
Traversing Large Graphs on GPUs with Unified Memory

Prasun Gera
Georgia Tech

prasun.gera@gatech.edu

Hyojong Kim
Georgia Tech

hyojong.kim@gatech.edu

Piyush Sao
Oak Ridge National Lab

saopk@ornl.gov

Hyesoon Kim
Georgia Tech

hyesoon@cc.gatech.edu

David Bader
∗

New Jersey Institute of Tech

david.bader@njit.edu

ABSTRACT
Due to the limited capacity of GPU memory, the major-
ity of prior work on graph applications on GPUs has been
restricted to graphs of modest sizes that fit in memory. Re-
cent hardware and software advances make it possible to
address much larger host memory transparently as a part
of a feature known as unified virtual memory. While ac-
cessing host memory over an interconnect is understandably
slower, the problem space has not been sufficiently explored
in the context of a challenging workload with low compu-
tational intensity and an irregular data access pattern such
as graph traversal. We analyse the performance of breadth
first search (BFS) for several large graphs in the context of
unified memory and identify the key factors that contribute
to slowdowns. Next, we propose a lightweight offline graph
reordering algorithm, HALO (Harmonic Locality Ordering),
that can be used as a pre-processing step for static graphs.
HALO yields speedups of 1.5x-1.9x over baseline in sub-
sequent traversals. Our method specifically aims to cover
large directed real world graphs in addition to undirected
graphs whereas prior methods only account for the latter.
Additionally, we demonstrate ties between the locality or-
dering problem and graph compression and show that prior
methods from graph compression such as recursive graph
bisection can be suitably adapted to this problem.

PVLDB Reference Format:
Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David
Bader. Traversing Large Graphs on GPUs with Unified Memory.
PVLDB, 13(7): 1119-1133, 2020.
DOI: https://doi.org/10.14778/3384345.3384358

1. INTRODUCTION
Graphics Processing Units (GPUs) have been used suc-

cessfully for accelerating graph based applications. These
applications are both interesting and challenging for GPUs

∗Contributed while at Georgia Tech

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384358

in that there is often ample parallelism in the algorithm, but
the data access pattern tends to be highly irregular. Graph
applications leverage thread-level parallelism (TLP) and the
high bandwidth afforded by the GPU’s internal memory to
hide long latency operations. Real world graphs such as
social networks, web graphs, and biological networks tend
to have sizes in the order of tens to hundreds of gigabytes.
However, GPUs have traditionally only had accesses to local
memory that is in the range of a few gigabytes. The major-
ity of prior work on GPUs and graph processing deals only
with graphs that fit in GPU memory. While there is some
work on distributed multi-GPU graph processing, the work-
ing assumption is still that the graphs fit in the collective
memory of the GPUs.

Recent GPUs support unified virtual memory (UVM) be-
tween CPUs and GPUs. UVM simplifies a lot of program-
ming abstractions by presenting a unified memory space
to the programmer, and it also supports oversubscription
of GPU memory. GPU memory can be oversubscribed as
long as there is sufficient host memory to back the allo-
cated memory. The driver and the runtime system han-
dle data movement between CPUs and GPUs transparently
(i.e., without the programmer’s involvement). UVM allows
us to run GPU applications that may otherwise be infea-
sible due to the large size of datasets. The performance
impact of UVM, specifically with regard to oversubscrip-
tion, has not been studied extensively. We found that using
unified memory näıvely for graph applications leads to a
severe performance penalty. With the increasing popular-
ity of accelerators in solving domain specific problems, we
believe that the problem of managing data movement ef-
ficiently between devices will become an important one in
the future. Prior works that improve the locality or other
memory access characteristics in graph applications span a
few different approaches. On the theoretical side, there are
external memory algorithms [4] that broadly model such sys-
tems. Some of these ideas have also been incorporated in
disk based implementations [46]. A common theme in graph
computing is to organise the underlying graph data in a
particular way to improve performance. For example, graph
partitioning is an important consideration in the distributed
setting where the goal is to improve load balance and re-
duce communication costs. The data structures used for
representing graphs also impact performance, and different
graph structures [20, 53] as well as compression schemes [13]
have been proposed. Graph ordering is another area with
performance implications for graph applications and sparse

1119

linear algebra. The focus of this paper is graph reorder-
ing for static graphs. We use breadth first search (BFS)
as a representative graph traversal kernel. BFS has been
studied extensively and is also equivalent to sparse matrix
vector multiplication (SpMV) [42], which lets us compare
relevant works from sparse linear algebra. It is also used as
a building block in other applications such as betweenness
centrality and strongly connected components. It captures
the key properties of irregularity and unpredictability of fu-
ture memory accesses, which are our main areas of interest
in the UVM context. We found that prior reordering solu-
tions such as RCM [26, 34], which generally perform well
for sparse symmetric matrices, do not perform well for large
directed graphs. Other prior methods such as Gorder [71]
are too expensive to be feasible and also do not outperform
RCM significantly for BFS. This paper makes the following
contributions:

• We propose a new graph reordering method, HALO
(Harmonic Locality Ordering) (Sec. 7), that targets
improvements to the data locality and the data trans-
fer volume for traversals on GPUs in a semi-external
memory model such as the one with UVM.

• Real world graphs are often directed and disconnected,
which makes locality optimisations difficult. HALO
improves the locality of arbitrary BFS traversals over
a wide range of real and synthetic graphs. To our
knowledge, this is the first work that looks at graph
reordering in the context of GPUs and unified memory.

• HALO performs better than prior methods such as
RCM and can be parallelised and approximated effi-
ciently.

• Traversals on reordered graphs show speedups in the
range of 1.52x-1.9x (Sec. 10). We also identify some
additional optimisations that reduce unnecessary co-
herence traffic and lead to an additional speedup of
1.85x (Sec. 10.4).

• We show that the problem’s formulation (Sec. 5) leads
to a natural overlap with the graph compression prob-
lem. We create an additional ordering method, BFS-
BP (Sec. 8), that adapts techniques from graph com-
pression such as recursive bisection to this problem.

2. MOTIVATION
In recent years, several works have proposed methods for

doing efficient graph processing on GPUs. Breadth first
search (BFS) in particular is often studied as a represen-
tative kernel and is also included in benchmarks such as
Parboil [67], Rodinia [24], and Graph500 [59]. The core
BFS kernel is also used as a building block in analytics ap-
plications such as betweenness centrality [19], cycle detec-
tion, maximum flow, strongly connected components [32],
and others. Several prior works [38, 39, 56, 52, 11, 51] and
GPU graph frameworks [70, 36, 60] cover different optimi-
sations that deal with issues arising from load imbalance,
uncoalesced memory accesses, or redundant work. The ma-
jority of these proposals assume that the graphs fit in GPU
memory. For larger graphs, there are some works that dis-
tribute the graph over multiple GPUs [61, 55] or between
the CPU and the GPU [35].

0

1

2

3

4

soc
-liv

ejou
rnal (

d)

orku
t (u

)

it-2
004 (

d)

tw
itt

er
(d)

gsh
-201

5-h
 (d

)

sk_
200

5 (
d)

it-2
004_

sym
 (u

)

tw
itt

er_
sym

 (u
)

frie
ndste

r (u
)

sk-
200

5_sy
m (u

)

uk-2
007

-05
 (d

)

kro
n_2

7 (
u)

unra
nd (

u)

molie
re-

20
16 (

u)

uk-2
007

-05
_sy

m (u
)

kro
n_3

0 (
d)

0

40

80

120

160

GT
EP

S

GB

GTEPS (GraphBig) Graph Size (GB)

graph > mem sizegraph
fits

1.51
PCI-E roofline

Figure 1: BFS performance measured in billions of Tra-
versed Edges per Second (GTEPS) on a Titan Xp GPU

Table 1: GPU Bandwidth Characteristics

GPU Mem. HtoD Link DtoD BW HtoD BW

Titan Xp 12 GB PCI-e 3.0 417.4 GB/s 12.1 GB/s

Recent GPUs support unified virtual memory (UVM) be-
tween multiple GPUs and CPUs. The feature is now sup-
ported by CUDA [66], OpenCL [2], and kernel drivers [1].
UVM presents a unified abstraction for memory manage-
ment between several devices, and it supports oversubscrip-
tion of device memory. The driver manages on-demand mi-
gration of pages transparently between devices. UVM is
attractive for development since the changes required are
generally not very invasive for applications, and it makes
working with datasets larger than a single GPU’s memory
capacity feasible. While applications such as deep learning
can deal with datasets larger than GPU memory, they are
explicitly designed to work in a pipelined fashion wherein
small batches of data are sent to the GPU at a time, which
in turn can be overlapped with computation. This approach
does not map naturally to irregular graph applications since
the data needed in the future is often not known beforehand.
Further, an application like BFS has low computational in-
tensity which makes it difficult to overlap computation with
data transfers. Hence, most of the prior work on GPUs and
graph computing deals only with graph sizes that fit in GPU
memory. UVM makes it possible to use existing GPU graph
frameworks for large graphs without extensive changes.

While UVM makes it easy to overprovision memory, the
performance is quite poor if we take an application like
BFS and change its cudaMalloc calls to cudaMallocManaged

calls. In Fig. 1, we show BFS’s performance results, mea-
sured in billions of traversed edges per second (GTEPS),
across different graph sizes after minimally modifying Graph-
Big [60] to take advantage of UVM. The results are accu-
mulated over fifty traversals from random sources for each
graph. We see that performance drops off sharply when the
graph sizes exceed the GPU’s memory capacity of 12 GB.
The Titan Xp GPU supports a peak transfer bandwidth
of 12.11 GB/s over PCI-e 3.0. We use 64-bit data types,
which gives us a theoretical peak GTEPS rate of 1.51. This
is a theoretical rate for just transferring the data linearly
whereas an application like BFS does highly irregular work
as well. We see that the average GTEPS rate for BFS in
the UVM region is 0.24, which is much lower than the theo-
retical peak, and we would like to improve its performance.

