in the last two rows.
• In Fig. 7(d), we see a gradient of increasing access times

as we go down along the diagonal.

When the total working set fits in the LLC, the GPU’s
access time seems relatively unaffected by the nature of CPU’s
interference. We draw two conclusions from this. One is
that the critical path for the GPU to access the LLC lies
elsewhere, and is independent of the CPU’s activity. The
GPU’s access time increases more because of an increase
in its own working set than any sort of interference. This is
related to our earlier point in III-B that the GPU is not able
to take advantage of the entire capacity of the LLC. Secondly,
the CPU is not given any preferential treatment in accessing
the LLC. Despite the barrage of requests from the CPU in
Fig. 7(b), we do not see any undue starvation at the GPU’s
end. We do see increased contention at DRAM though from
CPU’s streaming interference, as evidenced by higher values
in the last couple of columns. Here, the CPU is streaming
from system DRAM, and the GPU’s average access time is
dominated by the contention at DRAM. A slightly surprising
result in this data is that the GPU’s access time without any
interference (first column Fig. 7(a), 7(b)) is actually a bit
higher than the time with some interference (second column).
We think that this may be a side-effect of frequency scaling or
power management, which causes the GPU alone to run at a
slightly lower performance when the CPU is idle compared to
the case when both CPU and GPU are active. Moving on to the
CPU’s access time, Fig. 7(c) shows that the CPU is largely
unaffected when the GPU’s interference is single threaded.
Since the GPU’s access frequency is 1 in 20 relative to the

5

GPU

Working Set

(Pointer Chasing Interference) CPU Working Set

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 206.77 207.03 208.34 213.66 216.56 228.67 251.68 217.65 210.73

2 MB 215.01 209.33 210.31 215.04 219.57 236.35 249.27 269.91 278.53 275.69

3 MB 231.21 224.12 226.19 234.33 252.32 267.49 280.07 292.09 293.06 293.18

4 MB 246.6 240.19 247.03 262.01 275.24 290.32 298.37 302.39 302.1 302.45

5 MB 258.73 258.04 271.67 281.84 294.99 301.75 307.4 308.22 308.21 308.26

6 MB 273.68 270.74 290.09 296.31 305.99 309.7 312.04 312.57 311.94 312.21

7 MB 286.89 287.13 301.84 305.76 311.56 315 315.53 315.36 314.85 315.09

8 MB 304.29 303.37 310.58 314.81 315.68 317.36 317.55 317.49 316.79 317.07

9 MB 318.28 312.89 314.9 318.84 318.48 319.44 319.3 319.21 318.53 318.65

(a) ST Interference from the CPU. Measured = GPU access time

GPU

Working Set

(Streaming Interference) CPU Working Set

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 213.54 207.64 209.24 209.84 215.48 226.19 234.33 286.03 320.9 339.46

2 MB 215.01 208.24 210.82 217.44 227.23 238.55 257.8 305.11 342.82 355.22

3 MB 231.21 224.43 238.79 244.45 254.61 273.66 288.92 343.72 378.46 384.57

4 MB 246.6 236.95 256.38 263.73 284.87 291.62 304.93 364.87 392.38 393.8

5 MB 258.73 260.2 273.42 285.55 298.02 304.65 312.19 368.42 404.14 412.82

6 MB 273.68 278.19 289.93 299.94 310.77 312.49 316.84 381.05 416.06 411.42

7 MB 286.89 293.29 304.67 312.66 318.3 319 319.83 387.87 417.56 424.25

8 MB 304.29 302.3 316.44 319.69 320.6 321.25 322 389.3 419.35 428.99

9 MB 318.28 312.4 321.94 322.53 322.88 323.53 323.86 324.09 437.51 440.37

(b) STRM Interference from the CPU. Measured = GPU access time

CPU

Working Set

(Pointer Chasing Interference) GPU Working Set

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10 9.8 9.75 9.8 10 9.96 9.88 9.76 9.75

