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ABSTRACT

Sparse matrices are the key ingredients of several application do-
mains, from scientific computation to machine learning. The pri-
mary challenge with sparse matrices has been efficiently storing
and transferring data, for which many sparse formats have been
proposed to significantly eliminate zero entries. Such formats, es-
sentially designed to optimize memory footprint, may not be as
successful in performing faster processing. In other words, although
they allow faster data transfer and improve memory bandwidth uti-
lization - the classic challenge of sparse problems — their decompres-
sion mechanism can potentially create a computation bottleneck.
Not only is this challenge not resolved, but also it becomes more
serious with the advent of domain-specific architectures (DSAs), as
they intend to more aggressively improve performance. The per-
formance implications of using various formats along with DSAs,
however, has not been extensively studied by prior work. To fill
this gap of knowledge, we characterize the impact of using seven
frequently used sparse formats on performance, based on a DSA
for sparse matrix-vector multiplication (SpMV), implemented on
an FPGA using high-level synthesis (HLS) tools, a growing and
popular method for developing DSAs. Seeking a fair comparison,
we tailor and optimize the HLS implementation of decompression for
each format. We thoroughly explore diverse metrics, including de-
compression overhead, latency, balance ratio, throughput, memory
bandwidth utilization, resource utilization, and power consumption,
on a variety of real-world and synthetic sparse workloads.
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1 INTRODUCTION & MOTIVATION

Sparse matrices, first distinguished as the main workloads in scien-
tific computation, have become an essential component in many
other computation domains such as neural networks, recommen-
dation systems, and graph analytics. Since the primary issue with
sparse matrices is storing the enormous amount of non-necessary
zero elements, several compression formats have been proposed to
efficiently store sparse matrices. While some formats target gen-
erality, others are tailored for particular patterns of sparseness
(e.g., diagonal matrices) to be more effective in saving them with
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a minimum storage overhead. Such optimizations for sparse prob-
lems mainly focus only on the storage overhead in isolation with-
out involving other essential performance metrics such as latency,
throughput, and power efficiency. That said, a slow decompression
(relative to data transfer) can even surpass the overhead of pro-
cessing all zero entries in the original dense matrix format; thus,
sparse formats may not necessarily guarantee fast execution. This
occurs because common sparse formats are often tailored to the
distribution of data, not the underlying mechanism of computation.

The challenges associated with using sparse formats not only
are not resolved with the advent of domain-specific architectures
(DSAs) for sparse problems, but also gain more importance. DSAs
seem to soon become the main platform of sparse computations
by approaching the end of Moore’s law, proven by the tremendous
number of recent studies [1-11], to more efficiently accelerate the
execution of sparse problems. Prior studies [6, 12-17] have also
demonstrated the importance of fast compression/decompression in
on-demand applications such as in the inference of neural networks.
Regardless of this ongoing research, no study has shed light on the
performance implications of using the variety of sparse formats.
Particularly, even though prior work has studied the performance
implications of software implementations of sparse formats [18—
24], the hardware implementation of these formats on FPGAs has
not been extensively characterized.

To design efficient hardware for processing sparse problems,
understanding the impact of the decompression mechanism on the
performance (measured by various metrics) is crucial. This paper
endeavors to address this knowledge gap by performing a thorough
characterization on performance implications of compression for-
mats used in sparse workloads (CopernicuST). We study the diverse
metrics, including decompression overhead, latency, throughput,
memory bandwidth utilization, resource utilization, and power con-
sumption, of seven frequently used sparse formats on a variety
of real-world and synthetic sparse workloads using a hardware
platform implemented on a Xilinx FPGA using Vivado high-level
synthesis (HLS), a growing and popular method for designing DSAs
and quickly prototyping them on FPGAs. We stream compressed
sparse data from memory and process them. In an ideal (fast and
power-efficient) case, we expect processing to be done at the same
pace as receiving data. However, the decompression mechanism
can disturb the balance. To fairly evaluate and compare the different
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Figure 1: Sparse formats: (a) The original sparse matrix in dense format, (b) CSR including offsets to indicate the number of
non-zero entries per row, indices, indicating column indices of non-zero entries, and the values itself. CSC follows the same
rule as CSR; (c) BCSR including offsets to indicate the number of non-zero 4x4 blocks per row, indices, indicating the index of
the first column of non-zero blocks, and the values, indicating the flatten values of non-zero blocks; (d) COO including a series
of (row, column, value) tuples for non-zero values; (e) DOK, which is similar to COO; (f) LIL, which pushes all the non-zero
entries to top and saves the row indices; (g) ELL, which is similar to LIL but pushes the non-zero entries to left ans also uses a
padding; and (h) DIA, which saves the non-zero diagonals by adding the diagonal numbers as a header to each diagonal.