1120

It is also worth noting that this is a memory bound prob-
lem where current optimised parallel CPU implementations
(e.g., [28]) will likely outperform UVM due to higher DRAM
bandwidth. However, faster interconnects like NVLINK and
OpenCAPI, and newer versions of PCI-e have much higher
bandwidth and are making their way to mainstream prod-
ucts. Additionally, the traversal itself may be a part of a
larger GPU accelerated pipeline with higher computational
complexity. Newer architectures with non-volatile memory
or storage attached directly to CPUs or GPUs will face sim-
ilar challenges. We view this as a forward looking problem
that motivates and prepares for advances in memory sys-
tems, interconnects, and heterogeneous computing. Under-
standing a single GPU with UVM paves the way for more
complex heterogeneous systems with multiple GPUs and/or
CPUs and a common pool of addressable memory. To that
end, we would like to answer the following questions:

• What are the primary factors that impact the perfor-
mance in the UVM model?

• How is the UVM memory hierarchy different from other
memory hierarchies?

• How can we improve the performance of graph traver-
sals in the context of UVM?

3. BACKGROUND

3.1 Graph Storage
We use the compressed sparse row (CSR) format for rep-

resenting graphs. Since real world graphs tend to be sparse,
the CSR format, which stores the non-zero elements instead
of the entire adjacency matrix, is a suitable choice. The CSR
format is also popular for static graphs as one can leverage
high performance sparse linear algebra libraries. Dynamic
graphs, which are outside the scope for this work, would
benefit from a different representation such as the one used
by Hornet [22]. In the CSR data format, a graph G = (V,E)
is stored as two arrays. Hereafter, we denote |V | as n and |E|
as m. The first array, vlist of length (n+1), consists of row
offsets, and the second array, elist of length m, consists of
column indices. For a given vertex id v, its neighbours can be
accessed in the range elist[vlist[v] : vlist[v + 1]]. Other
optional arrays can be used for storing properties such as
edge weights. An application may also use additional struc-
tures for storing the output or intermediate results. In our
implementation, BFS uses a level array of size n for storing
the level numbers and optionally a pred array for storing the
predecessors. We use 64 bit types for all the structures to
account for the most general massive graphs. In practice,
it is possible to use either 32 bit types or a combination of
32 bit and 64 bit types for smaller graphs. Fig. 2 shows a
sample graph and its corresponding CSR representation.

3.2 BFS
Breadth first search (BFS) is a fundamental graph traver-

sal algorithm that is used as a building block in other graph
algorithms. The algorithm starts graph traversal from a
given source and visits other vertices in the graph in level
order. The algorithm has a serial complexity of O(n + m).
BFS has been studied extensively, and there are optimised
implementations for GPUs [38, 39, 56, 52, 11, 51]. Further,
the problem can also be expressed as iterative sparse ma-
trix vector multiplication (SpMV) [42, 21]. A simple GPU

Algorithm 1 BFS Advance (G, level, pred, curr, stop)

1: for all v ∈ V in parallel do
2: if level[v] == curr then
3: start idx = vlist [v], end idx = vlist [v+1]
4: for all idx ∈ [start idx, end idx) in parallel do
5: nbr = elist[idx]
6: old val = atomic min(&level[nbr], curr + 1)
7: if old val == ∞ then
8: pred[nbr] = v
9: stop = false

Table 2: Graphs used in this work

Graph Category Vertices Edges

soc-livejournal (d) Social Net 4.85 M 68.99 M
orkut (u) Social Net 3.07 M 234.37 M
friendster (u) Social Net 65.61 M 3.61 B
twitter (d) Social Net 41.65 M 1.47 B
it-2004 (d) Web Crawl 41.2 M 1.15 B
gsh-2015-h (d) Web Host 68.66 M 1.80 B
sk-2005 (d) Web Crawl 65.61 M 1.95 B
uk-2007 (d) Web Crawl 105.22 M 3.74 B
moliere-2016 (u) Biomedical 30.22 M 6.68 B
kron (27,28,29,30) Kronecker 2scale |V | x 16
unrand (u) Erdős-Rényi 134.22 M 4.29 B

kernel that traverses one level in a top-down BFS is pre-
sented in Alg. 1. Levels are initialised to ∞ for all vertices
except the source, which is initialised to 0. A central part
of the BFS algorithm is the notion of a frontier. The ver-
tices in the current frontier explore their neighbours and
add them to the next frontier. This step at line 5 in the
algorithm is responsible for bringing in data from the CPU
to the GPU in the UVM setting. Note that the level ar-
ray is serving as an implicit frontier here, which is also the
vector when you see BFS as SpMV. It is possible to use dif-
ferent data structures for the frontier along with different
load balancing strategies. These considerations are orthog-
onal to this work and can be applied independently. We are
mainly concerned with memory accesses in the elist array
at line 5, which remain unchanged as they are a function of
the graph’s topology and ordering.

3.3 Model Assumptions
We assume a sem-external memory model in this work.

We cover graphs whose O(n) structures such as vlist and
the level array can fit in GPU memory whereasO(m) struc-
tures such as elist do not. While unified memory does not
preclude much larger graphs where even O(n) structures do
not fit in the GPU’s memory, such problems will likely need
additional work to achieve efficient solutions. For general
external memory BFS, we refer the reader to theoretical
work in the area [4]. With current GPU memory capacity
trends, the semi-external model still scales to billion node
graphs. All the graphs are treated as unweighted since we
are primarily concerned with BFS.

3.4 Graph Selection
We use several large real and synthetic graphs spanning

web crawls [17, 15, 14], social networks [48], and a biologi-
cal hypothesis network [68]. These graphs generally have a

1121

(c) elist accesses for BFS starting from node 0 (left) and node 1 (right)

Time

0 10

1 4 3

2 5

6

7
8 9

(a) Sample graph (b) CSR representation

1 2 4 3 5 6 7 8 93 1 0 3

0 2 3 4 6 9 9 11 12 129 14vlist

elist 2

0 1 2 3 4 5 6 8 9 107 11index

7 9 5 63 10 2 5 10 01 8 3 5

2 5 6 810 7 9 013 10 5 3 5

512 53 10 10 7 9 0 6 8 3 5

3 10 2 5 10 7 9 0 5 61 8 3 5

(e) BFS from node 0 in graph (d)

Iteration 4

 Iteration 1

Iteration 3

Iteration 2

3 5 6 8 91 2 4 2 73

2 731 2 4 3 5 6 8 9

41 2 3 5 6 2 7 8 93

8 91 2 4 3 5 6 2 73

5 6 2 731 2 4 3 8 9

4 31 2 5 6 2 7 8 93

1 2 4 3 5 6 2 7 8 93

0 4
3

1 5

10
6

8

2
7

9

(d) alternate order for graph (a)

Figure 2: (a) A sample graph, (b) its CSR representation, (c) memory access pattern in elist for BFS from two different
sources; (d) an alternate order for the graph, and (e) access pattern in the alternate order for traversal from node 0

small diameter, high clustering, and scale-free degree dis-
tributions. As a counterpoint, we also include one uni-
formly random Erdős-Rényi graph [63], where our goal is
to show that locality based optimisations do not extend to
all graphs. Our graphs include a mix of directed and indi-
rected graphs. For the directed graphs, we also show results
for symmetrised version of the same graph. These graphs
are noted with the sym suffix. Directed graphs are denoted
with (d) whereas undirected ones are noted with (u).

4. DATA ACCESS PATTERN
Since the graphs that we want to work with are larger than

the GPU’s memory capacity, data is transferred between the
host and device on demand at runtime. The bandwidth be-
tween the host and the GPU is much lower than the GPU’s
internal bandwidth. In Table 1, we can see that the ex-
ternal bandwidth is 34x lower than the internal bandwidth.
Further, the effective bandwidth is inversely proportional
to the chunk size of transfers. Since unified memory is a
page fault handling mechanism, transfers happen at page
granularity (4 KB) or multiples thereof. The runtime uses
prefetching and batch processing of page faults to mitigate
the high latency of transfers [66, 65, 73, 7]. However, this
has side effects such as read/write amplification, thrashing,
and evictions, which are exacerbated in the case of an irregu-
lar application like graph traversal. We look at some simple
examples in our sample graph from Fig. 2 to highlight the
factors that impact performance.

Dependence on the Source Node: Consider a BFS
from two different source nodes, 0 and 1, in the sample graph
from Fig. 2(a). We show the progress of the traversal in
Fig. 2(c). The shaded blocks in elist are the ones that are
accessed at each level in line 5 of Alg. 1. The first BFS from
node 0 is the ideal case for UVM as all the accesses in elist

move contiguously in one direction with time. This leads to
fewer page transfers, good page replacement decisions, and
predictable prefetching. However, the second traversal from
node 1 accesses non-contiguous locations. This is a small
example, but such accesses can span several pages in a large
graph and result in multiple pages being transferred with a
low ratio of useful data, thrashing, and poor accuracy for the
prefetcher. We make the following observation: The source
node in a BFS affects the locality of accesses, but we have

no control over the source. Our goal is to optimise traversals
from arbitrary source nodes.

