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a short story…
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} Our aim is to provide
} an unbiased characterization of edge devices



Motivation: Deep Learning is Everywhere 4
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© Nvidia



In-The-Edge Inferencing 5
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} Some applications are in-the-edge
} Self-driving cars, smart homes/cities

} Sometimes is the only option
} No Internet connectivity
} Intermittent connectivity 

} Security and privacy 
} Most straightforward way to preserve 

privacy and ensure security
} Personalization

} Cloud is not scalable forever 
} Edge could be even faster

} No cost associated with communication 
with the cloud

} Sometimes cost efficient 



Challenges of In-The-Edge Inferencing 6
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} When to use the cloud?
} Load balancing between edge devices
} API and service management
} Programming model and architectures
} Security, reliability, and fault tolerance

} Our Focused Challenge: 

Intensive Resource Requirements 
of Real-Time Deep Learning≠Resources of 

Edge Devices



To Measure is to Know! 7
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} Several companies have released edge-
specific devices

} Several frameworks for deep learning
} Several optimizations across HW/SW 

stack, several papers…
} How to choose one?

} No unified study
} Specially for single-batch inferencing, 

the common case for edge
} Similar endeavors, such as MLPerf.

Our focus is more on the edge.
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} Computation Layers:
} Fully connected (FC): Weighted sum

} Convolution (Conv): Basically a shared version of fully connected

} Others: Activation, Batch Normalization, Pooling layers

Deep neural network (DNN) is basically a stacking of these layers: 



Our Models 10
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Models: Famous hand-crafted stacking of those layers
We focusing on computer vision, or convolution neural networks (CNNs)

Image Recognition

Object recognition, 
Video recognition

FLOP and #Parameters:
Reported for every DNN
Proxy for compute/memory

FLOP/Parameter:
Represents reuse possibility



Characterized Models FLOP/Param 11
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We study a wide range of models
} Models sorted by their FLOP/Param

} Compute-intensive (right side) vs. Memory-intensive (left side)
} Efficient model design? e.g., Accuracy%/Param
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} Popular off-the-shelf DNN frameworks provide tools to design, train, and 
deploy DNN models
} We study widely-used frameworks:

} Common: TensorFlow (+Keras), 
Pytorch, DarkNet, Caffe1/2

} Specific/Mobile Platforms: 
TFLite, Movidius, TensorRT

+



Generality vs. Specialization 14
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} Several design decisions that tradeoff: 
Generality to Platforms      Specialization & Performance

} For instance, TensorRT over PyTorch on Nvidia Jetson Nano:

14
1.

3

21
5.

0

11
8.

4

29
2.

5

13
2.

1

29
0.

7

19
1.

7

12
3.

8

55
5.

4

23 32 18 95 46 92 32 42 22
9

4.10x

0
2
4
6
8

0

50

100

150

ResNet-18

ResNet-50

MobileNet-v2

Inception-v4
AlexNet

VGG16

SSD MobileNet-v1
TinyYolo C3D

Average

Sp
ee

du
p

Ti
m

e 
(m

s)

PyTorch TensorRT Speedup

4.10x Speedup
≠



Why? Optimizations! 15
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} Each Framework has its own set of optimizations:
} Generality contradicts with most of the optimizations
} Optimizations limits hardware platforms
} We study officially supported optimizations for inference  
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} Please check the paper for discussions 
} about each optimization 
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Hardware Platforms 18
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HPC Platforms
to compare

performance of 
single-batch inferencingEdge Platforms 

* Detailed HW description in the paper
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HPC Platforms
to compare

performance of 
single-batch inferencingEdge Platforms 

* Detailed HW description in the paper

TVM/FINN
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} Which device, regardless of frameworks, 
} performs the best?



Execution Time Analysis 23
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} Time per inference on all edge devices with best performing framework
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} Raspberry Pi executes all models (generality)
} GPU-based platforms achieve a good balance between 

performance and generality  
} EdgeTPU performs the best on MobileNet

} But has several compilation, quantization, retraining issues for 
extending to other models

} Movidius results are all close to others, but not the best
} No overall best device
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For edge specific single-batch inferences…
} Are HPC platforms really good at them?



