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Abstract—Memory-bound sparse gathering, caused
by irregular random memory accesses, has become
an obstacle in several on-demand applications such
as embedding lookup in recommendation systems. To
reduce the amount of data movement, and thereby
better utilize memory bandwidth, previous studies
have proposed near-data processing (NDP) solutions.
The issue of prior work, however, is that they either
minimize data movement effectively at the cost of
limited memory parallelism or try to improve mem-
ory parallelism (up to a certain degree) but cannot
successfully decrease data movement, as prior propos-
als rely on spatial locality (an optimistic assumption)
to utilize NDP. More importantly, neither approach
proposes a solution for gathering data from random
memory addresses; rather they just offload operations
to NDP. We propose an effective solution for sparse
gathering, an efficient near-memory intelligent reduc-
tion (Fafnir) tree, the leaves of which are all the ranks
in a memory system, and the nodes gradually apply
reduction operations while data is gathered from any
rank. By using such an overall tree, Fafnir does not
rely on spatial locality; therefore, it minimizes data
movement by performing entire operations at NDP
and fully benefits from parallel memory accesses in
parallel processing at NDP. Further, Fafnir offers other
advantages such as using fewer connections (because
of the tree topology), eliminating redundant memory
accesses without using costly and less effective caching
mechanisms, and being applicable to other domains of
sparse problems such as scientific computing and graph
analytics. To evaluate Fafnir, we implement it on an
XCVU9PXilinx FPGA and in 7 nm ASAPASIC. Fafnir
looks up the embedding tables up to 21.3× more quickly
than the state-of-the-art NDP proposal. Furthermore,
the generic architecture of Fafnir allows running classic
sparse problems using the same 1.2mm2 hardware up
to 4.6× more quickly than the state of the art.

I. Introduction
The classic problem of irregular memory accesses in

sparse problems, which was first identified as a major
challenge by the high-performance computing (HPC) com-
munity [1], has recently become an obstacle in a wider range
of applications. An important and growing domain of such
applications is the recommendation systems broadly used in
industry (e.g., Facebook, Netflix, Youtube, Spotify, Baidu,
Alibaba) to suggest content such as music, products, and
videos to users [2]–[5]. Recommendation systems include
large embedding tables (sets of embedding vectors) consist-
ing of users’ data and features [3], [6]–[9]. The embedding

tables are dense data structures. However, looking up the
embedding table causes irregular sparse gathering, which
has been determined to be the memory-bandwidth-hungry
component in recommendation systems [6]–[9] and the main
source of performance bottleneck.
Embedding lookup, on the one hand, demands high

memory bandwidth, and on the other hand, consists of
reduction operations with low compute intensity. These
two features encouraged prior work to propose near-data
processing (NDP) solutions, namely TensorDIMM [9]
and RecNMP [8]. TensorDIMM [9] splits the embedding
vectors across DIMMs to utilize rank-level parallelism
for reading individual embedding vectors. Accordingly, it
splits the reduction operations across the DIMMs. As a
result, TensorDIMM successfully performs all reductions
at DIMMs and minimizes data movement from memory to
the cores by sending only outcome vectors rather than all
embedding vectors. However, the downside of TensorDIMM
is that it does not sufficiently utilize memory parallelism
because it uses column-major order, which fundamentally
breaks the row-buffer locality in the DRAM system.
As opposed to TensorDIMM [9], RecNMP [8] utilizes

rank-level parallelism for reading distinct embedding vec-
tors. Thus, the performance of RecNMP scales better
as more ranks are added to the memory system. The
main issue of RecNMP, however, is that it cannot fully
utilize the NDP in the lack of spatial locality. In other
words, if related embedding vectors do not reside in
the same DIMM, RecNMP fails to apply reduction at
NDP and therefore forwards them to the cores, which
in turn does not sufficiently decrease data movement.
This challenge is more pronounced in large embedding
tables, in which the related embedding vectors are less
likely to be located in the same DIMMs. Besides the
aforementioned main challenges, the previous studies did
not envision a few other important aspects in designing
an NDP solution. For instance, RecNMP [8] uses costly
but less effective caching mechanisms to reduce memory
accesses. Further, neither of them considers the overhead
of connections in larger systems. Finally, previous studies
focus only on one application and do not show whether
their solutions are applicable in other domains without
hardware modifications.
An effective solution for sparse gathering must co-

optimize data movement and parallelism. Our key insight
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to enable such a solution is to process data while we gather
them rather than processing them where they reside, mainly
because in sparse gathering, co-related data (i.e., operands
of an operation) do not reside in a single location of memory.
To this end, we propose an efficient near-memory intelligent
reduction (Fafnir1), which makes four main contributions:

• Low data movement and few connections: Fafnir uses
a tree that connects all ranks in a memory system,
thereby enabling full reduction at NDP on embedding
vectors from any rank. Such a tree not only guarantees
data-movement reduction but also requires fewer
connections than current solutions in larger systems.

• High-level parallelism and scalability: Fafnir utilizes
rank-level parallelism in reading distinct embedding
vectors, provides DIMM-level parallelism, and more
importantly takes advantage of memory parallelism
in utilizing available parallel processing at NDP. As a
result, the performance of Fafnir scales as more ranks
are added to the system or when batch size increases.

• Effective memory-access reduction: Fafnir reduces
memory accesses by reading only the unique memory
accesses (a fraction of all indices) in a batch of embed-
ding lookups and using them through the reduction
process in the tree as many times as required without
using any caching mechanism that is less effective (low
hit rate) and can cause a performance bottleneck.

• Applicable to other sparse problems: Fafnir is the first
generic NDP solution that can execute sparse problems
from various domains such as scientific computation
and graph analytics without modifications in hardware.
Genericity is key to reducing fabrication costs.

We implement Fafnir on an XCVU9P FPGA (utilizing
up to 3% of the resources) and design a 1.25mm2 ASIC
at 7 nm. Fafnir looks up the embedding tables up to 9.9×,
15.4×, and 21.3× more quickly than RecNMP for batch
sizes of 8, 16, and 32, respectively, which is mainly achieved
thanks to a tiny (i.e., 0.121mm2) chip between the memory
channels and core. Additionally, Fafnir executes sparse
problems from other application domains up to 4.6× more
quickly than the state-of-the-art NDP accelerator [10].

II. Sparse Gathering
Sparse data and randomness in the nature of a problem

are the two main sources of irregular memory accesses,
resulting in the major problem of costly data movement [11]–
[18]. The challenge of irregular memory accesses, first
identified as a major challenge in the high-performance
computing (HPC) community [1], is now an obstacle to a
wider range of applications in which randomness in the na-
ture of a problem contributes to creating irregular memory
accesses. This section reviews recommendation systems, a
growing application that captures sparse gathering.