Dependence on Graph Ordering: Consider a different
ordering of the same sample graph as show in Fig. 2(d) and
a BFS traversal from source node 0. The access pattern of
words in elist, as seen in Fig. 2(e), is very different from
the contiguous pattern in the original order although it is
the same traversal. We make the following observation: A
graph’s ordering affects the locality of accesses in a BFS
traversal. If a frontier’s nodes are close to each other in
their labels, the exploration of their neighbourhoods would
have good locality in elist in the next iteration.

Dependence on Directedness: Directed edges and the
structure of the graph affect locality of accesses in elist.
For example, a traversal from node 5 in the original graph
would not explore any additional nodes, but would traverse
the entire graph in the undirected version since there is only
one connected component. This is an important distinction
because an ordering that optimises undirected graphs does
not necessarily optimise directed ones. We found that degree
based metrics alone are inadequate for directed graphs. In
directed graphs, not only do we have separate in and out
degrees, neither is a good indicator of broader reachability
since the degree only looks at connectivity one hop away.

5. PROBLEM FORMULATION
Given that BFS has low computational complexity, we are

primarily memory bound, and the inefficiencies in the UVM
model indicate that, from an algorithmic standpoint, the
main avenues for improvement lie in reducing the volume
of data transfer and improving the efficiency of transfers.
There are broadly three ways to improve the performance:

1. Change the algorithm to do less work

2. Compress the graph

3. Reorder the graph

Direction optimising BFS [11] is a solution in the first cat-
egory that reduces the number of edges visited. Such solu-
tions can be applied independently. Graph compression has
also been used successfully for large scale web and social
graphs [17]. It is a promising direction, but decompressing
graphs on the GPU is a challenging problem in its own right,

1122

which we leave for future work. Finally, graph reordering as
a means to improve the locality is the focus of this work.
Based on the observations in Sec. 4, there are two desirable
properties that we seek in an ordering:

• The labels of nodes within a frontier are close to each
other

• The labels of nodes across successive frontiers are close
to each other

When combined, these two properties lead to a pattern sim-
ilar to the one we saw in Fig. 2(c). For the first property,
we formulate the problem as follows: For a general directed
unweighted graph, we define the MinIntraBFS ordering as
the ordering that minimises the total cost

C =
∑

sources

∑
levels

|level|−1∑
i=1

c(π(ui+1)− π(ui)) (1)

where π is the permutation function, u1..u|level| are the
nodes in each level of the traversal such that π(ui) < π(ui+1),
and c is a cost function. That is, we seek to lower the gaps
between node labels within any frontier from any source
node in the graph. This formulation is quite close to other
graph ordering problems such as the minimum linear (or
log) arrangement problem (MLA/MinLogA) [33, 25] and
the minimum Log Gap Arrangement (MinLogGapA) [25,
29] problem, which are NP-hard problems. The MinLog-
GapA problem seeks to create compression friendly graph
orderings by way of reducing the gaps between labels of
neighbours of nodes since smaller gaps can be encoded more
efficiently. Recently, Dhulipala et al. [29] proposed a new
model called the bipartite minimum logarithmic arrange-
ment (BiMLogA) problem that generalises both MinLogA
and MinLogGapA. If the cost function is identity or log, we
can show that the MinIntraBFS problem is also NP-hard.

Theorem 1. MinIntraBFS (log cost) is NP-hard

Proof. We prove this by reducing an instance of the
BiMLogA problem, which is NP-hard, to the MinIntraBFS
problem. The BiMLogA [29] problem is defined as follows:
Let G = (Q ∪D,E) be an undirected unweighted bipartite
graph with disjoint sets of vertices Q and D representing
query and data vertices. The goal is to find a permuta-
tion, π, of data vertices, D, so that the following objective
is minimised: ∑

q∈Q

degq−1∑
i=1

log(π(ui+1)− π(ui)) (2)

where degq is the degree of query vertex q ∈ Q, and q’s
neighbors are u1, . . . , udegq with π(u1) < ... < π(udegq).
Given an instance of BiMLogA, create a new graph G′ =
(Q∪D,E′), where each undirected edge in E becomes a one-
way directed edge in E′ from Q to D. Notice that solving
MinIntraBFS on G′ solves BiMLogA on G. This is because
when a node in D is the source for a traversal, its out-degree
is zero and does not contribute to the cost in C. When a
node in Q is the source, each of the traversals is just one level
deep with the source at the root level and its neighbours inD
at the next. Since the cost looks at gaps between adjacent
nodes in a level, the nodes from Q do not contribute to
the cost as they are isolated in their respective root levels.
Thus, the final cost is the same as the cost of BiMLogA for

G. Since the nodes from Q do not appear in the cost, they
can be moved away to one side in the permutation without
increasing the total cost. Thus, we have solved BiMLogA
for G, which proves the claim of the theorem.

The identity cost version can be proved similarly. We can
also reduce in the other direction. That is, we can go from
MinIntraBFS to BiMLogA. We pursue this approach in more
detail in Sec. 8, where we create an ordering method, BFS-
BP, that optimises the MinIntraBFS cost function. BFS-BP
is based on the recursive bisection algorithm, BP, proposed
by Dhulipala et al. [29].

The second desirable property of reducing gaps across
BFS levels is more challenging to formulate succinctly. For
two successive levels of sizes |p| and |q|, we get |p||q| cross
terms for pairwise gaps between nodes in these levels. Fur-
ther, we may need to account for gaps beyond just successive
levels. Accounting for inter-level gaps would lead to an ex-
plosion of terms. We do not pursue inter-level gaps further
in this work. The actual cost is also different from a log or
identity cost in practice. The cost function depends on the
out-degree distribution in the graph as well as the memory
hierachy’s characteristics. This is also where the UVM hier-
archy differs from, for example, cache and DRAM. The unit
of data transfers in UVM is a page (4 KB). If two nodes
are relatively close in their labels, their neighbourhoods in
elist may fall on the same page. On the other hand, they
may not fall on the same cache line. The cost does not grow
proportionately with the gap. Rather, it behaves like a step
function. Once we exceed the page boundary, two neigh-
bourhood accesses will fall on two pages, no matter how far
the labels end up being. Despite these simplifications, we
show in Sec. 10.1 that the MinIntraBFS (log cost) model
correlates well with overall performance and data transfer
volume. Given the large granularity of transfers, we believe
that our ordering methods would also benefit other similar
architectures (e.g., non-volatile or solid state storage).

The main reordering algorithm proposed in this work,
HALO (Harmonic Locality Ordering) (Sec. 7) uses a geo-
metric measure for ordering instead of optimising the cost
function directly. Nevertheless, it reduces the MinIntraBFS
cost as well as application runtime (Sec. 10). The other pro-
posed method, BFS-BP (Sec. 8), is based on optimising the
cost function directly. All the reordering methods consid-
ered in this work are offline methods. Some prior works treat
reordering as an online step [6], but their primary workloads
have higher complexity than BFS. Any reordering scheme
that scans the graph ends up being as expensive as BFS
asymptotically making any proposal for online reordering
rather difficult. An ideal reordering scheme in the context
of this problem should strive to achieve similar costs as BFS
to be practical.

Before we describe the proposed solutions, we look at a
few performance metrics to better understand the inefficien-
cies in the UVM model.

6. PERFORMANCE

6.1 Read Amplification
We compare the volume of data transferred from the host

to the GPU to the ideal volume that needs to be transferred
for a traversal. The ideal volume is the number of traversed
edges times the unit edge size. The ideal transfer size is

1123

2.30

0

1

2

3

4

5

6

H
to

D
d

at
a

tr
an

sf
er

re
la

ti
v

e
to

 i
d

ea
l

graph > mem sizegraph

fits

(a) Read Amplification

0.65

4.15

0

1

2

3

4

5

6

Relative data transfer Relative runtime

graph

fits

graph > mem size

(b) Performance with prefetch disabled

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

g
e

o
f

P
ag

es

Once Twice Thrice Four times Five or more times

(c) Evictions

Figure 3: BFS performance characteristics on a Titan Xp GPU with UVM. (a) Average read amplification of 2.3x; (b) When
the prefetcher is disabled, performance suffers severely despite a reduction in data transfer volume; (c) Distribution of the
number of times the same pages are fetched from the host to device due to evictions

bounded by the graph size, but it can be lower if the traversal
does not touch the entire graph. We show the results in
Fig. 3(a), where we see that on average we transfer 2.3x
the ideal volume of data when we do traversals in the UVM
model.

6.2 Prefetches
A portion of the total data transfer volume can be as-

cribed to prefetches. Since the interconnect has very high
latency, GPU page faults are handled in batches, which are
called page fault groups in NVIDIA’s terminology [66]. The
prefetcher uses heuristics to transfer more pages than re-
quested based on the faulting addresses in the group. In
Fig. 3(b), we see that disabling the prefetcher in an at-
tempt to reduce the data transfer volume hurts performance
severely. Disabling the prefetcher reduces the transfer vol-
ume by 35%, but it increases the total runtime by 4.15x.

6.3 Evictions
The poor locality of accesses in graph applications also

makes page replacement decisions challenging. In NVIDIA’s
implementation, evictions happen at a 2 MB granularity.
When a new page needs to be mapped in, a 2 MB victim
region is selected for eviction, and any 4 KB pages mapped
in the region are evicted. The eviction follows an age based
LRU policy. It is different from traditional LRU in that
it tracks the timing of page allocations rather than page
accesses by the GPU. We confirmed this from the UVM
driver’s source code. In Fig. 3(c), we plot the distribution of
4 KB pages that are fetched from the host to device. We see
that it is extremely common for a large fraction of pages to
be fetched multiple times. These pages are originally fetched
as either demand loads or prefetches, but are evicted due to
capacity constraints, only to be fetched again in the future.