2 MB 10.91 10.74 10.45 10.48 10.45 10.76 10.69 9.44 9.21 10.49

3 MB 9.23 10.97 10.71 10.7 10.71 9.51 9.51 9.61 9.24 9.25

4 MB 9.75 10.04 9.88 9.98 9.88 10.04 9.7 9.39 9.12 9.45

5 MB 9.97 11.51 10.39 10.1 10.39 10.66 9.45 9.81 9.94 9.61

6 MB 10.36 10.67 11.61 11.69 11.61 10.5 10.72 9.26 9.49 10.05

7 MB 11.69 21.74 16.83 17.19 16.83 17.15 13.24 12.89 11.25 13.3

8 MB 20.58 35.26 35.27 35.23 35.27 35.51 33.72 34.63 33.61 32.78

9 MB 31.96 45.67 50.19 48.85 50.19 50.01 49.55 51.38 50.29 49.71

(c) ST Interference from the GPU. Measured = CPU access time

CPU

Working Set

(Streaming Interference) GPU Working Set

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB

1 MB 9.8 10.42 10.22 10.74 12.78 18.5 29.86 42.14 67.07 88.09

2 MB 10.91 10.9 11.92 11.02 18.02 23.95 38.86 58.51 78.91 98.46

3 MB 9.23 9.64 9.78 10.96 25.63 34.37 46.18 64.34 80.9 96.3

4 MB 9.75 10.11 12.16 19.26 27.29 41.39 53.71 68.46 82.62 98.4

5 MB 9.97 10.16 16.69 31.38 39.66 50.23 61.39 72.67 82.22 98.68

6 MB 10.36 12.56 27.17 40.22 49.06 56.91 65.35 75.33 83.11 99.48

7 MB 11.69 18.37 35.44 48.84 55.02 60.58 68.94 77.9 83.91 99.64

8 MB 20.58 35.07 46.75 54.51 58.11 62.9 70.37 78.58 83.37 99.71

9 MB 31.96 46.48 53.45 59.1 60.52 64.61 71.18 79.67 83.97 99.59

(d) STRM Interference from the GPU. Measured = CPU access time

Fig. 7: Effect of CPU and GPU’s interference on the access time to the LLC for SKL (8 MB LLC). Time measured in ns.
ST = Single-threaded pointer chasing kernel; STRM = Multi-threaded streaming kernel. Measurement uses the ST kernel;
interference is ST or STRM

CPU, this is not very surprising. The only increase that we see
in the last two rows is again a result of spilling outside the
LLC to DRAM, and is a result of the CPU’s own working set.
Finally, in Fig. 7(d), the GPU is streaming data, and sending
requests at a 10 to 1 ratio compared to the CPU. Here, we
see that the CPU’s access times are affected even when the
total working set is inside the LLC. For instance, with CPU’s
working set as 5 MB and GPU’s as 2 MB, the access time is
16.69 ns (3rd column) whereas without any interference, it is
9.97 ns (first column). This leads us to believe that GPU is
causing eviction of CPU’s lines. There is increased contention
at the DRAM level too, as seen by the steady increase of
access times outside the LLC.

D. Memory Bandwdith and Coalescing

We study the behaviour of GPU’s global memory, which is
also the system DRAM for Intel iGPUs, in this section. Both
our systems have dual channel DDR4 2133 MHz memory, and
we discuss our observations from experiments on the SKL
system. Memory coalescing is a well studied phenomenon
in GPU architectures, and it is an important optimisation
technique in high performance computing (HPC) applications.

Memory coalescing refers to combining multiple memory
accesses into a single transaction. In this experiment, we vary
the number of work groups, the number of work items, and
a stride parameter to cover a wide variety of access patterns.
Fig. 8 describes our experimental setup. The total memory
region is divided between work groups with no overlap. Within
each work group, each work item reads a fixed number of
words, 256 in our case. No address is accessed more than once.
This is to ensure that we do not see any cache effects, and only
characterise DRAM’s performance. For stride = 1, consecutive
work items in a work group access consecutive words. These
would be coalesced into a single memory request when sent
to DRAM. For stride = 2, the accesses are spaced out by
one word between consecutive work items. At stride = 16,
each work item would read from a new cacheline. In all these
experiments, the total number of words accessed is the same.
We measure the raw memory bandwidth based on the number
of cachelines read from DRAM. We present the results in
Fig. 9. At the bottom left corner of every sub-figure, we have
a single work group with 16 work items. This translates to
a single hardware thread, which is not sufficient to saturate

