Work-in-Progress: Video Analytics From Edge To Server

Jiashen Cao Ramyad Hadidi
Georgia Tech Georgia Tech
ABSTRACT

Deep learning algorithms are an essential component of video
analytics systems, in which the content of a video stream is analyzed.
Although numerous studies target optimizing server-based video
analysis, partially processing videos on edge devices is beneficial.
Since edge devices are closer to data, they deliver initial insights on
data before sending it to cloud. In this paper, we present an edge-
tailored video analytics system by using a multi-stage network
designed to run on heterogeneous computing resources.

ACM Reference Format:

Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim. 2019. Work-
in-Progress: Video Analytics From Edge To Server. In International Con-
ference on Hardware/Software Codesign and System Synthesis Companion
(CODES/ISSS °19 Companion), October 13-18, 2019, New York, NY, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3349567.3351733

1 INTRODUCTION

The advances in deep learning (DL) enables us to accurately evaluate
large amount of data. For example, the VGG-16 neural network
achieved 6.8% top-5 error rate in ILSVRC-2014 submission. Hence,
DL has been widely adopted for many applications. Among these
applications, video analytics has a high demand of DL support. This
is because a query analyzer for video analytics performs several
tasks: image classification, object detection, and action recognition.

Although the state-of-the-art DL algorithm provides high accu-
racy, it requires powerful computation resources to accomplish its
tasks in a timely manner. This limits the wide adoption of video
analytics. In addition, video analytics generates streams of data
from multiple geographic locations, so the entire system involves
large-scale data streams. For example, London city has around half
a million surveillance cameras. Every second, gigabytes of videos
are sent to data centers for analysis. The current approach for video
analytics systems relies on centralized and powerful servers to
process incoming streams. These servers must have a good band-
width to data inputs (i.e., edge) and high availability of computation
resources. To accommodate such needs in edge devices, more de-
vices are deployed on the edge, thereby increasing the possibility
of performing DL computation in the edge.

Nonetheless, the performance of DL computation on edge de-
vices is a magnitude order slower; currently, the inference tasks are
either performed on edge devices or offloaded to a server whenever
possible [6]. In this paper, we propose that instead of performing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODES/ISSS °19 Companion , October 13-18, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6923-7/19/10...$15.00
https://doi.org/10.1145/3349567.3351733

Joy Arulraj
Georgia Tech

Hyesoon Kim
Georgia Tech

all computation in either edge devices or servers, we split the DL
computation network and use both edge and server systems with a
dynamic scheduling algorithm. The scheduling algorithm is able to
adjust amount of work on edge and server during runtime.

A traditional DL based system assumes that the entire system
has one accuracy requirement. However, the assumption breaks in
video analytics systems. For instance, police may run a query to
look for the license plate number of criminal vehicles. This requires
high accuracy to correctly identify the number on the license plate.
In contrast, traffic regulators may run a query to check traffic con-
ditions by estimating how many cars drive are on a road during a
certain period of time. For these kinds of tasks, the system can still
accomplish the task with relatively lower accuracy prediction.

Motivated by that, we propose a multi-stage deep neural network.
The network is designed to control the execution time based on
the demand of the accuracy. The network is designed such that
earlier stages can make faster and less accurate predictions but as
it progresses, the accuracy increases. If the query demands a higher
accuracy, the system continues executing the query to a deeper layer
to get fine-grained results. Compared to the traditional deep neural
network, our approach provides quality of service to users by user
controlled accuracy constraint, and the system chooses according
layer to stop. Compared to systems, which use multiple models
either lightweight but low accuracy or heavy but high accuracy, our
approach only uses a single model during runtime. To run multiple
models in a single system, the system needs to allocate additional
buffer space and reconstruct the computation graph, which is a
heavier task than query inference. By using multi-stage model, our
system does not suffer from model switching overhead between
queries. As a summary, our contributions in this work as follows: (i)
To control the trade-off between accuracy and latency, we propose
a multi-stage neural network. (ii) We design a scheduling algorithm
with a new cost model to place query from edge to servers.

2 RELATED WORK

Neurosurgeon [6] proposes to partition the DL model for a status
quo scenario. It searches for the optimal slicing point of the model
and places the partitioned model to either edge or server. It focuses
on reducing query latency for the end to end system. Hadidi et
al. [1-3] propose methods to excute DL models entirely on multiple
edge devices in a distributed fashion. Focus [4] proposes to filter out
irrelevant image frames during ingest time. It designs a specialized
lightweight convolution neural network to improve ingest time
performance and uses clustering algorithm to eliminate redundant
frames. Noscope [5] instead uses model specialization in which
multiple optimized models are created for different tasks to filter
out low probable data. Both Focus and Noscope use customized
filtering techniques to improve the performance, and only focus on
server-only optimization. To the best of our knowledge, our work is
the first work that efficiently schedules a DL-based video analytics
workload on heterogeneous platforms.

https://doi.org/10.1145/3349567.3351733
https://doi.org/10.1145/3349567.3351733

CODES/ISSS ’19 Companion , October 13-18, 2019, New York, NY, USA

P PP PP PP PP
< b@ (T e
N A A K

data @ feature @ classifier @ prediction

(a) Traditional Network.

Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim

SO S >
pso $\9\5 P
\ \ > a v oY o o
N At S

liil&&lll}ll&lllA

EEEN 1000
AAAA 1000
@ feature @ classifier @ customized class:fner @ prediction | [l 102

HE
AA
(b) Multi-Stage Network.

data

Figure 1: Network Comparison.