7. HARMONIC LOCALITY ORDERING
There are two primary challenges with reordering a graph

for efficient accesses in an arbitrary BFS traversal: i) The
source node for the BFS is not known beforehand, and ii)
directed graphs make reordering challenging. If the source
vertex for the BFS traversal were known beforehand, one
could label the vertices in the graph in the order in which
they are actually visited during the traversal starting with
the source as vertex 0. The sample graph in Fig. 2 is, in fact,
labelled in BFS order with node 0 as the source. Hence, it is
not surprising that it has good locality of accesses in elist

for that particular traversal. As we discussed in Sec. 4, this
does not extend to other traversals. Our main contribution
is that we devise effective and efficient heuristics based on
centrality scores to create an ordering. We describe our
solution in stages as we refine it towards the final ordering
algorithm.

7.1 Step 1: Connected Undirected Graphs
As a first step, let us consider undirected graphs with a

single connected component. We would like to place the
nodes in BFS frontiers close to each other in their ordering,
but we do not know the source beforehand. Instead of a
particular source, let us consider all possible sources as the
MinIntraBFS cost suggests. If we do a BFS from every
source, we would know when a node is visited in each of
these traversals. Some nodes are likely to be discovered
sooner than the others on average. If we were to create this
distribution, we could use this heuristic to order the graph
starting with the node that is most likely to be discovered
first. Formally, for each node, we can compute

c(x) =
1∑

y 6=x d(y, x)
(3)

where d(y, x) is the shortest distance from a different node y
to x. This is, in fact, a centrality metric known as closeness
centrality [10, 64] that is used in network and social analysis.
A node with high closeness centrality is close to all other
nodes in the graph since it has a lower average distance from
other nodes. In other words, it is likely to be discovered soon
in an arbitrary BFS. The nodes of the graph can be labelled
in decreasing order of their c(x) values. The interesting
relation is that we can go from a spatial metric in the graph
(i.e, distance of a vertex from others) to temporal aspects
of the traversal algorithm (i.e., when a vertex is likely to be
in a frontier) back to spatial aspects of the graph’s storage
(i.e., how to lay out the node labels).

7.2 Step 2: Efficiency Considerations
Computing the closeness centrality in unweighted graphs

reduces to performing a BFS from each node, which costs
O(n(n+m)) and is impractical. Instead, we can sample the
starting nodes. If we choose k nodes uniformly at random
as starting nodes, Eppstein et al. [30] show that for a graph
with diameter d and an error term ε, the inverse centrality
can be approximated to within an additive error of εd if k is
Θ(logn/ε2). Since real world graphs such as social networks
have a small diameter [58], the approximation works well for

1124

(a) Original graph with harmonic centralities

4.58
3.62

0.00

3.623.58

2.28

3.33
1.00

2.42
2.53

2.671 hop
2 hops
3 hops
4 hops

Distance to node 2

Harmonic centrality of node 2 = 2 ⇥ 1 + 2 ⇥ 1

2
+

1

3
+

1

4
= 3:58

<latexit sha1_base64="L72wJ4OylP4wioUuLqy98p7RQ6A=">AAACmnicbVFLS8NAEN7Gd3xVPephsQiiUJKq6EUQvSheFKwKptTNdtIubjZhdyKUkL/nf/A/eNWzm1rFVgcWvvnmsd/MhKkUBj3vteJMTE5Nz8zOufMLi0vL1ZXVW5NkmkOTJzLR9yEzIIWCJgqUcJ9qYHEo4S58Oivjd8+gjUjUDfZTaMWsq0QkOENLtauPQQhdoXImRVftFO4xbQQoYjDUp7s/OIg047lf5I3Csj/e3oi3X9Bjulc/OHIDUJ3vju1qzat7A6N/gT8ENTK0q/ZKZTPoJDyLQSGXzJgH30uxlTONgkso3CAzkDL+xLrwYKFiVmErH6yioFuW6dAo0fYppAP2d0XOYmP6cWgzY4Y9Mx4ryX9jSnAoJ7XBb4gjCT2Qz4Aj8nLD1KBjqcWMKcfoqJULlWYIin8JjzJJMaHlnWhHaOAo+xYwroWdnfIeK3+113TtVv3xHf4Ft42679X960btxBvud5ask02yTXxySE7IObkiTcLJC3kj7+TD2XBOnQvn8ivVqQxr1siIOTefbHbL6A==</latexit><latexit sha1_base64="L72wJ4OylP4wioUuLqy98p7RQ6A=">AAACmnicbVFLS8NAEN7Gd3xVPephsQiiUJKq6EUQvSheFKwKptTNdtIubjZhdyKUkL/nf/A/eNWzm1rFVgcWvvnmsd/MhKkUBj3vteJMTE5Nz8zOufMLi0vL1ZXVW5NkmkOTJzLR9yEzIIWCJgqUcJ9qYHEo4S58Oivjd8+gjUjUDfZTaMWsq0QkOENLtauPQQhdoXImRVftFO4xbQQoYjDUp7s/OIg047lf5I3Csj/e3oi3X9Bjulc/OHIDUJ3vju1qzat7A6N/gT8ENTK0q/ZKZTPoJDyLQSGXzJgH30uxlTONgkso3CAzkDL+xLrwYKFiVmErH6yioFuW6dAo0fYppAP2d0XOYmP6cWgzY4Y9Mx4ryX9jSnAoJ7XBb4gjCT2Qz4Aj8nLD1KBjqcWMKcfoqJULlWYIin8JjzJJMaHlnWhHaOAo+xYwroWdnfIeK3+113TtVv3xHf4Ft42679X960btxBvud5ask02yTXxySE7IObkiTcLJC3kj7+TD2XBOnQvn8ivVqQxr1siIOTefbHbL6A==</latexit><latexit sha1_base64="L72wJ4OylP4wioUuLqy98p7RQ6A=">AAACmnicbVFLS8NAEN7Gd3xVPephsQiiUJKq6EUQvSheFKwKptTNdtIubjZhdyKUkL/nf/A/eNWzm1rFVgcWvvnmsd/MhKkUBj3vteJMTE5Nz8zOufMLi0vL1ZXVW5NkmkOTJzLR9yEzIIWCJgqUcJ9qYHEo4S58Oivjd8+gjUjUDfZTaMWsq0QkOENLtauPQQhdoXImRVftFO4xbQQoYjDUp7s/OIg047lf5I3Csj/e3oi3X9Bjulc/OHIDUJ3vju1qzat7A6N/gT8ENTK0q/ZKZTPoJDyLQSGXzJgH30uxlTONgkso3CAzkDL+xLrwYKFiVmErH6yioFuW6dAo0fYppAP2d0XOYmP6cWgzY4Y9Mx4ryX9jSnAoJ7XBb4gjCT2Qz4Aj8nLD1KBjqcWMKcfoqJULlWYIin8JjzJJMaHlnWhHaOAo+xYwroWdnfIeK3+113TtVv3xHf4Ft42679X960btxBvud5ask02yTXxySE7IObkiTcLJC3kj7+TD2XBOnQvn8ivVqQxr1siIOTefbHbL6A==</latexit><latexit sha1_base64="L72wJ4OylP4wioUuLqy98p7RQ6A=">AAACmnicbVFLS8NAEN7Gd3xVPephsQiiUJKq6EUQvSheFKwKptTNdtIubjZhdyKUkL/nf/A/eNWzm1rFVgcWvvnmsd/MhKkUBj3vteJMTE5Nz8zOufMLi0vL1ZXVW5NkmkOTJzLR9yEzIIWCJgqUcJ9qYHEo4S58Oivjd8+gjUjUDfZTaMWsq0QkOENLtauPQQhdoXImRVftFO4xbQQoYjDUp7s/OIg047lf5I3Csj/e3oi3X9Bjulc/OHIDUJ3vju1qzat7A6N/gT8ENTK0q/ZKZTPoJDyLQSGXzJgH30uxlTONgkso3CAzkDL+xLrwYKFiVmErH6yioFuW6dAo0fYppAP2d0XOYmP6cWgzY4Y9Mx4ryX9jSnAoJ7XBb4gjCT2Qz4Aj8nLD1KBjqcWMKcfoqJULlWYIin8JjzJJMaHlnWhHaOAo+xYwroWdnfIeK3+113TtVv3xHf4Ft42679X960btxBvud5ask02yTXxySE7IObkiTcLJC3kj7+TD2XBOnQvn8ivVqQxr1siIOTefbHbL6A==</latexit>

Harmonic centrality
of each node

(b) Graph reordered with HALO-I

(c) Graph reordered with HALO-II

4
5

36

0 2

10

1

8

9

7

4
5

37

0 2

10

1

8

9

6
4

7

3
6

10

5

8

0

9

1

2

Figure 4: Graph reordering with HALO. HALO-I labels the nodes in decreasing order of centralities. HALO-II additionally
labels the neighbours of nodes before moving to the next centrality score.

such cases. Hence, the total complexity with this approxi-
mation is O((n+m)logn/ε2). Further, each of these sampling
BFSes can be done in parallel since they are independent,
followed by a parallel reduction.