6

DRAM

4 x 16 = 64 bytes

0x0
0x40

MEM

ADDR TIME

t=t0

t=t1

0x4000 t=t256
WG0

16 WIs

t=t0

t=t1

t=t256
WGN

16 WIs

(a) Stride = 1

P
A

R
A

L
L

E
L

WG0

WG0

t=t0
0x0

0x8000 WG0 t=t256

(b) Stride = 2

0x0

t=t0

t=t2560x40000

(c) Stride = 16

Fig. 8: Memory Coalescing microbenchmark. Example with
16 work items (WIs) per work group (WG). Each row is a
cacheline (CL). For stride 1, 16 WIs access 16 words in a CL.
For stride 16, 16 WIs access 16 consecutive CLs. Results in
Fig. 9

the memory bandwidth, even at stride 16. As we increase
the number of work groups and work items, we create more
memory level parallelism (MLP) by generating more requests.
Increasing the stride also increases the number of requests
generated. As we move up along the main diagonal, we see an
increase in bandwidth. We reach close to the peak bandwidth a
lot sooner for larger strides. This is expected since we generate
sufficient memory requests without relying on a large number
of hardware threads.

E. Memory Level Parallelism

We run some further experiments to characterise the effect
of memory level parallelism (MLP). The goal for this micro-
benchmark is to determine the number of in-flight memory re-
quests that can be serviced concurrently. Latency for memory
requests can be hidden by multiple outstanding requests, also
known as the MLP. If the system has an MLP of K, majority
of the memory service time for up to K in-flight requests
can be hidden. However, if the memory pressure increases
beyond the available MLP, we would see the execution time
increase. To measure this empirically, we use work groups
with a single work item, and increase the work groups one at
a time. Each work item’s accesses are dependent, but they are
independent from other work groups. We vary two parameters
in this experiment: the number of work groups and the working
set size of each work group; i.e., we run Nx1 kernels where N
is the number of work groups, and 1 denotes the single work
item for each work group. Each work group translates to a
hardware thread, and we vary N up to 168 since the SKL GPU
supports a maximum of 168 threads. Since we run N work
groups, the total working set size for the kernel is N times the
working set size of a single work group. We choose different
working sets per work group such that the total working set
would fall at different levels of the memory hierarchy. As we
increase the number of work groups, the total work done also
increases proportionally.

Fig. 10 shows the results for this microbenchmark. When
the working set is 64 bytes per work group, or 2 KB per
work group, the maximum total working set is smaller than
the L3 cache. Hence, we see no difference in the performance
characteristics of those two cases. At 1 MB per work group,
the total working set starts off in the LLC, but soon exceeds
the LLC around the 8 work group point. This is why there is an
initial ramp in the relative time for the 1 MB case, after which
it coincides with the 8 MB case. At 8 MB per work group,
we already start outside the LLC, and observe the DRAM’s
effects. We see that for all the working set values, there is
almost no increase in the total time up to 100 work groups
(discounting the initial ramp for the 1 MB case). Note that
the total work done and the amount of data read is increasing
proportionally in this region. After this point, we start seeing
an increase in the total time. The L3’s latency is ∼ 125 ns, and
throughput is 1 line per cycle. Hence, it makes sense that we
are able to hide the work of more than 100 work groups behind
the L3 latency. Interestingly, this trend persists even after we
are outside the L3, as it can be seen for larger working sets.
Since higher levels of the hierarchy have a higher latency,
one would expect to hide even more work behind the latency.
However, it appears that we hit a natural limit around the 100–
120 work groups region irrespective of the total working set
size. We believe that miss status holding registers (MSHRs)
or other similar bookkeeping structures impose a limit on the
available MLP. We conclude that the maximum avaliable MLP
for the iGPU is close to 100.