Recommendation Systems: To recommend contents
such as music, video, and products to users, recommenda-

1Fafnir (/fa:vn@r/) is a star in the constellation of Draco.
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Figure 1: An example of embedding lookup (sparse
gathering) and reduction for two queries.
tion systems are broadly used throughout industry [2], [7],
[19]. For instance, recommendation models consume 65%
of artificial-intelligence inference cycles in the production
data-center of Facebook [7]. The recommendation systems
consist of (i) embedding tables, the sets of embedding
vectors that contain users’ data and features, followed by
(ii) neural networks, including fully connected [3] and/or
rectified-linear-unit [2] layers. To recommend content, first,
the related embedding vectors are gathered from the
embedding tables. Then, a simple reduction operation (e.g.,
element-wise summation, minimum, average) is applied
on the gathered embedding vectors to derive a single
vector, which is then sent to the neural networks for
further processing. The focus of this paper is the first
two steps: embedding lookup and performing reduction.
While embedding tables are dense, looking them up causes
random memory accesses, which results in sparse gathering.
Therefore, embedding lookup is the memory-bandwidth-
hungry part of the recommendation system. Besides, the
embedding lookup and the reduction operations capture
lower computation intensity and more cache misses com-
pared to neural networks [7]. Such characteristics put
recommendation systems in the memory-bound region of
the roofline model of CPUs and far below the ceiling [20]
because of memory bandwidth underutilization.
Terminology: Figure 1 summarizes the terminology used
in this paper. An embedding vector is identified by an
index, a set of which creates a query. Reading data from
irregular random locations of memory, indicated by a query,
is sparse gathering. An example of sparse gathering
in recommendation systems is embedding lookup. The
outcome of an embedding lookup (two or more embedding
vectors) is reduced into one vector by applying a reduction
such as element-wise summation [20].

III. Challenges

Despite common efforts to reduce the embedding vector
dimension [21] or number of embedding vectors [20], em-
bedding tables occupy multiple gigabytes of memory. Such
constraints necessitate the distribution of the embedding
tables across multiple memory devices to satisfy memory
capacity requirements [3]. Sparse gathering from random
addresses scattered over a large memory system requires
maximizing memory-bandwidth utilization. However, the
processor-centric organization of CPUs and GPUs and
the reused-optimized structure of their memory hierarchy,
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Figure 2: Comparing NDP-based solutions for embedding lookup: (a) Baseline with no NDP, (b) TensorDIMM [9],
(c) RecNMP [8], and (d) Our proposed solution, Fafnir.

conspire against efficient and fast sparse gathering. As
a results, prior studies proposed TensorDIMM [9], Rec-
NMP [8], and Centaur [22], data-centric solutions to process
data (i.e., the embedding vectors) where they reside (i.e.,
in DIMM and/or rank). Despite the advantages of these
NDP solutions, they left unsolved a few key challenges
of sparse gathering. In the following, we elaborate on
different challenges, solving some of which has been the
target of a prior study that in turn causes the other
challenges. Figure 11 in Section VI provides detailed
discussions on the challenges using quantitative results.

A. Data Movement
The large amount of data movement has been the main

concern of sparse gathering. For instance, as Figure 2a
shows, to apply two non-compute-intensive reduction
operations on six embedding vectors, the vectors must
be transferred all the way to cores. For example, vector
5 (v5) is required by two queries; thus, it is transferred
twice. In general, to perform n queries of size q on vectors
including v elements, n×q×v elements must be transferred
from the memory system to cores. To solve this challenge,
TensorDIMM [9] performs reductions in the DIMMs and
transfers only the results to the cores (Figure 2b). As
a result, instead of transferring all q vectors in a query,
it sends only one vector, hence reducing the amount of
data movement q times to n× v. TensorDIMM splits the
embedding vectors and distributes them over DIMMs and
creates 1/q of each output vector at a DIMM. Then, the
cores just concatenate the partitions of the outputs.

B. Lack of Utilization of Row Buffer Locality
Even though TensorDIMM effectively reduces data

movement, it is not as effective in sufficiently utilizing
row-buffer hits because it uses column-major order, which
fundamentally breaks the row-buffer locality in the DRAM
system. More specifically, while TensorDIMM can utilize
rank-level parallelism to read the elements of individual

embedding vectors, split over different DIMMs, it must
access random rows to read distinct embedding vectors
in a query (e.g. vectors of query 1 including v1, v2, v5,
and v6). Accordingly, only v scalar operations can be
performed in parallel at NDP. Although TensorDIMM
performs all n × (q − 1) × v operations at NDP, only v
of them are processed in parallel, while the rest can be
pipelined. For instance, for query 1, all DIMMs do the
following subsequently: read their own part of v1 from a
row (but not necessarily reading the entire row buffer), then
read v2 from another row, do a partial sum of size v/m
(v1+v2), simultaneously access another row to read v5, add
it to the partial sum while reading v6 from another row.
This approach particularly disturbs achieving low latency.

Splitting embedding vectors across more ranks causes
poor utilization of row-buffers (i.e., we must open a row,
but read a smaller fraction of it). To improve parallel
computation at NDP, RecNMP [8], another NDP solution
for embedding lookup, distributes embedding vectors across
the ranks, as shown in Figure 2c. In this approach, reading
distinct embedding vectors utilizes rank-level parallelism,
while elements of each vector are read from sequential
columns. As a result, RecNMP can more effectively increase
rank-level parallelism by adding more ranks to the system.
However, the downside of this approach is that even though
in theory entire operations for all queries (i.e., n×(q−1)×v)
can be performed in parallel at NDP, RecNMP might not
achieve it because of imperfect spatial locality. below.

C. Relying on Spatial Locality
Although RecNMP utilizes rank-level parallelism in

reading distinct embedding vectors, it does not guarantee
processing them all at NDP, mainly because it does
not provide DIMM-level parallelism. In many real-world
applications, embedding vectors of a query are scattered
over many random DIMMs, where DIMM-level parallelism
(i.e., channel-level reduction) is essential. For instance,
based on the birthday paradox, the probability of having a
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query with indices on the same channel is only up to 25% in
a four-channel system. Consequently, as in many cases, the
raw data needs to be transferred to the cores, so memory
bandwidth may not be fully utilized. As a result, even
though under perfect circumstances, maximum n×(q−1)×v
operations can be done at NDP, in the worst case, all of
them might need to be done at the cores. For instance, in
Figure 2c, only two embedding vectors (i.e., v5 and v6)
are reduced at NDP, and others are forwarded to the cores.
Relying on spatial locality has two other consequences.
First, increasing batch size does not necessarily result in
more utilization of parallel computation at NDP, hence
achieving higher throughput. Second, while in the perfect
scenario only n output vectors (i.e., n × v elements) are
transferred from the memory to the cores, in the worst
case, all n× q× v elements must be transferred. Therefore,
reducing data movement is also not guaranteed.