Algorithm 2 HALO-I (Approximate Harmonic Centrality)

Input: G = (V,E), a sample parameter k > 1
Output: harm[] array of size |V | with centrality scores
1: for i = 0 to k do
2: source[i] = get random vertex()
3: levels[i,:] = BFS(G, source[i])
4: for j = 0 to |V | do
5: harm[j] = 0
6: for i = 0 to k do
7: // Skip zero level values (source nodes)
8: if (levels[i][j] != 0) then
9: harm[j] = harm[j] + 1/(levels[i][j])

10: for i = 0 to k do
11: // Scale values for source nodes that were skipped
12: harm[source[i]] = (k * harm[source[i]]) / (k-1)

7.3 Step 3: Directed and Disconnected Graphs
Notice that closeness centrality is only defined for undi-

rected and connected graphs. Since distances are summed
in closeness centrality, directionality as well as disconnected-
ness introduces infinities in the summation. In general, the
distance of a node from other nodes may be infinite, and
computing closeness from Eq. 3 would collapse the entire
term. Instead of summing distances, we sum the reciprocal
of distances. Formally, we compute

H(x) =
∑
y 6=x

1

d(y, x)
(4)

While this looks similar to Eq. 3, taking the reciprocal of
distances before summing them makes it a harmonic sum
rather than an arithmetic one. This deals with the prob-
lem of infinite distances elegantly as it does not collapse the
term. This centrality metric has been termed as harmonic
centrality [62] and is relatively new. As an aside, Boldi et
al. [18] compare several common centrality measures in a
principled way and find harmonic centrality to satisfy the

essential criteria that they term as “axioms” for centrality.
Futher, Eppstein et al.’s bounds for sampling based approxi-
mation still apply. The first variant of our ordering scheme,
called HALO-I hereafter, orders the nodes of a graph in
decreasing order of their harmonic centrality scores. The
algorithm for calculating approximate harmonic centralities
is presented in Alg. 2. In Fig. 4(b), we show how the origi-
nal sample graph from Fig. 2 is permuted by this algorithm.
The centrality scores are denoted outside the nodes with ex-
plicit calculation shown for node 2. Node 3 is the one with
the highest harmonic centrality, followed by nodes 5 and 6.
Hence, they get labelled as nodes 0-2 in the reordered graph.
The rationale is that node 3 in the original graph is central
for an arbitrary BFS and likely to be discovered soon.

7.4 Step 4: Biasing with Neighbourhood
While HALO-I gives us centrality scores, these scores can

be the same or very close for nodes that may be in different
parts of the graph. Since our primary problem is to optimise
the locality for traversals, we make a modification wherein
we bias the labelling to favour (out-)neighbours of nodes
that we think are likely to be discovered soon. The mod-
ification is that instead of going in strict decreasing order
of centralities for labelling, at each step we also try to label
the immediate neighbourhood of nodes wherever possible.
This variant is described in Alg. 3 and called HALO-II
hereafter. The ordering becomes a nested loop where the
outer one (line 2) goes in centrality order, and the inner
one (line 5) labels the unlabelled neighbours of nodes. In
this scheme, some such neighbours may already have been
labelled earlier, either because they have higher centralities
themselves, or because they are neighbours of nodes with
higher centralities. Such nodes would be skipped. We also
show how this changes the ordering in our running example
in Fig. 4(c). When node 4 in the original graph is labelled in
the outer loop, HALO-II labels its neighbour (node 7 in the
original graph) next. Since this additional pass visits each
edge only once, it does not increase the cost asymptotically.

7.5 Degree Based Ordering as a Special Case
We can look at harmonic centrality of a node in Eq. 4

as a sum of terms with a decay function. The higher order
terms have their weights discounted by a factor equal to the

1125

Algorithm 3 HALO-II (Biasing with Neighbourhood)

Input: G = (V,E), harm[n] calculated in Alg. 2
Output: A bijection φ : V → V
1: count = 0
2: for all u ∈ V in decreasing order of centralities do
3: if φ[u] not valid then
4: φ[u] = count++
5: for all v ∈ V such that (u,v) ∈ E do
6: if φ[v] not valid then
7: φ[v] = count++

distance they are away from the node [18]. The first term
in the harmonic centrality of a node is the number of nodes
at distance one, which is its (in-)degree. The second term
is the number of nodes at distance two, but this term is
scaled by the factor 2, and so on. Hence, we can get a first
order approximation of the centrality from its (in-)degree.
We evaluate these simplifications for both the variants of
HALO in Sec. 10.

8. RECURSIVE BISECTION (BFS-BP)
While HALO uses a geometric measure for reordering the

graph, we also create a separate method that optimises the
MinIntraBFS cost directly. The idea is to reduce MinIntra-
BFS to the BiMLogA problem, and leverage the recursive
bisection algorithm, BP [29], for BiMLogA. Recall that the
BiMLogA formulation seeks to reduce gaps between the data
nodes (D) in a bipartite graph consisting of query (Q) and
data nodes (D). To use this formulation, we add a query
node for each level of a BFS from each source, and we add
edges from the query node to the nodes in the respective
BFS level. In Fig. 5, we show a sample graph and the cor-
responding BiMLogA graph that we need to create in order
to optimise the objective in MinIntraBFS. For each possible
level from each possible source, we add a query node in Q
and add edges to the nodes in that BFS level in D.

We outline the main aspects of the algorithm here, and
refer the reader to BP [29, 54] for more details. The al-
gorithm follows the classic Kernighan-Lin [43] heuristic for
recursive graph bisection. The set D of data nodes is split
into into two sets, V 1 and V 2, and a computational cost
of the partition is defined. Next, the algorithm exchanges
pairs of vertices in V 1 and V 2 in order to improve the cost.
For every vertex v ∈ D, a move gain, which is the difference
of the cost after moving v from its current set to the other
set, is computed. The vertices of V 1 and V 2 are sorted
in decreasing order of gains, and pairs of vertices are ex-
changed if the sum of their move gains is positive. This
describes a single iteration, and the same step continues for
a fixed number of iterations (20 in our case) or until con-
vergence. The algorithm continues recursively on the par-
titions. The cost of the partition, which guides the move
gains in BP, is defined as follows: For every vertex q ∈ Q,
let deg1(q) = |(q, v) : v ∈ V 1|, that is, the number of adja-
cent vertices in set V 1; define deg2(q) similarly. Then the
cost of the partition is:

∑
q∈Q

(
deg1(q) log(

n1

deg1(q) + 1
) + deg2(q) log(

n2

deg2(q) + 1
)

)
(5)

0
1

4

3
2

(a) Sample graph (b) Reduction to BIMLogA graph

0 1 2 3 4

Query

Data

Figure 5: Reduction from MinIntraBFS to BiMLogA.
When node 2 is the source, {0,4} and {1,3} are the level
sets. We add one query node for each set along with the
corresponding edges to the data nodes. The same process is
followed for a traversal from each source.

Table 3: Related Work

Reordering Method Use Case

RCM [26, 34] Bandwidth Minimisation

Shingle [25], Slashburn [50],
BP [29], LLP [16], BFS [5]

Graph Compression

Gorder [71], Norder [47],
RabbitOrder [6], GRO [37],
Degree Based [72, 9, 31],
EmptyHeaded [3]

Locality Optimisation

METIS [41] Graph Partitioning

where n1 is |V1| and n2 is |V2|. The cost estimates the num-
ber of bits needed for coding the gaps between vertex labels
in binary. This follows from the fact that if the neighbours
of q ∈ Q are uniformly distributed in the final arrangement
of V 1 and V 2, then the average gap between consecutive
numbers in q’s adjacency list is gap1 := n1/(deg1(q) + 1)
and gap2 := n2/(deg2(q) + 1) for V 1 and V 2, respectively.

The cost of running BP is O(m logn+n log2 n). However,
in order to create the BiMLogA graph, we need to do a BFS
from every source, which is O(n(n+m)), and the resultant
BiMLogA graph would have O(n2) edges since we add O(n)
edges for each BFS. This is again not practical as a prepro-
cessing step. Similar to the sampling strategy in HALO, we
only do BFSes from the sampled nodes instead of all nodes.
This reordering method is called BFS-BP hereafter.

9. RELATED WORK
There is a large body of work on graph reordering that

spans sparse matrix optimisations, locality optimisations,
graph partitioning, and graph compression. We list some of
these in Table 3. Many sparse matrix computations bene-
fit from reordering. The goal of reordering in these cases
is to reduce fill-in in direct solvers or to improve the lo-
cality in iterative solvers. Since BFS can be expressed as
SpMV, it seems natural to apply similar techniques. The
Cuthill-McKee (CM) algorithm [26] and the related reverse
Cuthill-McKee (RCM) algorithm [34] are commonly used for
reducing the bandwidth of symmetric sparse matrices. RCM
is also interesting because the ordering method itself does a
variation of BFS traversal. Wei et al. [71] make the obser-
vation that sibling relationships between vertices are crucial
to locality, and they propose Gorder to reduce CPU cache
misses. Gorder’s performance for BFS was comparable to
RCM in their evaluations. We found that Gorder has a high

1126

1.27

1.38

1.54

0

0.5

1

1.5

2

2.5

3

S
p

ee
d

u
p

Baseline (natural ordering) Random In-Degree In-Degree + Neighbour RCM BP BFS-BP HALO-I HALO-II

graph > mem sizegraph fits

Figure 6: Single-source BFS performance for different graph orderings relative to natural ordering on a Titan Xp GPU.
Results are accumulated over 50 traversals from random sources. Geomean reported for graphs larger than memory capacity.