decompression mechanisms, for each format, we tailor and opti-
mize the HLS implementation of the decompression. Our suggested
HLS implementations and the related performance implications are
also applicable to hardware accelerators that directly perform com-
putations on compressed data because they must also reconstruct
the location of each non-zero entry.

In summary, Copernicus makes the following contributions:

o It is the first work that investigates sparse formats from the
hardware point of view for accelerating sparse problems.

o It thoroughly characterizes diverse metrics for seven fre-
quently used sparse formats, applied on different partition
sizes of matrices from on-demand applications.

e It provides hints to architects to mindfully choose appropri-
ate sparse formats and, more importantly, indicates which
parameters must be tuned in ideal hardware to achieve the
desired performance or to optimize for a particular metric.

o It suggests an optimized pipeline architecture for process-
ing sparse matrices and an HLS-based implementation on
an FPGA that can be used as a building block in further
accelerators for sparse problems.

2 SPARSE FORMATS

Compressed Sparse Row/Column (CSR/CSC): The CSR/CSC sparse
format sequentially stores values in row/column order in a values
array while similarly storing their column-index/row-index in a
indices array. Another array, of fsets, stores index pointers or
range for constructing rows/columns. To do so, the adjacent pair
of this array [start:stop] represents a slice from the two first arrays.
Figure 1b shows an example of CSR. For an n X n matrix, the length
of of fsets is n (usually n + 1, but the first element can store abso-
lute value to reduce the size) and the maximum’ length of values
and indices is n?.

Block CSR/CSC (BCSR/BCSC): The block(-wise) compressed sparse
row/column (BCSR/BCSC) [25] sparse format is similar to CSR/CSC,
but arrays are stored based on the same-shaped blocks (sub-matrices)
rather than on the original matrix. This allows block-wise formats
to better deal with large matrices. Figure 1c illustrates an example
of BCSR for block sizes of 4x4, the block size we choose in all our
experiments as well. For an n X n matrix and b x b blocks, the length
of of fsetsis n/b and the maximum length of values and indices
are n® and (n/b)?.

*Note that these worst-case scenarios are used for on-chip memory allocation.
The storage overhead is still defined by the number of non-zero entries.

Coordinate (COO) & Dictionary of Keys (DOK): The COO sparse
format simply stores a series of tuples, including the row index,
column index, and value for each of the non-zero entries. For an
nxn matrix, the maximum length of tuplesis 3n2. The DOK format
is similar to the COO format except that it stores coordinate-data
information as key-value pairs. DOK uses hash tables to store a
value with the key of (row index, column index). Figure 1d and e
depict an example of COO and DOK, respectively.

List of List or Linked list (LIL): The LIL [26] sparse format stores
one list of non-zero elements per row/column. Each element in the
lists stores the column/row indices of that row/column, indices,
and their value, values. Figure 1f presents an example LIL, which
compresses the rows and preserves the columns (this is our as-
sumption for LIL in Copernicus). For an n X n matrix, the maximum
length of values and indices is n, with n list in total.

Ellpack (ELL) & Sliced ELL (SELL): In the ELL [27] sparse format,
non-zero elements are extracted similarly to those of the LIL for-
mat, with their column indices and their values. However, they
are stored in column-major format with the addition of explicit
zero paddings to hold the data for the longest row. This format is
ideal for SIMD units since the widths of all values and indices
are the same. A sliced ELL (SELL) sparse format first slices the
dense matrix row-wise in chunks, and then applies ELL on each
chunk. Hence, it reduces the overhead of zero paddings for larger
matrices. Figure 1g shows an example of ELL with a padding width
of three. In Copernicus, we set this width to six. For an n X n matrix,
the maximum length of values and indices is n (longest possible
row). The width in ELL is n, and that in SELL varies based on the
pattern of data. Variants of ELL formats such as ELL+COO, Jagged
Diagonal Storage (JDS) [28], and SELL-C-o [29] are also popular.
ELL+COO mixes ELL and COO formats to reduce the width of long
rows. The JDS format sorts the rows in ELL from longest to shortest
(for vector machines). SELL-C-o is a variant of JDS that only sorts
rows within a window of ¢.