3 MULTI-STAGE NETWORK

The motivation for designing a multi-stage network comes from
the limitation of the traditional DL model, in which a DL model as
Figure 1a shows, single inference needs to pass through all layers to
reach the prediction result. However, in video analytics systems, not
all queries require highly accurate results. Thus, by using the multi-
stage network, the system is able to complete prediction earlier.
Because of the advantages of the multi-stage network, the system
saves bandwidth without sending unnecessary requests and also
reduces single query latency if it does not require high accuracy.

Design: As shown in Figure 1b, the multi-stage network has
customized classifiers attached to each of its feature layers (con-
volution layers). The feature layer is able to decide which layer to
pass its output either to the next feature layer or to its classifier.
During runtime, if the classifier attached to a feature layer is able to
reach the accuracy threshold, the feature layer instead sends data
to the classifier and receives the prediction result. By doing so, the
system avoids extra latency of using later layers.

Implementation: We prototype our idea with the VGG-16
network on the flower-102 dataset. First, we train the original VGG-
16 model (all feature layers and final classifier in Figure 1b), and
then freeze all weights for the feature layers. As a last step, we train
the customized classifiers (early prediction classifiers in Figure 1b)
based on the frozen feature weights.

Preliminary Results: Our experiment is conducted on Nvidia
TITAN XP GPU. Customized classifiers are appended to the first
seven layers of the original VGG-16 neural network. Users have
a total of eight options for accuracy and latency, including the
original VGG-16 model, as shown in Table 1. For a query that
makes prediction immediately after the first layer, it does suffer
some performance degradation such that the accuracy drops to
53.7% as opposed to the entire model’s accuracy of 89.4%. But it
reaches a speed up of 6X compared to the original VGG-16 model.
For a query that makes prediction after seven layers, it reaches up to
a 1.3X speed up compared to the original model, and the accuracy of
seven layers only drops to 83.2%. Combining all those intermediate
results (from two layers to six layers), the system offers a wide
variety of accuracy and latency trade-off options to users. We did
not get a chance to fine-tune our model, but in future, we believe
the model will achieve better results with hyper-parameters tuning.
The advantage of our approach is that we do not force users to give
up accuracy but leave the choice to users. We only provide quality
of service, and if users do not require high accuracy, our system is
able to optimize the query performance for users.

Number of Feature Layers || 1 2 3 4 5 6 7 8- 12 | Last Feature
Early Prediction v v v v v v v X X

Accuracy (%) 53.7 | 57.8 | 64.1 | 69.6 | 75.7 | 79.9 | 83.2 | - 89.4

Latency (ms) 04 |09 |11 |14 |16 |18 |20 |- 2.6

Table 1: Latency and Accuracy of All Classifiers

4 WORKLOAD SCHEDULING

We used a greedy scheduling algorithm from Karnagel et al. [7],
which finds an optimal workload placement on multiple devices
such as various GPUs and CPUs. The basic idea is a greedy approach
to find a close-to-optimal workload placement distribution. We plan
to extend the idea to our heterogeneous video analytics system.
First, we need to design a new cost model for the scheduler. The
model will be stored in a lookup table, in which it shows the cost
of running a specific partition on a specific device. The scheduler
will use the cost model to choose the best partition combination.

5 CONCLUSIONS AND FUTURE WORK

Figure 1 shows that the current multi-stage network achieves a
relatively fine-grained options of accuracy but between each layer
it still has about a 5% accuracy gap. Therefore, as for future research,
we target to leverage the gap between each accuracy level. The
possible approaches are to use thinner but deeper network such as
ResNet-50 and to add more specialized classifiers to the network.
Other future directions for us are to extend to state-of-art datasets
and also extend to other DL tasks, like object detection. We have
tried other datasets and network structures, so we strongly believe
that the multi-stage network applies to generalized datasets.

Regarding the workload scheduling, because the video analytics
system has different constraints, including query accuracy, query
latency, and bandwidth usage, we need to design a new cost model
based on those parameters. The proposed scheduling algorithm in
the paper by Karnagel et al. is slow to reach the optimal placement
solution. The alternative solution proposed in this paper is to use the
best placement found within a certain time constraint. In order to
achieve better results, we will redesign a new scheduling algorithm
with the new cost model. After we find a promising scheduling
algorithm, we plan to test its functionality on the simulator first
and then deploy it to actual devices.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their valuable comments. This
work was supported by NSF CSR 1815047.

REFERENCES

[1] Jiashen Cao et al. 2019. An Edge-Centric Scalable Intelligent Framework To
Collaboratively Execute DNN. Demo for SysML Conference, Palo Alto, CA (2019).

[2] Ramyad Hadidi et al. 2018. Distributed Perception by Collaborative Robots. IEEE
Robotics and Automation Letters (RA-L) 3, 4 (Oct 2018), 3709-3716.

[3] Ramyad Hadidi et al. 2018. Real-Time Image Recognition Using Collaborative IoT
Devices. In ReQuEST ’18. Article 4.

[4] Kevin Hsieh et al. 2018. Focus: Querying Large Video Datasets with Low Latency
and Low Cost. arXiv:cs.DB/1801.03493

[5] Daniel Kang et al. 2017. NoScope: Optimizing Neural Network Queries over Video
at Scale. arXiv:cs.DB/1703.02529

[6] Yiping Kang et al. 2017. Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge. In ASPLOS ’17. 615-629.

[7] Karnagel et al. 2017. Adaptive Work Placement for Query Processing on Hetero-
geneous Computing Resources. VLDB 10, 7 (March 2017), 733-744.

http://arxiv.org/abs/cs.DB/1801.03493
http://arxiv.org/abs/cs.DB/1703.02529