D. Connection Overhead
The other challenge of implementing embedding lookup

is the overhead of connections. As the embedding tables
are often large, they necessitate model parallelism (i.e.,
splitting and distributing tables across memory devices),
as shown in Figure 2a. On the other hand, the neural-
network layers of the embedding systems are small enough
to utilize data parallelism (i.e., implementing copies of
a neural network on different computing devices). The
combination of model parallelism for embedding tables and
data parallelism for neural networks in recommendation
systems requires costly all-to-all connections [3] (e.g.,
Figure 2a) between the memory devices and computing
devices (e.g., CPU or GPU cores) so that embedding vectors
can be gathered from any memory device and be forwarded
to any computing device. The aforementioned previous
studies have not proposed any solutions to reduce the
number of connections. Therefore, similar to the baseline,
they all require c×m connections to implement all-to-all
communication, which is not only costly but also limits the
scalability. To accelerate sparse gathering and prevent the
communication from becoming a bottleneck, Centaur [22]
uses high-bandwidth communication links and then applies
the reduction operations in a separate unit. Thus, unlike
TensorDIMM, Centaur does not reduce data movement
but instead transfers data more quickly.

E. Using Caches to Reduce Memory Accesses
The last challenge of implementing NDP solutions for

embedding lookup is eliminating extra memory accesses.
Observations suggest that a batch of queries have common
embedding vectors. Thus, not all the memory accesses cor-
responding to every single embedding vector are necessary.
For instance, in the example of Figure 1 and Figure 2,
both query 1 and query 2 require embedding vector 5
(v5). RecNMP [8] proposes using caches at NDP. Caching,
however, is not the most effective solution, as no more than
a 50% hit rate can be achieved [8]. Even achieving such a

hit rate requires a 128 KB cache that adds extra hardware
overhead (e.g., 38% area [8]). Besides, the cache accesses
can potentially cause a performance bottleneck.

IV. Fafnir
This section proposes our solution to address the chal-

lenges, listed in Section III. Our goal is to provide an
all-in-one solution to reduce data movement and provide
memory and computation parallelism without relying on
spatial locality. To achieve this goal, our key insight is to
process data while it is gathered rather than processing
data where it resides, mainly because in sparse gathering,
data (i.e., different embedding vectors) do not reside in a
single memory location; rather it is scattered. Based on
this insight, we propose Fafnir, a data-centric solution for
embedding lookup that, unlike prior data-centric solutions,
gradually applies the reduction on data while gathering
them from random memory devices. The overhead for
achieving the benefits explained in the following is m− 1
processing elements compared to prior work (that is, adding
a 0.121mm2 at 7nm chip as shown in Section VI).

A. Main Contributions
Using an Overall Tree Structure: To enable applying

reduction on embedding vectors from any memory devices
without relying on spatial locality, we use an overall
reduction tree, the leaves of which are connected to the
ranks of a memory system and the nodes are reduction
engines (Figure 2d). In this way, we guarantee that all
embedding vectors in a query are definitely reduced within
the tree at NDP – it could occur in a leaf if the embedding
vectors are from neighboring memory devices or could
occur at least at the root if the vectors are at the
remotest locations. Therefore, while in all three schemes
(i.e., TensorDIMM, RecNMP, and Fafnir) the mapping of
vectors to DIMMs equally define the load of each NDP,
only in Fafnir are the entire operations done at NDP,
regardless of the mapping of vectors to DIMMs. Since Fafnir
performs all the reduction operations at NDP, it guarantees
decreasing data movement. In other words, similar to
TensorDIMM, only the n × v elements corresponding to
the outputs are transferred from the NDP to the cores.
The tree structure of Fafnir also optimizes the number of
connections. More specifically, instead of connecting NDP
to the cores through the costly c×m all-to-all connections,
Fafnir integrates computations within 2m− 2 connections
and then forwards them to the cores through c connections
(i.e., total (2m− 2) + c, Figure 2d). As a result of the fewer
connections when adding more computation devices, Fafnir
is also more scalable compared to prior proposals.

Parallelizing Memory Accesses & Computations:
To fully utilize the tree and thus provides parallel compu-
tation while also reading data in parallel, Fafnir simulta-
neously activates distinct routes of the tree from arbitrary
leaves to the root to process a batch of queries. Fafnir flows
data corresponding to distinct queries through the tree in
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such a way that they do not conflict and hence their latency
does not affect one another. As a result of this mechanism,
Fafnir guarantees full utilization of the parallel computation
at NDP (i.e., n×(q−1)×v). Therefore, not only by adding
more ranks to the system, but also by increasing the batch
size (processing more queries), we can better utilize the
parallelism and achieve higher throughput.

No Caching Mechanisms: Fafnir uses a novel ap-
proach for processing a batch of queries with shared indices
that does not require caching mechanisms for eliminating
redundant accesses to memory. In other words, Fafnir reads
only the unique indices from memory and then uses them
as many times as required without storing data in a cache,
hence preventing overhead such as searching, reading from,
and writing to a cache. Fafnir rearranges a batch of queries
and treats them as a set of unique indices. Therefore,
Fafnir accesses each unique index only once, and then,
based on the query indices, it reduces the corresponding
indices within the tree. Our observations, shown in Figure 3,
illustrate the opportunity to effectively benefit from our
novel batch processing mechanism (details in Section IV-C).
This mechanism of Fafnir also improves energy efficiency.

Executing Various Sparse Problems: Customized
hardware has not often been selected as a viable option.
Instead, general-purpose hardware has usually been used
for executing applications such as sparse problems, even
though their performance is dramatically low. A reason
for this is the economic aspect. Extensive customization
has been expensive for narrow applications, even if such
hardware offers significant performance benefits. To deal
with the cost challenge, custom hardware solutions must be
generic and applicable to a reasonable range of applications.
To this end, we envision hardware for Fafnir that is generic
enough to be used for executing other sparse applications,
that include graph algorithms and scientific computations
including matrix algebra, the main kernel of which is sparse
matrix-vector multiplication (SpMV).

B. The Top-Down Overview of Fafnir
Software Support: Fafnir is a DDR-based NDP con-

nected to a host for the software support. The host is
responsible for mapping data to the memory addresses,
compiling the NDP kernels into a set of memory ac-
cesses, and calling Fafnir for executing NDP kernels by
transmitting memory access requests to the root of the
tree. The type of memory accesses differs based on the
program. For instance, for embedding lookup, the host
sends batches of memory read addresses, whereas for
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Figure 3: The percentage of unique indices in batches
of queries (see model description in Section V.)