IV. TRACE GENERATION

We build the trace generator using the GT-Pin binary
instrumentaion toolkit, which also includes the Gen encoder
decoder (GED). These are loosely equivalent to Pin [8] and
XED toolkits for x86 CPUs. GT-Pin is capable of registering
callbacks at different granularities [3] such as function calls,
basic blocks, and instructions. Our main objective is to collect
complete execution traces including memory accesses. Fig. 11
presents a high level overview of the trace generation process.
Due to the high performance overhead of frequent callbacks,
and a few technical limitations, we limit our callbacks to the
following events:
• Every basic block (BBL) that does not change the control

flow of the program (non-CFG changing BBL)
• Memory accesses

The decision to instrument only non-CFG changing BBLs
is internal to GTPin’s algorithm. We infer the missing basic
blocks during post processing from the control flow graph.
The trace collection proceeds along two separate paths for
basic blocks and memory accesses which are combined in
the end during post processing. We use Google Protocol
Buffers [4] as a serialisation format for the traces to encourage
interoperability and reuse of traces across simulators. Another
reason for this choice is to accommodate future versions
or extensions to the ISA without breaking existing traces.
Reading of traces is mostly done by the standardised ProtoBuf
abstraction layer. The traces have a natural hierarchy that can

7

0 1 2 3 4 5 6 7 8 9
log2 (WGs)

4
5
6
7
8

lo
g 2

(W
Is
pe

rW
G) Stride = 1

0.6

8.9

3.6

1.4

22.3

BW
 GBps (log scale)

(a)

0 1 2 3 4 5 6 7 8 9
log2 (WGs)

4
5
6
7
8

lo
g 2

(W
Is
pe

rW
G) Stride = 2

0.6

8.9

3.6

1.4

22.3

BW
 GBps (log scale)

(b)

0 1 2 3 4 5 6 7 8 9
log2 (WGs)

4
5
6
7
8

lo
g 2

(W
Is
pe

rW
G) Stride = 4

0.6

8.9

3.6

1.4

22.3
BW

 GBps (log scale)

(c)

0 1 2 3 4 5 6 7 8 9
log2 (WGs)

4
5
6
7
8

lo
g 2

(W
Is
pe

rW
G) Stride = 8

0.6

8.9

3.6

1.4

22.3

BW
 GBps (log scale)

(d)

0 1 2 3 4 5 6 7 8 9
log2 (WGs)

4
5
6
7
8

lo
g 2

(W
Is
pe

rW
G) Stride = 16

0.6

8.9

3.6

1.4

22.3

BW
 GBps (log scale)

(e)

Fig. 9: Raw memory bandwidth for independent memory accesses at different strides

0

1

2

3

4

5

6

7

Ti
m

e
re

la
ti

ve
 t

o
 1

x1
 k

er
n

el

Work Groups (N)

Access time for Nx1 pointer chasing kernels

64 B per WG 2 KB per WG 1MB per WG 8 MB per WG

LLC to DRAM

DRAM

L3

Fig. 10: Relative access time for Nx1 kernels chasing pointers
in different working sets on SKL GPU

be expressed top down as Program →Thread List→ Ker-
nel Invocation List→Function Invocation List→Basic Block
List→ Instruction List. The hierarchical structure can be
efficiently represented as hashmaps in the protobuf schema.
The memory accesses are stored in a flat structure independent
of the hierarchy since a single instruction may have different
memory addresses at different times in the program. While
reading the traces, the memory addresses are combined with
the rest of the trace structure. We show a sample instruction as
it would appear during the trace reading stage in Fig. 12. The
instruction contains various fields decoded by GED. Some of
the fields such as registers and memory addresses can be lists.
The GEN ISA has a 2D addressing scheme for registers and
memory. We flatten these out and express them as lists in the
traces to make it easier to use the traces in simulators. The

Kernel

Execution BBL Instrumentation

Callback for

Non-CFG changing BBLs

Infer CFG-changing BBLs

GED Decoding

Hierarchical program_trace

Mem Instruction

Callback;

Dump Memops to disk

Read from disk

Memop Decoding

Per-thread dyn_trace

Combined Kernel Trace

Fig. 11: GPU Trace Generation Overview

trace size is generally dependent on the amount of memory
traffic in the application since the rest of the information
is highly compressed due to the hierarchical nature. For the
microbenchmarks described in the paper, the average trace size
was under 2 bytes per instruction. We will release all the traces
that we have collected using the tool publicly. The tool itself
will also be published as open source once the underlying
GTPin toolkit is available publicly.