Diagonal (DIA): The DIA [30] sparse format operates by specifying
a diagonal number (0 for the main diagonal, negative/positive for
diagonals which start on a lower/higher row/column) followed by
the values that fall on the diagonal, diagonals. Figure 1h illustrates
an example of DIA. For an n X n matrix, the maximum number of
non-zero diagonals is 2n — 1 and the maximum length of a diagonal
is n + 1 (the additional element contains the diagonal number).
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3 SPARSE WORKLOADS

Sparse matrices are the main data structure in several application
domains, from scientific computations to graph analytics. This
section first introduces various instances of sparse matrices and
lists our real-world workloads. Then, it reviews the common regular
structures of sparseness and introduces our synthetic workloads to
evaluate a wider range of sparse applications. Finally, this section
explains the common computation of several sparse problems, on
which we build our hardware platform for evaluation.

3.1 Sparse Matrices in Various Domains

The main ingredient of different fields of scientific computations
is modeling physical phenomena, such as sound, heat, elasticity,
fluid dynamics, and quantum mechanics. Such models often use
partial differential equations (PDEs). To use digital computers for
solving PDEs, they are discretized into a 3D grid. Discretization is
used to convert PDEs to a linear system of algebraic equations, Ax
= b, in which A is the coefficient matrix. Since not all the points
in a 3D grid are used in the discretization of a phenomenon, the
coefficient matrix A is sparse. Sparse matrices also exist in graph
analytics. A common approach for representing graphs is to use
an adjacency matrix, each entry of which represents an edge in
the graph. As in many applications, not all the nodes in a graph
are connected; the graphs are sparse and so are their equivalent
adjacency matrices containing several zeros. As a representative for
various size sparse matrices in the domain of scientific computation
and graph analytics, with different density, we obtained the matrices
listed in Table 1 from SuiteSparse [31] matrix collection.

The third group of common sparse problems is the applications of
machine learning, including the inference of neural networks and the
recommendation systems. Since after training, close-to-zero values
are assigned to several model parameters, a common practice is to
prune those values. Pruning results in sparse weight matrices. Sparse
matrices in neural networks are often not as sparse as extremely
sparse matrices in the first two application domains. Besides, in
neural networks, sparseness is more random and varies case by case
with the algorithm of pruning and the other design factors such
as the desired accuracy. The recommendation system models are
the other instance of sparse problems. They include an embedding
table followed by a neural network. Although the embedding tables
are dense, accesses to them are random and sparse [32]. To evaluate
the whole range of the variety of randomness in sparse machine
learning applications, Copernicus covers the synthetic matrices
introduced in the following.

3.2 Synthetic Sparse Matrices

Besides the real-world matrices listed in Table 1, our workloads
consist of two groups of synthetic sparse matrices. The first group
includes randomly generated sparse matrices, the density of which
varies from 0.0001 to 0.5. We generate the denser random matri-
ces (i.e., the density of 0.1 to 0.5) as a representation for those in
machine learning applications. On the other hand, the more sparse
random matrices (i.e., density between 0.0001 to 0.01) represent
scientific and graph applications with no particular structure. The
second group of our synthetic sparse matrices denotes the common
structure in sparse matrices: diagonal and band matrices. A band
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Table 1: Matrices from SuiteSparse [31] matrix collection.