SpMV (see Section IV-D), it forwards stream accesses
from all occupied ranks by specifying the initial memory
address and the size of the stream. Besides, while for
an embedding-lookup kernel the application software at
host arranges the queries, it performs vectorization for
SpMV. The distribution of the memory accesses across
the memory devices (ranks) is a result of the program
behavior. The root receives the requests in the form of
regular DDR4-compatible command/address (C/A) signals,
decodes them, and forwards them to corresponding (all
if needed) DIMM/ranks across all parallel ranks. Ranks
read data through DDR4-compatible data (DQ) signals
and then all the special steps of Fafnir to gradually apply
reduction operations from leaves to the root occur. Finally,
the root sends the outcome back to the host.

Architecture: Figure 4a shows an overview of the Fafnir
architecture, consisting of 32 ranks, and hence 31 processing
elements (PEs), connected in a tree structure. In current
implementation of Fafnir, one leaf PE is connected to
two ranks (i.e., 1PE:2R) and concurrently accesses them
without creating conflicts by using the same techniques
used in prior work [8], [9]. Similarly, depending on system
requirements, other scales (e.g., 1PE:4R or 1PE:1R) are
implementable. The PEs can be grouped as nodes in various
ways. Each node would be a sub-tree of PEs, implemented
in FPGA or ASIC. For instance, we can fabricate one PE
chip of size 274µm×282µm at 7 nm (Figure 4a left layout)
and embed it in a DIMM or put seven PEs together in a
single 492µm× 575µm chip to connect all the four DIMMs
in a channel. In this paper, we implement two types of
nodes: DIMM/rank and channel nodes. Accordingly, the
Fafnir configuration consists of four DIMM/rank and one
channel node. The nodes borrow their names from the
source of their inputs. The input to each DIMM/rank
node is from eight ranks (4DIMMs, 2 ranks per each). A
DIMM/rank node has seven PEs. Likewise, the channel
node has three PEs and its inputs come from four channels.
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Figure 4: (a) The architecture of Fafnir tree, consisting
of DIMM/rank and channel nodes and ASIC designs
at 7 nm for a PE and a DIMM/rank node. (b) The
mapping of embedding tables to memory addresses.
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Figure 4b illustrates the mapping of embedding tables to
32 ranks of our target memory system – we map embedding
vectors (e.g., each 512 bytes) to distinct ranks. Data flowing
from leaves to the root of the tree includes a header and a
value (the gathered data). The header consists of two fields:
indices and queries. The indices indicate the locations of
memory from which data have been gathered (i.e, the bits
[9-13] shown in Figure 4b). The queries indicate a list of
indices for different queries that have not been visited, yet.
For instance, assume that we have a query with indices 1,
2, 5, 6, and data in a PE is the result of reducing data
from indices 1, 2 and is yet to be reduced with data from
indices 5, 6. As a result, the output of that PE will have a
header of [indices:1,2|queries:5,6]. By approaching
the root and visiting more PEs of the tree, the indices from
the queries field of the header are shifted to the indices
field. Once data arrives at the root of the tree, the queries
field will be empty, and the indices field will indicate a
complete set of reduced indices for that query.

Microarchitecture of PEs: Figure 5 shows the mi-
croarchitecture of a PE, including two inputs (A and
B) coming from a rank or the upstream PE in the tree
architecture, and one output going to the downstream
PE. A PE consists of two input FIFO buffers connected
to compute units, the outputs of which are merged and
directed to the output through a merge unit. The task
of each PE is to process the headers and decide whether
to reduce the inputs and assign a new header to it, or
just forward them as they are. To enable processing a
batch of inputs, we instantiate compute units, each of
which iteratively compares one element of an input (e.g.,
B[x]) with all elements of the other input (e.g., A). More
specifically, the entire queries field of B[x] is compared
with the indices field of A[i] (i.e., B[x].queries[j]
and A[i].indices are compared). If B[x].queries[j]
contains all elements of A[i].indices, the compute unit
performs a reduction. If none of them match, it forwards

PE
input A input B

n m

Compute 
Unit

A
B

B[0]
A[0]

Compute 
Unit

A
B

B[1]
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Compute 
Unit

A
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Compare

A[i].indices

for i=0 to n
    for j=0 to q

B[x].queries[j]

Reduce

A[i] B[x]

Forward

B[x]

A B[x] 

Merge

FIFO
buffer A

FIFO
buffer B

 Reduce:
out.values = A[i].values + B[x].values
out.indices = concat (A[i].indices, B[x].indices)
out.queries = exclude (B[x].queries[j], A[i].indices)

value indices  q queries

…

B[0]
B[1]
B[2]

header

B[m-1]
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Figure 5: The microarchitecture of a PE including FIFO
buffers, compute, and merge units, showing the data
path from leaves to the root.

B[x]. In each PE, we also compare the two inputs in the
other way to make sure that the queries field of A[i] is also
matched with the indices field of B[x]. Since we process
the inputs of a PE in parallel, the compute units may
generate the exact same outputs concurrently, or multiple
compute units may generate multiple outputs, the data of
which are equal. In the first case, the redundant outputs
must be removed, and in the second case, the outputs with
the same data must be merged and the queries field in
their headers must be merged (i.e., concatenated). Such
post-processing is the task of the merge unit.

All PEs across the tree are identical. The size of the
PE (the size of input buffers A and B and the number of
compute units) could be tailored to better handle different
batch sizes. We define sizing based on the maximum size
of inputs. Since we are processing batches of queries, each
combination of the two inputs of a PE might be required by
one of the queries in the batch. Therefore, in the worst case,
a PE will need to generate all the possible combinations of
its input to the output, which is a maximum of three
combinations: Each of the inputs can individually be
forwarded to output, or they can be reduced. Therefore,
in theory, the number of outputs of a PE with two inputs
of sizes n and m is nm+ n+m.

The output size of a PE defines the input size of the
downstream PE. Therefore, as we move closer to the root,
the size of the outputs and hence the size of consecutive
inputs is supposed to be increasing, which demands larger
buffers and more compute units. However, in fact, the
number of outputs of each PE is limited by the batch size.
This is simply because not all the combinations of the
inputs are being used by a limited number of queries. While
hardware is fixed for a batch size, larger batch sizes defined
by software in various application domains are served as
several small batches at hardware. Therefore, the maximum
number of outputs for a PE is calculated as min(nm +
n+m,B), in which B is the batch size. Table I lists the
total size of buffers for PEs and nodes, which is the same
for PEs at any level of the tree for three batch sizes. As
Figure 5 shows, the buffers contain n = m entries, each
including a 512 B value and a 10 B header (16 × 5/8) for
q = 16 (i.e., each query includes maximum 16 indices)
and 5-bit indices/queries fields for identifying embedding
vectors from 32 embedding tables. In our configurations,
n = m = B also defines the number of compute units in a
PE. When the size of inputs is smaller than the number
of compute units, some compute units will simply have no
value and remain idle.