V. EVALUATION

We use the MacSim [5] heterogeneous architecture sim-
ulator for simulations, and add a new iGPU module to it.
Currently, MacSim supports the x86 and ARM64 ISAs for
CPU cores, and NVIDIA’s intermediate PTX ISA for GPU
cores. We extend MacSim to support Intel GPUs by integrating
iGPU’s traces, and creating an architectural model that is a
hybrid of MacSim’s internal CPU and GPU models.

8

opcode: GED_OPCODE_send
exec_size: 16
dst_reg_file: GED_REG_FILE_GRF
dst_data_type: GED_DATA_TYPE_w
src0_reg_file: GED_REG_FILE_GRF
src0_data_type: GED_DATA_TYPE_uq
src1_reg_file: GED_REG_FILE_INVALID
src1_data_type: GED_DATA_TYPE_INVALID
dst_chan_en: 16
dst_addr_imm: -1
ins_uid: "4_3_34"
src0_reglist: "39_0", "39_1", "39_2", ...
... ...
... ...
mem_addr: FF00007F04, FFB886CC88, ...

Fig. 12: Sample Instruction in the GPU Trace

0

100

200

300

400

500

GF
LO

PS

Work	Items

Floating	Point	Charcteristics

HD	530	SKL

Simulation

Fig. 13: Floating point SP simulation

Figure 13 represents the single precision floating point
performance of the SKL GPU. As explained in Section III-A,
it scales linearly in the beginning as we increase the work
groups, but exhibits periodic dips in throughput due to the
workload imbalance across EUs. We model such character-
istics (the thread scheduler and compute units), and achieve
very similar performance as the real GPU.

0
50

100
150
200
250
300
350
400

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M
B

64
M
B

12
8M

B
25

6M
B

51
2M

B
1G

BAv
er
ag
e	
Ac
ce
ss
	T
im
e	
(n
s)

Working	Set	Size	(log	scale)

Latency	Characteristics

HD	530	SKL
Simulation

Fig. 14: Cache size simulation

Figure 14 represents the average access time at different
working set sizes for the SKL GPU. We faithfully model the
L3 and DRAM access latencies. The only deviation from the
measured data is in the LLC region. As described earlier in
Section III-B, the GPU is unable to use the full capacity, and
shows a steady increase of access times in this region. This is

not yet modelled in the simulator, and is a part of our future
work.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5

1
1

2

1
1

9

1
2

6

1
3

3

1
4

0

1
4

7

1
5

4

1
6

1

1
6

8Ti
m

e
re

la
ti

ve
 t

o
 1

4
x1

 k
er

n
el

Work Groups (N)

Access time for Nx1 pointer chasing kernels

HD 530 SKL Simulation

Fig. 15: MLP effect simulation. The working set is 2 KB per
work group from Fig. 10

Figure 15 represents the degree of MLP for the SKL GPU.
We are able to achieve similar trends of MLP close to 100.
We model this behaviour in the simulator with structures such
as the MSHR for caches. We show times relative to the 14x1
case as we are aware of a known bug in the simulator for very
low thread counts.