ID Name Dim.(M)! NNZ(M)?> Kind

2C 2cubes_sphere 0.101 1.647 Electromagnetics Problem
FR Freescale2 2.9 14.3 Circuit Sim. Matrix
RE N_reactome 0.016 0.043 Biochemical Network
AM amazon0601 0.4 3.3 Directed Graph
DW dwt_918 0.000918 0.0073 Structural Problem
EO europe_osm 50.9 108 Undirected Graph
FL flickr 0.82 9.8 Directed Graph
HC hcircuit 0.1 0.51 Circuit Sim. Problem
HU hugebubbles 18.3 54.9 Undirected Graph
KR  kron_g500-logn21 2 182 Undirected Multigraph
RL rail582 0.056 0.4 Linear Prog. Problem
RJ rajat31 4.6 20.3 Circuit Sim. Problem
RO roadNet-TX 1.3 3.8 Undirected Graph
RC road_central 14 33.8 Undirected Graph
L soc-LiveJournall 4.8 68.9 Directed Graph
TH thermomech_dK 0.2 2.8 Thermal Problem
WE wb-edu 9.8 57.1 Directed Graph
WG web-Google 0.91 5.1 Directed Graph
WT wiki-Talk 23 5 Directed Graph
WI wikipedia 3.5 45 Directed Graph

! Dim.: dimension or the number of columns/rows of a square matrix.
2 NNZ: the number of non-zero entries.

matrix is a sparse matrix, the non-zero entries of which are confined
to a diagonal band, including the main diagonal and more than one
diagonal on each side. The width of a band matrix is the number k
such that a; ; = 0if |i — j| > k/2. We generate and evaluate band
matrices of size 8000 with widths of 2, 4, 16, 32, and 64. Numerical
problems in higher dimensions often lead to band matrices (e.g.,
a PDE on a square domain). A type of band matrices consisting
of only the main diagonal (i.e., k = 1) is called a diagonal matrix.
Diagonal matrices also occur in many fields of linear algebra.

3.3 Common Computation in Sparse Problems

This section shows that sparse matrix-vector multiplication (SpMV)
is the key sparse kernel in all of the three aforementioned domains
of sparse problems. Designing DSAs for accelerating SpMV has
been the focus of several recent studies [7, 9, 10, 17, 33-36]

Scientific Computations: The coeflicient sparse matrix A in a
linear system of algebraic equations is very large for two or higher
dimensional problems (e.g., elliptic, parabolic, or hyperbolic PDEs).
While for small As, solving PDEs is doable by direct methods -
those based on matrix inversion — they become less efficient for
larger As. Such systems of linear equations with a large symmetric
positive-definite matrix A can be solved by iterative algorithms such
as conjugate gradient (CG) methods. In both cases (i.e., direct and
iterative methods) for solving PDEs, the key sparse kernel is SpMV.
Symmetric Gauss-Seidel iteration [37] used in the CG algorithm or
the lower-upper (LU) decomposition used for matrix inversion are
examples that contain SpMV.

Graph Analytics: Graph algorithms, such as breadth-first search,
single-source shortest path, and PageRank, which traverse vertices
and edges of a graph to compute some properties based on the
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graph relationships, can be implemented as a sparse matrix-vector
operation. Such an implementation is compatible with the vertex-
centric programming model [38], which divides a graph algorithm
into two main phases. In the first phase, a row of the adjacency ma-
trix is processed using a vector-vector operation between the row
of the matrix, and a property vector varied based on the algorithm
type. Then, the output vector from the first phase is reduced by
some form of reduction operations (e.g., summation). The combi-
nation of the two phases creates a dot-product, and combining the
dot-products for processing the whole graph leads to an SpMV.

Machine Learning: Machine learning applications consist of
SpMV or sparse matrix-matrix multiplication, both of which rely
on the same underlying dot-product engine. For instance, in convo-
lution neural networks, the computation of convolutional layers
can be viewed as a matrix-matrix multiplication. In other words,
convolving a 3D input with a given number of filters can be repre-
sented as an equivalent matrix-matrix multiplication that multiplies
the 2D flatten weight matrix by the input matrix, which is orig-
inally two-dimensional. In recommendation systems, the sparse
embedding-table look-ups end up as a reduction operation (e.g.,
summation) that can also be implemented using a dot-product en-
gine, initially designed for SpMV.