Table I: FIFO buffer sizes that are sum of all buffers in
all PEs (B is batch size).

Node PE buffer (KB) Node buffer (KB)
B = 8 B = 16 B = 32 B = 8 B = 16 B = 32

DIMM/Rank 4.6 9.3 18.5 32.4 64.8 129.5
Channel 13.9 27.8 55.5
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Figure 6: Concurrent batch processing and eliminating redundant memory accesses in Fafnir: (a) A batch of
four queries that access random embedding vectors from eight embedding tables and a three-level Fafnir tree
(b) Extracting the unique indices of four queries and creating the headers of requests to be forwarded to Fafnir.
The steps of processing the four queries through the PEs at three levels of tree: (c) L0, (d) L1, and (e) L2.

C. Key Mechanisms

This section describes how Fafnir performs eliminates
redundant memory accesses and concurrent batch process-
ing. This mechanism, however, does not rely on the batch
processing. For instance the same mechanism can also
be used for interactive processing, in which all nodes
would either forward or reduce without performing any
comparisons. Fafnir first reads data corresponding to only
the unique indices once, and then uses them within different
queries as many times as required without using any
caching techniques. The example in Figure 6 shows the
steps of batch processing for a batch of four queries (i.e.,
a, b, c, and d) that access random embedding vectors
from eight embedding tables and then processing them
through a three-level tree, shown in Figure 6a. Only in this
example, we assume that the indices to embedding vectors
are created by concatenating the index within a table with
a table number (e.g., 50 indicates index 5 from table 0).
To decrease the number of memory accesses, the host

extracts the unique indices used in a batch of queries and
creates the headers including indices (i.e., Inx) and queries
fields (Figure 6b). To do so, the unique indices are added
to the indices field. Then, all the indices of the queries,
including that unique index but excluding the unique one,
are added to the queries field. For instance, for the unique
index 11 Ê, we add the following to the queries field: 11,
32, 83, 77 from query a and 50, 11, 94, 26 from query
c (11 is excluded from both). In this way, instead of a total
of 14 memory accesses, we access seven unique ones: 50,
11, 32, 83, 94, 26, 77. The tables in Figures 6c, 6d,
and 6e list the details of the processing steps at levels L0,
L1, and L2 of the tree, respectively. These tables list (i)
the headers of the input A and input B to each PE, (ii)
the actions taken based on each comparison – each action
corresponds to the result of comparisons of one item in the
queries header, (iii) the header of raw outputs of each PE

before merging, and (iv) the inputs to the next PEs, which
are basically the merged outputs of the previous PEs.
PE (0|1) (similar to others) has two inputs, A and

B. As the queries fields of A and B indicate, data from
indices 50 and 11 will be used in two queries. In (0|1), a
compute unit compares item [83,94] of A with the index
of B (i.e., 11) and since 11 is not included in [83,94],
the compute unit forwards the value coming from input A,
with its initial header of [indices:50|queries:83,94].
Likewise, item [11, 94, 26] of A is compared with the
index of B (i.e., 11) and finds a match, thus reducing
the values of A and B and creating the new header of
[indices:50,11|queries:94, 26] Ë. The indices field
of the header is created by concatenating the indices of
A and B and the queries field is created by excluding the
indices of A and B from [11, 94, 26]. The compute units
in PE (0|1) do the same for items [32, 83, 77] and [50,
94, 26] of input B, resulting in a forward and a reduce.

As Figure 6c shows, the initial outputs of PE (0|1) in-
clude the header [indices:50,11|queries:94,26] twice.
In such a case, the merge unit is responsible for eliminating
redundant outputs. The three unique outputs of PE (0|1)
create the input A of PE (0|1|2|3), the input B of which
includes two items that have been created similarly in PE
(2|3). The number of initial outputs of PE (2|3), how-
ever, is five. Besides the redundant outputs with headers
[indices:32,83|queries:11 ,77] and [indices:32,83
|queries:26], PE (2|3) includes two groups of outputs
with the same indices 32, 83, but different queries field.
In such a case, the headers must be merged, because they
are two headers for one unique value. The result of such
merging is a value with the header of [indices:32,83 |
queries:11,77|26] (shown in Figure 6d), which goes to
input B of PE (0|1|2|3) Ì. As the figure shows, because
of merging, the size of input A and B never exceeds the
batch size (i.e., four). The process of applying different
actions on the inputs is similar in PE (0|1|2|3), whereas
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Figure 7: (a) Embedding lookup in Fafnir, (b) Using
Fafnir for an SpMV with no mechanisms, and (c) Using
vectorization to fully utilize Fafnir for SpMV.
here, each item of the queries field must be compared with
the indices field of all items in the other input. Besides,
as Figure 6c shows, in some cases, such as in PE (4|5),
only one of the inputs exists, which automatically leads
to a forward action. By iteratively processing data and
gradually reducing them (when required) through the tree,
we reach the root PE, the outputs of which indicate the
initial queries (Figure 6e). For instance, the green lines (Í)
show the final steps for creating query a.

D. Adapting Fafnir to SpMV
Sparse gathering is the common operation SpMV and

embedding lookup, both of which can be implemented
using a reduction tree. While this common feature allows
adapting Fafnir to SpMV, maximizing the benefits for both
requires addressing unique challenges that arise from their
differences. The main difference between the reduction in
embedding lookup and that in SpMV is that in embedding
lookup, we reduce distinct vectors into one vector, whereas
in SpMV, we need to reduce the elements of a vector into
one element. Therefore, as Figure 7a illustrates, for an
embedding lookup, each PE of Fafnir applies an element-
wise reduction on two (or more) vectors and generates one
output vector. For an SpMV, it is just the opposite: we need
a reduction tree to sum the elements of a vector. As a result,
the challenge is that if we simply use the reduction tree of
Fafnir to execute SpMV, only one compute unit (reduce) of
a PE will be utilized, as shown in Figure 7b. Our key insight
to resolve this challenge is to use a vectorization technique
along with an appropriate compression format. Figure 7c
illustrates vectorization, in which each PE processes a
vector of independent elements of the sparse matrix and
separately applies the reduction operation on them. Vector
size could be the same as embedding-vector size.
Because of their differences, embedding lookup and