VI. RELATED WORK

Discrete GPUs have been studied extensively over the last
decade due to a sustained interest in HPC and machine learn-
ing. H Wong et al. [11] study the microarchitecture of NVIDIA
GeForce 200 GPUs through a series of CUDA microbench-
marks. Mei et al. [12] benchmark the memory hierarchy of
NVIDIA’s Fermi and Tesla GPUs across a variety of metrics.
Taylor et al. [13] present a microbenchmark suite for AMD
GPUs. More recently, commercial heterogeneous systems have
spurred the interest of the community in understanding the
memory access behaviour of these systems [14]. Daga et
al. [15] study the efficacy of fused CPU-GPU architecture in
addressing the PCI-E bottleneck. Resource sharing in such
systems, particularly in the context of a shared LLC was
studied by Garcı́a et al. [16]. They find that applications
modified to leverage the shared virtual space and fine grained
synchronisations can lead to significant improvements. Hetero-
Mark [17] is a new benchmark suite aimed specifically at
collaborative computing in heterogeneous systems, and an ex-
phasis on different memory patterns between CPUs and GPUs.
On the simulation front, GPGPU-Sim [18] remains a popular
simulator in the area of academic research for NVIDIA
GPUs. It has also been integrated with the gem5 [19] CPU
simulator to form a combined execution driven heterogeneous
simulator, gem5-gpu [20]. A different approach to NVIDIA
GPU simulation relies on the versatile GPUOcelot [21] dy-
namic compilation framework, which, among other things,
facilitates PTX emulation. MacSim [5] simulator leverages this
ability from GPUOcelot to simulate heterogeneous workloads.
Among simulators that are not primarily focused on NVIDIA

9

GPUs, ATTILA [22] presents a general execution driven
microarchitectural simulator for GPUs, and they simulate a
subset of OpenGL calls. Multi2Sim [23] simulates the AMD
Evergreen GPU’s native ISA along with x86 GPUs in a het-
erogeneous simulator. Recently, some support for simulating
AMD APUs with HSA workloads has also been added to
gem5 [24]. Finally, for Intel GPUs, Kambadur et al. [3] present
the foundational work on the GTPin toolkit and its use in
instrumenting OpenCL applications. Their work focuses on
traces of OpenCL calls to find representative kernels using
SimPoint at kernel cycles granularity. Our work generalises
the use of GTPin for generating standardised instruction level
traces in an open source tool, which can be easily integrated
into different cycle level architecture simulators.

VII. CONCLUSIONS

In this paper, we explored the microarchitectural char-
acteristics of Intel Gen9 integrated iGPUs. We summarise
the important findings about Intel GEN9 iGPUs from our
experiments:
• 4 threads per EU are sufficient to reach peak GFLOPs.
• The GPU’s memory hierarchy latency is higher than the

CPU’s, even when accessing the same resources like the
LLC.

• The GPU is unable to use the LLC’s total capacity.
• The GPU’s accesses to the LLC are relatively unaffected

by CPU’s interference whereas the CPU’s LLC accesses
are affected by streaming interference from the GPU.

• The GPU has an MLP of around 100 memory requests
across the memory hierarchy.

To the best of our knowledge, this is the first work that takes
a detailed look at the Intel iGPU architecture, and provides a
complete flow of modelling, trace collection, and simulation.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable feedback. This work was supported in part by Intel
Corporation and the National Science Foundation under grant
CCF-1054830.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on. IEEE, 2009, pp. 163–174.

[2] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A framework for dynamically instrumenting gpu compute applications
within gpu ocelot,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units. ACM, 2011, p. 9.

[3] M. Kambadur, S. Hong, J. Cabral, H. Patil, C.-K. Luk, S. Sajid, and
M. A. Kim, “Fast computational gpu design with gt-pin,” in Workload
Characterization (IISWC), 2015 IEEE International Symposium on.
IEEE, 2015, pp. 76–86.

[4] K. Varda, “Protocol buffers: Googles data interchange format,” Google
Open Source Blog, Available at least as early as Jul, vol. 72, 2008.

[5] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

[6] S. Junkins, “The compute architecture of intel® processor graphics
gen9,” Intel whitepaper v1, 2015.

[7] “Micro48-tutorial on intel processor graphics: Architecture and
programming — intel software,” https://software.intel.com/en-
us/blogs/2015/08/27/micro48-tutorial-on-intel-processor-graphics-
architecture-and-programming, (Accessed on 07/13/2017).

[8] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: a binary
instrumentation tool for computer architecture research and education,”
in Proceedings of the 2004 workshop on Computer architecture edu-
cation: held in conjunction with the 31st International Symposium on
Computer Architecture. ACM, 2004, p. 22.

[9] “Khronos releases opencl 2.2 with spir-v 1.2 - khronos group press
release,” https://www.khronos.org/news/press/khronos-releases-opencl-
2.2-with-spir-v-1.2, (Accessed on 05/30/2017).