1.42

1.55

1.7

0
0.5

1
1.5

2
2.5

3
3.5

4

S
p

ee
d

u
p

Baseline (natural ordering) Random In-Degree In-Degree + Neighbour RCM BP BFS-BP HALO-I HALO-II

Figure 7: Multi-source BFS performance for different graph orderings relative to natural ordering on a Titan Xp GPU. Each
kernel does a BFS from 10 random sources at the same time.

runtime cost, and we were not able to use it for graphs at
our scale. Norder [47] uses (in-)degree + neighbourhood for
ordering. As we showed in Sec. 7.5, degree can be treated as
a first order approximation of harmonic centrality. Norder
also looks at neighbours two hops away rather than just im-
mediate neighbours. However, any depth greater than one
increases the reordering time asymptotically. A few other
schemes also use variations of degree based sorting and clus-
tering [72, 9, 37, 31]. Empty-Headed [3] uses a hybrid BFS
and degree based sorting that is similar to RCM. Rabbit
Order [6] is a reordering scheme based on community detec-
tion for page-rank like applications. It works on undirected
graphs, and the performance for BFS is comparable to RCM
in the authors’ results. We found that a lot of reordering
methods target the locality of vertex property structures
(i.e., the vector in SpMV like formulation). These methods
help in improving the temporal locality of properties such
as page-rank or distance values of nodes. They do not ben-
efit accesses in elist in our semi-external memory model.
There is no temporal reuse of edges in a BFS. Various graph
compression methods [25, 50, 29, 16, 5] help with locality in
general, although the goals are somewhat different. Graph
partitioning methods such as the ones used by METIS [41]
are also employed in distributed computing scenarios. The
goal in partitioning is to reduce the communication costs
and to improve load imbalance. This does not map to our
model directly as there is only a single compute node that
cannot keep a partition in memory across iterations. There
are also disk based methods like GraphChi [46], which uses

a sharding technique for improving locality. These meth-
ods also work better for iterative convergent algorithms like
page-rank that need to access the entire edge list in each
iteration.

From the ordering methods in prior works, we use RCM
and BP in our evaluations. RCM is close to the best per-
forming ordering for BFS in prior works [71, 6], and BP is
highly competitive for graph compression metrics. RCM is
used for reducing the bandwidth of sparse symmetric ma-
trices (i.e., undirected graphs). For directed graphs, we use
RCM on the symmetrised version (i.e., A+AT) of the graph.

10. RESULTS
We compare the performance impact of different ordering

schemes in two different experiments. In the first experi-
ment, as shown in Fig. 6, we look at the performance of 50
different traversals performed one at a time from random
sources. This is the same setup that we have used through-
out the paper. In Fig. 7, we also look at the performance of
multi-source BFS traversals where each kernel does 10 differ-
ent traversals from random sources at the same time. This
is meant to simulate patterns seen in applications like be-
tweenness centrality [19, 8], all pairs shortest paths, or BFS
in large diameter graphs [69], where instead of a single fron-
tier, multiple frontiers progress at the same time. The re-
ordering methods compared are natural ordering (baseline),
random ordering, the two HALO variants and their first or-
der approximations to (in-)degree, BP [29], RCM [26], and
BFS-BP. For the sampling based approximation in HALO

1127

Baseline RCM BFS-BP HALO-II

com-friendster (u)

uk-2007-05 (d)

Figure 8: Distribution of active nodes across different frontiers of the traversal

and BFS-BP, we used 20 BFS traversals from different and
unrelated random sources.

We first discuss the results in Fig. 6. The ordering meth-
ods are arranged in increasing order of average performance.
The baseline’s ordering is natural ordering. There is often
some locality in natural ordering, which depends on the pro-
cess used for generating the graph. For example, the web
graphs in this collection are ordered based on the lexico-
graphical ordering of URLs. This is important because the
potential for improving locality is highly dependent on the
original ordering. The two synthetic graphs, kron 27 and
unrand, don’t have a natural ordering, and their baseline
is the same as random ordering. Since unrand is a uni-
formly random graph, it does not benefit from any ordering
scheme. The random ordering destroys any existing locality
in other graphs and leads to an average slowdown of 65%.
The simple in-degree based ordering scheme also leads to
an average 31% slowdown. However, with the addition of
immediate neighbour heuristic to the in-degree scheme, the
performance improves, but only for undirected graphs. It
performs poorly for directed graphs, and the overall average
speedup is 1.1x. Next, RCM and BP perform better than in-
degree + neighbour, but the performance for directed graphs
is again variable with better results for undirected graphs.
Overall, RCM and BP show speedups of 1.25x and 1.26x,
respectively. BFS-BP performs more consistently across
both directed and undirected graphs, but does not outper-
form RCM for undirected graphs. This is consistent with
prior works which find RCM to perform well for undirected
graphs. BFS-BP’s overall speedup is 1.27x. Finally, HALO-
I and HALO-II show an overall speedup of 1.38x and 1.54x,
respectively. BP, BFS-BP, and HALO are consistent across
the datasets in that they perform at least as well as the
baseline for every case. Since the original graph may al-
ready have good locality, the reordering method should not
destroy it.

The performance trends for the multi-source BFS exper-
iment in Fig. 7 are similar with BFS-BP, HALO-I, and
HALO-II achieving speedups of 1.42x, 1.55x, and 1.7x, re-
spectively. There are two graphs at the left end that ex-

hibit larger swings in performance. The twitter d graph
fits in memory on its own, but with the additional meta-
data needed for storing BFS levels for multiple sources, it
starts to exceed the GPU’s memory. Reordering the graph
manages to keep the accesses largely in-memory. This leads
to a more pronounced speedup. This effect diminishes once
the graphs become larger, and the overall trend becomes
similar to Fig. 6.

To demonstrate the results visually, we show the distri-
bution of active nodes with the passage of time in Fig. 8.
The vertical axis plots increasing level numbers from top
to bottom, and the horizontal axis plots the vertex ids ac-
tive at each level. For the directed uk web graph, we can
clearly see that the active nodes within the levels as well
as across the levels follow the desirable “staircase” pattern
when the graph is ordered with HALO-II. BFS-BP on the
other hand manages to reduce the overall spread of active
vertices within levels, as evidenced by the gap at the right
end, but does not outperform HALO-II. RCM fails to im-
prove over baseline for the directed graph. For the undi-
rected friendster graph, both RCM and HALO-II achieve
good results whereas BFS-BP falls behind the others.

10.1 Data Transfer Volume and Log Gap Cost
The results show that the performance improvements due

to reordering are strongly correlated with the reduction in
data transfer volume. Earlier in Sec. 4, we observed that
the baseline ordering causes read amplification of 2.31x over
the expected ideal transfer volume. In Fig. 9, we see that
HALO-II reduces this amplification from 2.31x to 1.42x.
BFS-BP and RCM manage to reduce it to 1.72x and 1.8x,
respectively. We also compare the average log gap between
nodes within a BFS level in Fig. 10. This is the MinItraBFS
cost from Eq. 1 for the evaluated traversals. Once again, we
see that HALO-II achieves the lowest average log gap cost,
which is consistent with the volume of data transfer in Fig. 9
as well as performance trends in Fig. 6. The degree of im-
provement in the log gap cost is also a good indicator of
improvement in performance. We see that graphs like the
uk-2007-05(d) show a significant reduction in the log gap

1128

2.31
1.80

1.72
1.42

0

1

2

3

4

5

6

D
at

a
tr

an
sf

er
 v

o
lu

m
e

n
o

rm
al

iz
ed

 t
o

 i
d

ea
l

Baseline (natural ordering) RCM BFS-BP HALO-II

graph > mem sizegraph

fits

Figure 9: Host to device data transfer volume (lower is
better) relative to ideal transfer volume

0
0.2
0.4
0.6
0.8

1
1.2
1.4

A
v
er

ag
e

lo
g
 g

ap

Baseline (natural ordering) RCM BP BFS-BP HALO-II

Figure 10: Average log gap (i.e., MinIntraBFS cost; lower
is better) between nodes within a BFS level for 50 traversals

cost, but the cost is relatively unchanged in unrand. Al-
though BFS-BP is designed to minimise the log gap cost
explicitly, it is still an approximate solution with simplify-
ing assumptions. For example, the cost of the partition in
Eq. 5 assumes that neighbours of q ∈ Q are uniformly dis-
tributed in the final arrangement. We also using sampling
as an additional simplification to limit the runtime.

10.2 Sample Size Sensitivity and Reordering
Overhead

The practicality of using HALO hinges on the number of
sample BFS traversals needed for approximating harmonic
centrality. We used 20 random samples for the experiments
so far. We now vary the sample parameter systematically
from 2 to 256 and measure the performance for single-source
BFS. The results are shown in Fig. 11. We see that the per-
formance saturates around 32 samples with negligible im-
provements beyond that. These graphs have roughly 100M
nodes (Sec. 3.4), and the results indicate that the perfor-
mance saturates sooner than Eppstein et al.’s bounds [30]
(i.e., more like logn rather than Θ(logn/ε2)). There are a few
likely reasons for this. One is that we are using centralities
indirectly for ordering. Specifically, we are using a relative
ordering of centralities; the absolute error in centrality val-
ues is less relevant for our case. Second, since UVM is a
page fault handling mechanism, we benefit from locality im-
provements at a coarse granularity and are more tolerant to
errors at a finer level.