SpMV use different mechanisms on the same hard-
ware. However, if the primary application of Fafnir would
be SpMV, the control logic shown in Figure 5 would be

Table II: SpMV vs. embedding lookup
SpMV Embedding lookup

Indices Unknown Known
Memory-access type Stream data and indices Stream data only

Leaf PE Multiplication Skip multiplicationwith vector

…

Iteration 0

…

Matrix 
(Sorted 
Indices):
Multiply to 
Vector:

…

0

Reduce:
Only 
Reduce:

……
Matrix
(Unsorted
Indices):

Iteration 1

…

Iteration m (last)

…

Final 
Result

Round: Round:

…
Matrix
(Unsorted
Indices):

Only 
Reduce:

r/nrr � 1

n n n

0 1

Figure 8: The iterations and rounds for SpMV on large
sparse matrices using Fafnir when only n columns of
the matrix fits to Fafnir at a time.
simpler because in SpMV, q is one and the iterations
over q in compute units would not be necessary. Table II
compares the mechanism of Fafnir for executing SpMV
and embedding lookup. Unlike embedding lookup, for
SpMV, the irregularity in memory accesses stems from
sparse data. Because of such a difference, Fafnir handles
memory accesses differently. First, as the second column of
Table II lists, for SpMV, we do not know where the non-zero
values of the sparse matrix are located. Therefore, when
we read data from memory, the indices of the elements
to be reduced are unknown. In fact, indices themselves
are being read from memory. As a result, for SpMV, we
stream both data and indices through the tree. Then,
based on the indices, the tree reduces related values. In
contrast, for embedding lookup, we know which indices
we need to access. Therefore, we only stream data. The
other difference between SpMV and embedding lookup is
that the leaf PEs for SpMV first multiply data with the
vector operands. The leaf PEs skip the multiplication for
embedding lookup. Similar to embedding lookup, SpMV
rather than caching mechanisms, uses a simple buffering,
in which a vector operand is buffered in the multipliers
until it is multiplied by the entire matrix operand.
To facilitate streaming sparse matrices, we suggest

using the list-of-list (LIL) [23] compression format, which
has become popular in recent sparse studies [24]–[26]
(sometimes called other names such as linked list). Further,
LIL is supported by the SciPy library [23], which makes its
application more straightforward. LIL compresses the non-
zero values of the original sparse matrix in one dimension
and saves the indices corresponding to the other dimension
of the matrix. As LIL compresses matrices only in one
dimension, it facilitates splitting large matrices into chunks
through their non-compressed dimension, hence facilitating
parallel streaming. The ease of splitting and parallel
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Figure 9: The number of iterations, rounds per itera-
tion, and required merges for matrices with up to 20
million columns, for vector sizes (a) 1024 and (b) 2048.
In our configuration for SpMV, vector size (i.e., the
number of columns that fit in Fafnir tree) is 2048.
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streaming is important in large sparse matrices (e.g., graph
problems or HPC). To apply SpMV on large matrices that
do not fit into Fafnir, we split them through their non-
compressed dimension. Similar splitting is also used in the
state-of-the-art NDP approach for SpMV [10].
As Figure 8 shows, we perform an SpMV in iterations,

each consisting of several rounds. In the first iteration
(iteration 0, which is functionally equivalent to the first step
of Two-Step algorithm [10]), the matrix is multiplied by the
vector operand, whereas all other iterations only merge the
results of the previous iteration. We use the same hardware
(DIMM/rank and channel nodes of Fafnir) for both types
of iterations. During merge iterations (i.e., iterations > 0),
leaf PEs skip the multiplications as they do in embedding
lookup. In addition, during the merge iterations, the row
indices are no longer sorted, but this does not impact the
functionality of Fafnir. Figure 9 illustrates the number of
required iterations and rounds per iterations for two vector
sizes (i.e., 1024 and 2048) when the number of columns
(and rows) increases up to 20 million. As the figure suggests,
even for matrices with more than 5 million columns, no
more than two merge stages are required.

V. Experimental Setup & Configuration
Figure 10 shows an overview of our design, implementa-

tion, and evaluation flow. We implement the microarchi-
tecture of Fafnir (and the baselines) in C++. We use our
hardware description in C++ for (i) RTL generation and
subsequently FPGA and ASIC implementation, and (ii)
performance evaluation. To generate RTL (in Verilog), we
use related #pragmas as hints to describe the microarchi-
tectures. We use Vivado HLS to generate RTL and Vivado
to synthesize and implement our design on an XCVU9P

Table III: Sparse matrices from SuiteSparse [27].
ID Name Dim.(M)1 Density (%) Application
RE N_reactome 0.016 0.025 Biochemical
RI rail582 0.056 1.2 Linear Prog.
HC hcircuit 0.1 0.004 Circuit Sim.
2C 2cubes_sphere 0.101 0.016 Electromagnetic
TH thermomech_dK 0.2 0.006 Thermal
FR Freescale2 2.9 0.0001 Circuit Sim.
AM amazon0601 0.4 0.002 Dir. Graph
WG web-Google 0.91 0.0006 Dir. Graph
RO roadNet-TX 1.3 0.0001 Unidir. Graph
KR kron_g500-logn21 2 0.004 Unidir. Multiraph
WI wikipedia-20070206 3.5 0.0003 Dir. Graph
LJ soc-LiveJournal1 4.8 0.0002 Dir. Graph

1 Dim.: dimension or the number of columns/rows of a square matrix.

FPGA, targeting a VCU1525 acceleration development kit,
which includes four 16 GB DDR4 DIMMs (64 GB total per
DIMM/rank node). Besides reporting resource utilization
and power consumption for FPGA, we implement the ASIC
design of Fafnir using the toolchain of Synopsys design
compiler (DC), Cadence Innovus, and Cadence Tempus.
As an input to our ASIC design, we use our same Verilog
code generated by HLS and just substitute the BRAM
blocks with memory cells. Our ASIC design is based on
an Arizona State Predictive PDK (ASAP) 7nm technology
node [28], a free PDK for non-commercial academic use. All
performance numbers reported in this paper are based on
FPGA-based C/RTL co-simulation results (as shown in
Figure 10). For verifying functionality at scale we perform
regression testing using large synthetic data through a
C++ testbench for C/RTL co-simulation. To facilitate
performance evaluation for large real-world data, we inject
the FPGA post-implementation timing analysis @200MHz
into our C++ emulator, the core description of which is
initially used for RTL generation.
We evaluate two applications: (i) recommendation sys-

tems including embedding lookup and (ii) graph analytics
and scientific applications, both including SpMV. For scien-
tific applications, we execute a matrix inversion algorithm
(the most bottleneck-prone algorithm) using the lower-
upper technique, which also iteratively calls SpMV. The
inputs to our C++-based emulator are memory traces
based on accesses to embedding tables of recommendation
systems and the sparse matrices for SpMV-based appli-
cations. For the recommendation systems, we run Deep
& Cross Network (DCN) [5] as well as Deep Learning
Recommendation Models (DLRM) [3] based on two real-
world open-source data sets: (i) the Criteo Ad Kaggle data
set [29] containing approximately 45 million samples over
seven days and (ii) the Criteo Ad Terabyte data set [30]
sampled over 24 days. We logged the indices of embedding-
table accesses and preprocess them using Python scripts
to generate memory-access traces. To prepare the inputs
for SpMV-based applications, we use Matlab to preprocess
our sparse matrices, listed in Table III, obtained from
the SuiteSparse collection [27], six from the scientific-
computing domain and six graphs.
Our baseline NDP designs for embedding lookup are