4 EXPERIMENTAL SETUP
4.1 Platform and System Overview

We describe our hardware platform in C++ and use this implemen-
tation for generating RTL to be executed on an FPGA. To generate
RTL (in Verilog), we use the high-level synthesis (HLS) tool of
Vivado and related #pragmas as hints to detail the architecture.
After simulations in Vivado_HLS, we use Vivado to synthesise and
implement our hardware on an xq7z020 FPGA from Zynq-7000
family connected to a DDR3 memory. The clock frequency is set to
250 MHz. We verify the functionality of the RTL using synthetic
data as a C++ testbench for C/RTL co-simulation. The inputs to our
hardware platform are sparse workloads (SuitSparse and synthetic
sparse matrices). We use Matlab to preprocess the workloads and
compress them in target formats, studied in Copernicus.

Although all sparse formats eliminate transferring a large por-
tion of zero entries, applying them directly on the large original
matrices is not efficient. For instance, formats such as CSR transfer
one index for all rows, even for all-zero rows. Therefore, their over-
head grows with the size (i.e., dimension) of the matrix. Therefore,
as compressing and transferring large units of data (e.g., the entire
original matrix) is not beneficial for some of the formats, a com-
mon efficient practice is to apply the compression on the smaller
partitions of the original matrix, which also allows coarse-grained
parallel processing of partitions. Additionally, since some sparse
matrices in real-world applications capture a certain level of spatial
locality, by using partitioning, we can eliminate transferring and
processing the all-zero partitions. Following this common practice,
Copernicus also applies all the compression formats only on the
non-zero partitions of large matrices. The size of these partitions is
one of our hyperparameters.
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4.2 Metrics & Hyperparameters

Copernicus evaluates the performance implications of sparse for-
mats using the metrics introduced in the following. First, we define
o as a metric to measure the latency overhead of decompression:

Taecomp + nnz_rows X Tgor )
o= 1
pX Tdat

in which Tyecomyp indicates decompression latency, which consists
of latency for BRAM accesses and logic, nnz_rows are non-zero
rows for which we must perform a dot-product, each taking Ty,;,
and p is the partition size. As a result, for the dense format, o = 1.
Besides o, we measure the breakdowns of latency: (i) memory
latency, the time to transfer a compressed partition (data and meta-
data) to FPGA and buffer it in the BRAM; and (ii) computation
latency consisting of decompression, dot-product, and necessary
BRAM accesses. Furthermore, seeking an appropriate sparse for-
mat for achieving balanced streaming, we proposed evaluating a
balance ratio, which we define as the average ratio of memory
latency to compute latency for all non-zero partitions. The balanced
ratio of perfectly balanced streaming would be one. An imbalance
streaming leads to idle computation or pauses in data transfer.

As another important factor in the execution of sparse problems,
we evaluate throughput, defined as bytes processed per second,
which reflects the bubbles in the streaming pipeline caused by
imbalance streaming (balance ratio # 1). Besides throughput, we
compare the memory-bandwidth utilization, the ratio of useful
data over all transmitted data (i.e., useful data plus metadata) Our
other metrics for the full design-space exploration are resource
utilization and dynamic/static power consumption. By resource
utilization, we mean the percentage of FPGA resources used by
all components (entire Figure 2). We evaluate the aforementioned
metrics while varying the hyperparameters including practical
partition sizes of 8, 16, and 32, and the width of 2, 4, 8, 16, 32, and
64 for band matrices to represent realistic matrices, and the density
of random matrices from 0.0001 to 0.5.

5 COPERNICUS
5.1 Architecture

This section proposes our hardware architecture for processing
sparse matrices (i.e., executing SpMV). To be effective in accelerat-
ing any problem, two ingredients are key: parallel computation and
fast accesses to memory. Parallelizing the computation of SpMV
is relatively straightforward and can be implemented in various
ways. For instance, the vector operand can be multiplied with the
non-zero rows of the sparse matrix operand in parallel, or the
columns of the matrix and the vector operand can be partitioned
into a few chunks and be processed concurrently. On top of these
coarse-grained approaches, element-wise fine-grained parallelism
can always be applied to each of the dot products, the fundamental
operations in SpMV. For instance, the intuitive way to perform
parallel dot products is by implementing a fixed-size compute logic
(i.e., a multiplier array attached to an adder tree) and using it on
the chunks of the operands of the original SpMV. We build our
hardware platform (shown in Figure 2) based on the building blocks
of such a fine-grained-parallel dot product engine (Figure 2, ®)
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Figure 2: The architecture of our evaluation platform:
Streaming the compressed partitions of a sparse matrix
from the memory to FPGA through AXI stream interfaces
and processing them (i.e., SpMV) in a pipeline. The decom-
pression component varies based on sparse format.

and investigate how to effectively integrate it with stream mem-
ory accesses as the second fundamental ingredient to achieve high
performance. Instances of this architecture can be aggregated for
implementing coarse-grain parallelism.