Sequential Costs: HALO’s asymptotic cost for both
the variants is O(logn/ε2(n + m)). RCM’s runtime cost is
O(m) [23]. However, this does not include the cost of find-

0
0.5

1
1.5

2
2.5

3

gsh-2015-h (d
)

sk_
2005 (d

)

it-2
004_sym

 (u
)

tw
itte

r_sym
 (u

)

gsh-2015-h_sym (u
)

frie
ndste

r (u
)

sk-
2005_sym

 (u
)

uk-2007-05 (d
)

kron (u
)

molie
re-2016 (u

)

uk-2007-05_sym (u
)

Sp
ee

du
p

4 samples 16 samples 32 samples 64 samples 256 samples

Figure 11: Sensitivity to the number of samples used in
HALO-II. Performance saturates around 32 samples.

ing pseudo-peripheral nodes, which is an essential additional
step in RCM. We are not aware of bounds on finding pseudo-
peripheral nodes, but various methods [45] have been pro-
posed for pruning the number of additional BFSes needed.
BFS-BP costs O(kn logn + n log2 n) for k sample BFSes
since each BFS adds O(n) edges.
Parallelisation: The computation of approximate har-

monic centralities is trivially parallel since the sample BFSes
are completely independent and each BFS can also be paral-
lelised. In contrast, the additional BFSes needed for finding
pseudo-peripheral nodes in RCM are dependent in nature.
Parallelising RCM itself is also challenging [40]. We note
that the additional pass over the graph in HALO-II (Alg. 3)
is sequential in our current implementation. BFS-BP fol-
lows recursive parallelism where each partition becomes an
independent subtask, but processing within a partition is
still serial.

Runtime: Since we did not have uniformly optimised and
parallel versions of the different ordering methods, we do
not compare the raw runtimes. We used the boost library’s
implementation for RCM, which was slow and took several
hours. We used the PISA framework [54] for implement-
ing BFS-BP. It uses TBB for parallelisation, and running
BFS-BP with 20 BFS samples took roughly one hour for
the graphs in this work on a 44 core Broadwell server. Re-
ordering with HALO-I and HALO-II generally took minutes
to tens of minutes.

10.3 Scaling with Graph500 Graphs
We perform scaling experiments with Kronecker graphs

that are generated per Graph500 specifications using the
gapbs framework [12]. These graphs have 2scale nodes and
m = 16× n. Single-source BFS performance for 50 random
traversals up to scale 30 for directed graphs and scale 29 for
undirected ones is shown in Fig. 12. We see a consistent
speed-up of around 1.8-1.9x for all the cases.

10.4 Additional Optimisations
In NVIDIA’s current implementation, the pages allocated

with UVM only exist in a single device’s page table at a time.
All the memory is assumed to be read-write (RW). The run-
time does not support transparent and fine-grained copy-
on-write semantics. When RW pages need to be evicted
from the GPU, they need to be transferred and mapped in
the host’s page table. This is a blocking operation that ef-
fectively doubles the data transfer volume since everything

1129

1.90 1.80

0
0.5
1

1.5
2

2.5

kr
on
_2
7

kr
on
_2
8

kr
on
_2
9

kr
on
_3
0

gm
ea
n

kr
on
_2
7

kr
on
_2
8

kr
on
_2
9

gm
ea
n

directed undirected

Sp
ee
du

p

Figure 12: Scaling with Kronecker graphs. Number de-
notes the scale where n = 2scale and m = 16× n

0

1

2

3

it-2
004 (d

)

tw
itte

r (
d)

gsh-2015-h (d
)

sk_2005 (d
)

it-2
004_sym

 (u
)

tw
itte

r_sym
 (u

)

gsh-2015-h_sym (u
)

frie
ndste

r (u
)

sk-2005_sy
m (u

)

uk-2007-05 (d
)

kro
n_27 (u

)

unran
d (u

)

molie
re-2016 (u

)

uk-2007-05_sym (u
)

kro
n_30 (d

)

GT
EP

S

Baseline HALO II + memadvise

1.51
PCI-E roofline

graph fits graph > mem size

Figure 13: Overall performance after combining HALO-II
reordering and the read-only memadvise hint

that is transferred from the host to device is also transferred
back for a large enough data set due to evictions. Our appli-
cation is clearly segregated between read only (RO) struc-
tures, elist and vlist, and RW structures, level and pred.
This allows up to pass a read-only memadvise hint for the
RO structures. The GPU creates copies of such pages and
drops them freely on eviction instead of waiting for them
to be transferred back to the host. This leads to an overall
speedup of 1.85x due to the approximate halving of data
moved over PCI-e. While this is a simple optimisation, it
may not be immediately obvious or possible in all applica-
tions. Combined with the average speedup of 1.54x from
HALO-II’s reordering (Fig. 6), we get an overall average
speedup of 2.84x, which we show in Fig. 13.

11. LIMITATIONS AND DISCUSSION
Although we did not encounter pathological cases in our

datasets, it is possible to create graphs where harmonic cen-
trality will not create a good ordering for BFS. For exam-
ple, consider multiple identical copies of a graph as different
(weakly) connected components. Since the components are
identical in a geometric sense, the centrality values will be
identical for every copy of a node in each of the components.
This will create an interleaved ordering of nodes if we sort
by centrality scores. In this particular case, we can separate
the components first before ordering, but in general, one can
create similar scenarios even within a single component.

The semi-external memory model, where we assume that
only O(n) structures fit in memory, also places some restric-
tions on algorithms. For example, some BFS implementa-
tions allow duplicates in the frontier and remove duplicates
in a subsequent step. This strategy does not work in the
UVM model as the frontier would grow to O(m) with dupli-

cates and cause a severe performance penalty due to random
read-write traffic over the slow interconnect. This does not
affect our level array implementation of frontiers that fits in
memory (Sec. 3), but is a fairly common pattern in graph
analytics.

The benefit of graph reordering is also application depen-
dent. In this work, we looked at improving the locality for
edge accesses that are hard to predict. In some applications
like page-rank, we need to touch all the edges in each itera-
tion. This sort of reordering may not be beneficial, but prior
solutions such as GraphChi [46] may apply. In some appli-
cations such as single source shortest paths (SSSP), work-
optimality considerations are more important that ordering.
Common parallel implementations such as Bellman-Ford’s
algorithm do asymptotically more work than the sequential
counterpart, which leads to a severe performance penalty
due to remote accesses. Delta-stepping [57, 27] implementa-
tions for SSSP have been proposed, but are quite challenging
to implement on GPUs. Finally, the UVM architecture is
still relatively new and would benefit from a combination
of hardware and software solutions. Recent hardware pro-
posals [49, 44] that optimise the GPU’s page fault handling
mechanism can be used as a complimentary approach.

12. CONCLUSION
In this work, we looked at the problem of improving the

locality of data accesses for breadth first search (BFS) in a
system architecture where the GPU can overprovision mem-
ory by accessing larger, albeit slower, host memory trans-
parently. This poses several challenges as BFS has low com-
putational complexity and an irregular data access pattern.
We proposed a new graph reordering algorithm, HALO, that
is both lightweight and effective in improving the perfor-
mance of subsequent traversals on large real world graphs.
It is possible to improve the performance of BFS by 1.5x-
1.9x in the unified memory setting by reordering the graph.
We found that HALO captures the structure of real world
directed graphs from the perspective of an arbitrary BFS
traversal well whereas popular prior methods such as RCM
only do so for undirected graphs. Additionally, the problem
ties into other graph ordering problems, and we showed that
we can leverage techniques from graph compression such as
recursive bisection, which resulted in an additional ordering
method (BFS-BP). In general, this opens up the problem
space for creating orderings that are both locality and com-
pression friendly. To our knowledge, neither the problem
of doing graph traversals in unified memory, nor the use of
harmonic centrality for graph reordering have been explored
before. The reordering solution is general enough that we
expect it would extend to other similar semi-external mem-
ory hierarchies with large unit transfer sizes.

Acknowledgements: We thank Srinivas Eswar, Oded
Green, and Prof. Richard Peng for helpful discussions. We
are grateful to the reviewers for their insightful feedback.
This work was supported in part by Defense Advanced Re-
search Projects Agency (DARPA) under contract FA8750-
17-C-0086. The content of the information in this document
does not necessarily reflect the position or the policy of the
U.S. Government, and no official endorsement should be in-
ferred. The U.S. Government is authorised to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

1130

13. REFERENCES
[1] Heterogeneous memory management (hmm) the linux

kernel documentation. https:
//www.kernel.org/doc/html/latest/vm/hmm.html.
(Accessed on 02/24/2020).

[2] Shared virtual memory.
https://www.khronos.org/registry/OpenCL/sdk/2.

1/docs/man/xhtml/sharedVirtualMemory.html.
(Accessed on 02/24/2020).

[3] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli,
K. Olukotun, and C. Ré. Emptyheaded: A relational
engine for graph processing. ACM Transactions on
Database Systems (TODS), 42(4):20, 2017.

[4] D. Ajwani, R. Dementiev, and U. Meyer. A
computational study of external-memory bfs
algorithms. In Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pages
601–610. Society for Industrial and Applied
Mathematics, 2006.

[5] A. Apostolico and G. Drovandi. Graph compression
by bfs. Algorithms, 2(3):1031–1044, 2009.

[6] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and
S. Iwamura. Rabbit order: Just-in-time parallel
reordering for fast graph analysis. In Parallel and
Distributed Processing Symposium, 2016 IEEE
International, pages 22–31. IEEE, 2016.

[7] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose,
J. Gandhi, C. J. Rossbach, and O. Mutlu. Mosaic: A
GPU Memory Manager with Application-transparent
Support for Multiple Page Sizes. In Proceedings of the
International Symposium on Microarchitecture
(MICRO), 2017.

[8] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. In
International Workshop on Algorithms and Models for
the Web-Graph, pages 124–137. Springer, 2007.

[9] V. Balaji and B. Lucia. When is graph reordering an
optimization? studying the effect of lightweight graph
reordering across applications and input graphs. In
2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 203–214, Los
Alamitos, CA, USA, oct 2018. IEEE Computer
Society.

[10] A. Bavelas. Communication patterns in task-oriented
groups. The Journal of the Acoustical Society of
America, 22(6):725–730, 1950.