TensorDIMM [9] and RecNMP [8], and for SpMV-based
applications is the Two-Step algorithm [10]. The Two-
Step [10] algorithm is the state-of-the-art NDP accelerator
for SpMV, which converts random memory accesses to
regular accesses and ensures full memory streaming. The
Two-Step algorithm mostly focuses on optimizing the
implementation of the merge step (i.e., iterations>0 in
Figure 8) by using a binary tree-based multi-way merge
core. The main contribution of the Two-Step algorithm is
parallelizing the multi-way merge operation to handle large
and highly sparse graphs. To reproduce the performance
numbers of preceding NDP accelerators, we implement
them on our FPGA platform based on the information/con-
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Table IV: Latency (cycles @200MHz) of the compo-
nents in compute units of Fafnir for FPGA implemen-
tation. Parallel paths (reduce or forward)

Compare Reduce Reduce (header) Forward
(value) indices queries

per item (iteration) 12 3 4 3 16
batch size = 8/16/32 N/A 32/64/128 29/53/101 N/A

figurations provided in their published papers. We validate
the reproduced numbers against their reported numbers.

VI. Performance Evaluation
This section qualitatively evaluates the performance of

Fafnir in terms of latency, end-to-end speedup, scalability,
energy-savings, and power/area overhead.

Latency: First, Table IV lists the latency of the
compute-unit components that define the latency of
pipeline stages and the critical path for our FPGA
implementation @200MHz. The critical-path latency is
defined by the latency of the compare and reduce units
(since reduce and forward are parallel and reduce is
slower). Before investigating the key metrics that are
end-to-end speedup, scalability, and energy, we quanti-
tatively explore the challenges introduced in Section III
by comparing the single-query latency of Fafnir with
baselines. To do so, we measure the latency of a query,
including random accesses to 16 512B vectors distributed
over 32 ranks (4× channels, 4× DIMMs, 2× ranks).
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Figure 11: Single-query la-
tency breakdown.

Figure 11 shows the con-
tribution of memory access
and computation (reduction
operation) in total latency.
Several parameters such as
vector size and number in a
query, row buffer size, distribution of vector, the number of
pipeline stages, and DRAM timing define the effectiveness
of (i) benefiting from row-buffer locality and (ii) not relying
on spatial locality, on computation and memory latency.
For instance, as Figure 11 illustrates, the computation
latency of TensorDIMM, which pipelines the processing
of 16 embedding vectors in a query, is 2.5× slower than
Fafnir, which processes all 16 vectors in parallel. Although
the parallelism level of RecNMP is also similar to that
of Fafnir, its computation latency is not as low as in
Fafnir because RecNMP forwards a few (here ∼ 25%)
computations to the CPUs as a result of lack of spatial
locality. In terms of memory latency, however, Fafnir and
RecNMP are identical since they similarly utilize rank-level
parallelism and row-buffer hit. In this example, the memory
latency of TensorDIMM is 4.45× slower than RecNMP and
Fafnir, which could be up to 16× slower in the case of no
row buffer hit.

End-to-end Inference Speedup: To evaluate the im-
pact of accelerating the embedding lookup on the overall
inference latency, Figure 12 shows the end-to-end speedup
of RecNMP and Fafnir over the baseline (1-rank) when
increasing ranks from two to 32. The figure shows the
breakdown of total inference latency into three components:
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Figure 12: End-to-end inference speedup for DLRM on
Kaggle (batch size = 8): (a) RecNMP, (b) Fafnir.
(i) embedding lookup; (ii) fully-connected (FC) layers
executed at CPU, the performance of which is assumed
to be fixed in various ranks. In Figure 12, FC layers
take 0.5 ms, however, their latency varies significantly
based on the host system (CPU vs. GPU) and batch
size [7] – optimizing the performance of FC layers is not the
focus of this paper; and (iii) other operations. While both
RecNMP and Fafnir work close to the ideal linear speedup
(red line) for fewer ranks, Fafnir keeps following the red
line more closely as the number of ranks increases to 32.
This stems from the key difference between RecNMP and
Fafnir: the DIMM-level parallelism by putting a small chip
(channel node) between memory and the core to perform
all reductions at NDP rather than in the cores, the impact
of which is more pronounced in larger memory systems
with more ranks.

Scalability: In a scalable design, increasing the batch
size must help increase throughput. To evaluate the impact
of concurrent batch processing on scalability, Figure 13
illustrates the speedup over RecNMP when batch size
varies. Although all three designs utilize batch processing,
their difference is in the hardware mechanism to most
effectively take advantage of a batch to improve throughput.
As Figure 13 illustrates, RecNMP looks up embedding
approximately 15× faster than TensorDIMM. This speedup
stems from the approach of RecNMP to utilize rank-level
parallelism. As Figure 13 shows, the speedup of Fafnir over
RecNMP, however, more significantly grows with the batch
size (i.e., 3.1×, 6.7×, and 12.3×, for batch size 8, 16, and 32,
respectively) when neither Fafnir nor RecNMP eliminates
redundant memory accesses. The reason is that Fafnir
better utilizes memory bandwidth, therefore, filling the
gap under the roofline model of RecNMP by performing
full-reduction near memory. The tiny (i.e., 0.121 mm2)
channel-node chip between the memory channels and core
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Figure 13: Speedup of Fafnir and TensorDIMM [9]
(TDM) over RecNMP [8] (RNMP) for batch sizes (a)
8, (b) 16, and (c) 32. Opt. stands for the optimization
of elimination of the redundant memory accesses.
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rithm [10] for two SpMV-based applications: scientific
computations (matrix inversion algorithm) and graph.

is the key to achieve this. In addition, as the striped part
of Figure 13 shows, Fafnir achieves up to an extra 3.4×
speedup by more effectively eliminating redundant accesses
to memory without using caches. For RecNMP, we assume
128KB rank caches that offer the optimal hit rate of 50%.