Edge vs. HPC Platforms - Time 26
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} Time per inference between edge and HPC platforms with PyTorch
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Edge vs. HPC Platforms - Speedup 27
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} Time per inference between edge and HPC platforms with PyTorch
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Takeaways 28
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} HPC platforms are designed to be throughput-oriented for 
multi-batch DNN computations

} Single-batch inferencing is latency-sensitive
} Requires new design philosophy 

} Then, CPUs should perform better, they are latency 
sensitive…
} No, our benchmarks are compute-bounded on CPU

} HPC Platforms are not as good for single-batch inferecing
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Does the choice of which general framework matter?
(we saw a case for edge-specific frameworks before)
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} Time per inference on Raspberry Pi across different frameworks.
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Frameworks Comparison - TX2 31
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} Time per inference on Jetson TX2 across different frameworks
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Frameworks Comparison - Titan X 32
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} Time per inference on Titan X (TensorFlow and PyTorch)
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} On Raspberry Pi, TensorFlow performs the best
} But, not as good as edge-specific platforms

} On Jetson TX2, PyTorch performs the best
} Interestingly, on Jetson, TX2 Caffe, not updated after 2017, 

achieves a similar results
} Why?

} Dynamic vs. static computation graph
} Tensorflow numerous APIs and hard usability
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Energy is important for edge devices.
How do devices compare if we add energy?



Energy Measurements 35
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} Energy per Inference for a single inference.
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Power & Time Correlation 36
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} Measuring correlation between power and execution time.
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} GPU-based platforms have 5x energy saving than their HPC-
based counterparts

} Raspberry Pi, when considering time-power graph, is actually a 
good device!
} Besides Raspberry Pi has several other components that 

consume energy
} Movidius is the most energy-efficient device 
} EdgeTPU and Jetsons tradeoff energy efficiency with 

performance



Other Experiments 38
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Please check paper for all the experiments
} Virtualization overhead study
} TF-lite and TensorFlow study
} Software stack analysis
} Temperature behavior 
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Codes on GitHub 39
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Our codebase and implementation guide  
are available on GitHub:

https://github.com/gthparch/edgeBench

Please help us in extending current 
models and frameworks.

https://github.com/gthparch/edgeBench
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} Which edge device is the best? Depends
} Are HPC platforms good for single-batch inferences? Only 3x
} Does edge-specific platforms help? Yes, but with a cost
} Does the choice of general framework matter? Yes, but no 

definite answer on which
} What does help the performance the most? HW-SW codesigns
} What does energy measurements show? Tradeoff between 

energy consumption and inference time
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Backup Slides
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Optimizations: Quantization 44
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INT8 Operation Energy Saving vs 
FP32 Area Saving vs FP32

Add 30x 116x

Multiply 18.5x 27x
*Dally, 2015

} Commonly Supported: For inference, it has been shown that 
instead of FP32, we can use INT8 without any accuracy loss:

©TensorFlow

} Easy to implement 
} Every hardware supports
} Great gains!

FP32:

INT8:



Optimizations: Mixed-Precision 45
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} Not Commonly Supported: Use a mix of INT8, INT4 units.
} Need to ensure if a DNN model tolerate INT4 precision.
} Hardware support needed
} Not easy to implement, needs hardware support  

} For instance: NVIDIA Turing Architecture (e.g., Nvidia Nano Jetson)

© Nvidia
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Software-Stack Analysis - RPi 49
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} Time Profiling PyTorch and TensorFlow software stacks on 
Raspberry Pi
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Software-Stack Analysis – TX2 50

} Time Profiling PyTorch and TensorFlow software stacks on 
Jetson TX2
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Edge-Specific Frameworks - RPi 51
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} Time per inference on RPi with TensorFlow, PyTorch, and TFLite
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} Virtualization is a common solution for platform diversity.
} Does it has performance impact? How much?
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} Measuring correlation between temperature and DNN execution.
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IISWC’19

} Measuring correlation between temperature and DNN execution.
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