[11] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. Scientific
Programming, 21(3-4):137–148, 2013.

[12] S. Beamer, K. Asanovic, and D. Patterson. The GAP
Benchmark Suite, 2015.

[13] M. Besta and T. Hoefler. Survey and taxonomy of
lossless graph compression and space-efficient graph
representations. arXiv preprint arXiv:1806.01799,
2018.

[14] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A Scalable Fully Distributed Web
Crawler. Software: Practice & Experience,
34(8):711–726, 2004.

[15] P. Boldi, A. Marino, M. Santini, and S. Vigna.
BUbiNG: Massive Crawling for the Masses. In
Proceedings of the Companion Publication of the 23rd

International Conference on World Wide Web, 2014.

[16] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In
Proceedings of the 20th international conference on
World wide web, pages 587–596. ACM, 2011.

[17] P. Boldi and S. Vigna. The WebGraph Framework I:
Compression Techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW
2004), 2004.

[18] P. Boldi and S. Vigna. Axioms for centrality. Internet
Mathematics, 10(3-4):222–262, 2014.

[19] U. Brandes. A faster algorithm for betweenness
centrality. Journal of mathematical sociology,
25(2):163–177, 2001.

[20] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and
C. E. Leiserson. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using
compressed sparse blocks. In Proceedings of the
twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 233–244. ACM,
2009.

[21] A. Buluç and K. Madduri. Parallel breadth-first
search on distributed memory systems. In Proceedings
of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, page 65. ACM, 2011.

[22] F. Busato, O. Green, N. Bombieri, and D. A. Bader.
Hornet: An efficient data structure for dynamic sparse
graphs and matrices on gpus. In 2018 IEEE High
Performance extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2018.

[23] W.-M. Chan and A. George. A linear time
implementation of the reverse cuthill-mckee algorithm.
BIT Numerical Mathematics, 1980.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In Workload
Characterization, 2009. IISWC 2009. IEEE
International Symposium on, pages 44–54. Ieee, 2009.

[25] F. Chierichetti, R. Kumar, S. Lattanzi,
M. Mitzenmacher, A. Panconesi, and P. Raghavan. On
compressing social networks. In Proceedings of the
15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 219–228.
ACM, 2009.

[26] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th national conference, pages 157–172. ACM, 1969.

[27] A. Davidson, S. Baxter, M. Garland, and J. D. Owens.
Work-efficient parallel gpu methods for single-source
shortest paths. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages
349–359. IEEE, 2014.

[28] L. Dhulipala, G. E. Blelloch, and J. Shun.
Theoretically efficient parallel graph algorithms can be
fast and scalable. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and
Architectures, pages 393–404, 2018.

[29] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano,
S. Pupyrev, and A. Shalita. Compressing graphs and
indexes with recursive graph bisection. In Proceedings

1131

of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1535–1544, 2016.

[30] D. Eppstein and J. Wang. Fast approximation of
centrality. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages
228–229. Society for Industrial and Applied
Mathematics, 2001.

[31] P. Faldu, J. Diamond, and B. Grot. A closer look at
lightweight graph reordering. 2019 IEEE International
Symposium on Workload Characterization (IISWC),
2019.

[32] L. K. Fleischer, B. Hendrickson, and A. Pınar. On
identifying strongly connected components in parallel.
In International Parallel and Distributed Processing
Symposium, pages 505–511. Springer, 2000.

[33] M. R. Garey and D. S. Johnson. Computers and
intractability, volume 29.

[34] J. A. George. Computer implementation of the finite
element method. Technical report, STANFORD UNIV
CA DEPT OF COMPUTER SCIENCE, 1971.

[35] A. Gharaibeh, T. Reza, E. Santos-Neto, L. B. Costa,
S. Sallinen, and M. Ripeanu. Efficient large-scale
graph processing on hybrid cpu and gpu systems.
arXiv preprint arXiv:1312.3018, 2013.

[36] O. Green and D. A. Bader. custinger: Supporting
dynamic graph algorithms for gpus. In High
Performance Extreme Computing Conference
(HPEC), 2016 IEEE, pages 1–6. IEEE, 2016.

[37] S. Han, L. Zou, and J. X. Yu. Speeding up set
intersections in graph algorithms using simd
instructions. In Proceedings of the 2018 International
Conference on Management of Data, pages 1587–1602.
ACM, 2018.

[38] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the gpu using cuda. In International
conference on high-performance computing, pages
197–208. Springer, 2007.

[39] M. Hussein, A. Varshney, and L. Davis. On
implementing graph cuts on cuda.

[40] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J.
Garzarán, and K. Pingali. Parallelization of reordering
algorithms for bandwidth and wavefront reduction. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 921–932. IEEE Press, 2014.

[41] G. Karypis and V. Kumar. A software package for
partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse
matrices. 1998.

[42] J. Kepner and J. Gilbert. Graph algorithms in the
language of linear algebra. SIAM, 2011.

[43] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell system
technical journal, 49(2):291–307, 1970.

[44] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim.
Batch-aware unified memory management in gpusfor
irregular workloads. In Proceedings of the
Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems. ACM, 2020.

[45] G. K. Kumfert. Object-oriented algorithmic

laboratory for ordering sparse matrices. Technical
report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2000.

[46] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. USENIX,
2012.

[47] E. Lee, J. Kim, K. Lim, S. H. Noh, and J. Seo.
Pre-select static caching and neighborhood ordering
for bfs-like algorithms on disk-based graph engines. In
2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 459–474, Renton, WA, July 2019.
USENIX Association.

[48] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
Large Network Dataset Collection.
http://snap.stanford.edu/data, June 2014.

[49] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang,
O. Mutlu, Y. Guo, and J. Yang. A framework for
memory oversubscription management in graphics
processing units. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 49–63. ACM, 2019.

[50] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph
compression and mining beyond caveman
communities. IEEE Transactions on Knowledge and
Data Engineering, 26(12):3077–3089, 2014.

[51] H. Liu and H. H. Huang. Enterprise: Breadth-first
graph traversal on gpus. In High Performance
Computing, Networking, Storage and Analysis, 2015
SC-International Conference for, pages 1–12. IEEE,
2015.

[52] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu
implementation of breadth-first search. In Proceedings
of the 47th design automation conference, pages 52–55.
ACM, 2010.

[53] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar,
and T. Kim. Mosaic: Processing a trillion-edge graph
on a single machine. In Proceedings of the Twelfth
European Conference on Computer Systems, pages
527–543. ACM, 2017.

[54] J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper,
and T. Suel. Compressing inverted indexes with
recursive graph bisection: A reproducibility study. In
Proc. ECIR, pages 339–352, 2019.

[55] E. Mastrostefano and M. Bernaschi. Efficient breadth
first search on multi-gpu systems. Journal of Parallel
and Distributed Computing, 73(9):1292–1305, 2013.

[56] D. Merrill, M. Garland, and A. Grimshaw.
High-performance and scalable gpu graph traversal.
ACM Transactions on Parallel Computing, 1(2):14,
2015.

[57] U. Meyer and P. Sanders. δ-stepping: a parallelizable
shortest path algorithm. Journal of Algorithms,
49(1):114–152, 2003.

[58] S. Milgram. The small world problem. Psychology
today, 2(1):60–67, 1967.

[59] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and
J. A. Ang. Introducing the graph 500. Cray Users
Group (CUG), 19:45–74, 2010.

[60] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin.
Graphbig: understanding graph computing in the
context of industrial solutions. In High Performance

1132

Computing, Networking, Storage and Analysis, 2015
SC-International Conference for, pages 1–12. IEEE,
2015.

[61] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens.
Multi-gpu graph analytics. In Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE
International, pages 479–490. IEEE, 2017.

[62] Y. Rochat. Closeness centrality extended to
unconnected graphs: The harmonic centrality index.
Technical report, 2009.

[63] R. A. Rossi and N. K. Ahmed. The Network Data
Repository with Interactive Graph Analytics and
Visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[64] G. Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581–603, 1966.

[65] N. Sakharnykh. Maximizing unified memory
performance in cuda — nvidia developer blog.
https://devblogs.nvidia.com/maximizing-

unified-memory-performance-cuda/. (Accessed on
02/27/2020).

[66] N. Sakharnykh. Unified memory on pascal and volta.
http://on-demand.gputechconf.com/gtc/2017/

presentation/s7285-nikolay-sakharnykh-unified-

memory-on-pascal-and-volta.pdf, May 2017.

[67] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid,
L.-W. Chang, N. Anssari, G. D. Liu, and W.-m. W.

Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Center for
Reliable and High-Performance Computing, 127, 2012.

[68] J. Sybrandt, M. Shtutman, and I. Safro. MOLIERE:
Automatic Biomedical Hypothesis Generation System.
In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, 2017.

[69] J. D. Ullman and M. Yannakakis. High-probability
parallel transitive-closure algorithms. SIAM Journal
on Computing, 20(1):100–125, 1991.

[70] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens. Gunrock: A high-performance graph
processing library on the gpu. In ACM SIGPLAN
Notices, volume 51, page 11. ACM, 2016.

[71] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph
processing by graph ordering. In Proceedings of the
2016 International Conference on Management of
Data, pages 1813–1828. ACM, 2016.

[72] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe,
and M. Zaharia. Making caches work for graph
analytics. In 2017 IEEE International Conference on
Big Data (Big Data), pages 293–302. IEEE, 2017.

[73] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and
S. W. Keckler. Towards High Performance Paged
Memory for GPUs. In Proceedings of the International
Symposium on High Performance Computer
Architecture (HPCA), 2016.

1133