[10] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible software pro-
filing of gpu architectures,” in ACM SIGARCH Computer Architecture
News, vol. 43, no. 3. ACM, 2015, pp. 185–197.

[11] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on. IEEE, 2010, pp.
235–246.

[12] X. Mei, K. Zhao, C. Liu, and X. Chu, “Benchmarking the memory
hierarchy of modern gpus,” in IFIP International Conference on Network
and Parallel Computing. Springer, 2014, pp. 144–156.

[13] R. Taylor and X. Li, “A micro-benchmark suite for amd gpus,” in Paral-
lel Processing Workshops (ICPPW), 2010 39th International Conference
on. IEEE, 2010, pp. 387–396.

[14] J. Hestness, S. W. Keckler, and D. A. Wood, “A comparative analysis
of microarchitecture effects on cpu and gpu memory system behavior,”
in Workload Characterization (IISWC), 2014 IEEE International Sym-
posium on. IEEE, 2014, pp. 150–160.

[15] M. Daga, A. M. Aji, and W.-c. Feng, “On the efficacy of a fused cpu+
gpu processor (or apu) for parallel computing,” in Application Acceler-
ators in High-Performance Computing (SAAHPC), 2011 Symposium on.
IEEE, 2011, pp. 141–149.

[16] V. Garcı́a, J. Gomez-Luna, T. Grass, A. Rico, E. Ayguade, and A. J.
Pena, “Evaluating the effect of last-level cache sharing on integrated
gpu-cpu systems with heterogeneous applications,” in Workload Char-
acterization (IISWC), 2016 IEEE International Symposium on. IEEE,
2016, pp. 1–10.

[17] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
Cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in Workload Characterization
(IISWC), 2016 IEEE International Symposium on. IEEE, 2016, pp.
1–10.

[18] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, april 2009, pp. 163 –174.

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[20] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous cpu-gpu simulator,” IEEE Computer Architecture
Letters, vol. 14, no. 1, pp. 34–36, 2015.

[21] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A framework for dynamically instrumenting gpu compute applications
within gpu ocelot,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-4.
New York, NY, USA: ACM, 2011, pp. 9:1–9:9. [Online]. Available:
http://doi.acm.org/10.1145/1964179.1964192

[22] V. M. Del Barrio, C. González, J. Roca, A. Fernández, and E. Espasa,
“Attila: a cycle-level execution-driven simulator for modern gpu archi-
tectures,” in Performance Analysis of Systems and Software, 2006 IEEE
International Symposium on. IEEE, 2006, pp. 231–241.

[23] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a simu-
lation framework for cpu-gpu computing,” in Parallel Architectures and
Compilation Techniques (PACT), 2012 21st International Conference on.
IEEE, 2012, pp. 335–344.

[24] “Microsoft powerpoint - 03 amd-apu-model.pptx,” http://www.gem5.
org/wiki/images/7/7a/2015 ws 03 amd-apu-model.pdf, (Accessed on

10/17/2017).

10

https://software.intel.com/en-us/blogs/2015/08/27/micro48-tutorial-on-intel-processor-graphics-architecture-and-programming
https://software.intel.com/en-us/blogs/2015/08/27/micro48-tutorial-on-intel-processor-graphics-architecture-and-programming
https://software.intel.com/en-us/blogs/2015/08/27/micro48-tutorial-on-intel-processor-graphics-architecture-and-programming
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
http://doi.acm.org/10.1145/1964179.1964192
http://www.gem5.org/wiki/images/7/7a/2015_ws_03_amd-apu-model.pdf
http://www.gem5.org/wiki/images/7/7a/2015_ws_03_amd-apu-model.pdf

	Introduction
	Background
	Intel's GPU architecture
	OpenCL
	GT-Pin

	Performance Modelling
	Floating Point Performance
	Memory Hierarchy Latency
	Cache sharing effects between the CPU & GPU
	Memory Bandwdith and Coalescing
	Memory Level Parallelism

	Trace Generation
	Evaluation
	Related Work
	Conclusions
	Acknowledgement
	References