Other Applications: We also evaluate the speedup
of Fafnir over the state of the art for two SpMV-based
applications. While Fafnir performs the first step (iteration
0) of SpMV more quickly, the Two-Step algorithm more
quickly merges the result (iterations >0). This is because,
unlike the Two-Step algorithm, Fafnir does not rely on
decompression mechanisms and is able to apply SpMV on
data as it is streamed from memory. Further, instead of a
chain of adders connected to multipliers, Fafnir uses the tree
for the reduction. Conversely, since the Two-Step algorithm
particularly optimizes the merge operation, it performs
the merge steps more quickly. Because of the mentioned
reasons, as Figure 14 illustrates, with no modifications in
hardware, Fafnir can process SpMV-based sparse problems
more quickly (e.g., up to 4.6×) or in the worst case as
quickly as (e.g. 1.1×) the Two-Step. For smaller matrices,
as fewer merge iterations are required, Fafnir performs more
quickly than larger ones. In some workloads among the
larger matrices (e.g., RO) sparseness is a reason that makes
them more suitable for Fafnir. Based on our observation,
a promising future direction is the combination of both
Fafnir (for the first step) and Two-Step (for merging).

Memory Energy Saving: Given that the energy con-
sumption of DRAM dominates that of computation, the
energy-savings of memory is essential. Fafnir promises mem-
ory energy savings by eliminating extra memory accesses
without using any caching mechanism. More specifically,
Fafnir saves 34%, 43%, and 58% memory accesses for batch
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Figure 15: Number of memory accesses at different
DIMMs for three batch sizes:(a) 8, (b) 16, and (c) 32.

Table V: FPGA resource utilization for Fafnir.

Resources DIMM/Rank Node Channel Node
units utilization(%) units utilization.(%)

LUT 11800 1.00 7214 0.61
LUTRAM 192 0.03 96 0.02

FF 4646 0.2 3295 0.14
BRAM 68 3.15 26 1.2

sizes 8, 16, and 32, respectively. Figure 15 illustrates the
number of memory accesses after eliminating redundant
accesses and shows that the number of memory accesses
per each input to the leaf PEs is always lower than the
batch size (8, 16, and 32 in Figure 15a, 15b, and 15c).

Power Consumption & Area Overhead: This sec-
tion evaluates the hardware of Fafnir (assuming n = m =
32 in Figure 5 and 32 compute units at PEs). Table V
lists the resource utilization of Fafnir implementation
on FPGA. To embed Fafnir in a standard DIMM-based
memory system including four channels, each with four
DIMMs, including two ranks, we need four DIMM/rank
nodes and one channel node. The implementation of
such a system utilizes up to 5%, 0.15%, 1%, and 13%
of LUTs, LUTRAMs, FFs, and BRAM blocks of the
target FPGA. Figure 16a shows the breakdown of dynamic
power consumption of FPGA @200MHz, in total 0.23W
and 0.18W for DIMM/rank and channel nodes. For our
ASIC design, Figure 16b shows the power distribution
of a PE. As shown, power consumption has a uniform
distribution, which prevents the creation of a hot spot.
As well, the breakdown of the power consumption of our
ASIC design is listed in Table VI. Our proposed chips
add only 23.82mW per four DIMMs (i.e., 5.9mW per
DIMM) and in total, 111.64mW to a four-channel memory
system, which is negligible compared to the 13W power
consumed by each DDR4 DIMMs, calculated based on a
Micron power calculator [9], [31]. As another comparison
point, a processing unit RecNMP [8] adds 184.2mW to
one DIMM (estimated at 40nm @250MHz).

Table VI lists the area of PE and two types of nodes in
Fafnir. A PE is 0.077mm2 (including the multiplication
units for leaf PE to support SpMV) and the area of
DIMM/rank and channel nodes is 0.282mm2 (which is
smaller than the 0.077×7), and 0.121mm2, respectively.
Therefore, a benefit of embedding PEs into one chip (as we
do) rather than distributing them across DIMMs is a more
efficient area. Based on these numbers, we add a total area
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our ASIC design at 7 nm.
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Table VI: Area and power consumption breakdown
@500MHz to switching (Sw.), interconnections (Int.),
and leakage (Lkg.) for ASIC design of Fafnir @7 nm.

PE DIMM/Rank Channel

Power(mW)
Sw. 2.1 3.6 2.7
Int. 8.7 20.1 13.61
Lkg. 0.02 0.12 0.06

Area(mm2) 0.077 0.282 0.121

overhead of 1.2mm2 to a memory system of 32 ranks. As
a comparison point, the area of prior work, a RecNMP [8]
processing unit, is estimated as 0.54mm2 at 40nm per one
DIMM (8.64mm2 to entire 16 DIMMs).

VII. Related Work

Here we explore the prior studies that focus on ac-
celerating graph and HPC problems, classic application
domains that contain sparse gathering. The majority of
the operations in such problems (e.g., 80%) are related to
sparse gathering [32]. To relax sparse gathering in graph
applications, batching the accesses to the output vector and
restricting them to a localized region of memory [33] has
been proposed. In addition, several NDP studies [12]–[14],
[16], [17] have proposed offloading computation to memory
to reduce data movement and leverage NDP to accelerate
data access and facilitate computations on sparse data
structures [11], [34], [35]. Additionally, DIMMNet [36] has
been proposed to accelerate gathering irregular memory
accesses. Such NDP solutions, however, are not very
effective for embedding lookup of recommendation systems
for several reasons. First, they decrease data movement by
rearrangement, but do not perform reduction operations.
Second, they are costly, as they copy a page to another in
a scratchpad memory (e.g., [32]). Finally, they are not
transparent to the software. In addition, several other
proposals have accelerated sparse problems by focusing
on computation [25], [37], [38] for a specific application or
technology [39], [40] or using other approaches to reduce
the number of accesses to memory accesses [41], [42].

VIII. Conclusions & Future Work

This paper proposed Fafnir, a DDR-based NDP solution
for accelerating embedding lookup, the bottleneck-prone
task in recommendation systems. The key component of
Fafnir is a near-memory intelligent reduction tree, which
provides a generic solution for any sparse gathering. Besides
embedding lookup and SpMV, sparse gathering is also
a required function in numeric algebra such as matrix
inversion and differential-equation solvers. The particular
patterns of computation in such applications necessitate
some additional connections in the structure of a tree,
which will be envisioned in our future work. The same
idea of Fafnir can also be integrated with High Bandwidth
Memory (HBM) by connecting the leaf PEs to the 32
pseudo channels rather than the ranks. Such an integration
is another direction of our future work.
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