The components of our evaluation architecture to stream the
compressed partitions and process them in an FPGA include (i)
the global memory, (ii) an AXI streaming (AXIS) interface through
which the partitions and the vector operand of SpMV are transferred
from the memory to FPGA, and (iii) the high-level three-stage
pipeline (Figure 2, @) implemented in the FPGA that receives the
partitions in the memory-read stage, processes them in the compute
stage (i.e., SpMV block in Figure 2), and streams the partial output
vector back to the memory in the memory-write stage. The input
buffer contains a partition compressed in a particular format (e.g., it
contains values, offsets, and column indices for CSR). The following
explains the details of the compute stage of this high-level pipeline,
which itself comprises a two-stage pipeline, including decompress
and dot-product stages. The block of SpMYV iteratively creates dense
non-zero rows in the first stage (Figure 2, ). Then, the second
stage (Figure 2, ®) performs a dot-product between the result of
the first stage and the vector operand of SpMV. We implement
the dot-product as an array of multipliers connected to a balanced
adder tree. Since the output of the SpMV is a vector (not necessarily
sparse), we do not include a recompression stage in hardware.

We use this architecture (Figure 2) as the baseline and tailor the
decompression stage for each format (Section 5.2) and then compare
the outcomes. The decompression (Figure 2, @) is the bottleneck-
prone stage and the focus of Copernicus. In our platform, the width
of the dot-product engine (Figure 2, ®) is the same as the width of
the partitions. The partition density and, more specifically the row
density (i.e., the density of non-zero rows), defines the computation
utilization of the dot-product engine at run time. Besides, the num-
ber of non-zero rows in the partitions determines the utilization of
the inner pipeline. Figure 3 illustrates the three mentioned factors
for three partition sizes: 8, 16, and 32. These raw statistics can be
interpreted along with the evaluation results reported in Section 5.

5.2 Optimized Decompression in HLS

Here, we discuss our tailored HLS implementation of the decompres-
sion mechanism (Figure 2, ®) for the seven target sparse formats.

CSR: As Listing 1 shows, since CSR uses three vectors (i.e., off-
sets, column indices, and values) to represent a sparse matrix, for
decompressing a non-zero row, we need to first access the offsets
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(Listing 1, line 7), and then, based on numVal, we can read as many
column indices and values as required (Listing 1, line 10). As a result,
decompression from the CSR format is likely to be compute-bound
because of the overhead of one extra access to BRAM. Additionally,
to retrieve the column indices and values, since accesses to the BRAM
blocks are sequential, we do not know in advance which elements of
column indices and values are going to be accessed. Thus, we cannot
partition and allocate those two vectors across the blocks of BRAM
to guarantee parallel accesses. Because of the sequential accesses
in a non-zero row, the latency of decompressing a row depends on
the number of non-zero elements in that row. By assuming that
we stream the offsets and column indices using two streamlines in
parallel, the one with more non-zero elements (longer one) defines
the latency of memory access. To reduce the negative impact of
the accesses to offsets on performance, we pipeline this progress to
concurrently create non-zero rows (if more than one).

1 function decompressCSR(A, readInx, oldInx)

// A in CSR: offsets[OFFSET_LENGTH]
// colInx[COL_INX_LENGTH]
// values[VAL_LENGTH]

// readInx: current row index
// oldInx: last row index
numVal = offsets[readInx] - offsets[readInx-1]
for i=0 to numVal:

#pragma HLS pipeline
10 drow[colInx[oldInx+i]] = values[oldInx+i]
11 return drow

N-JN-CREN C NS I NI N

Listing 1: CSR-decompression HLS pseudo code

BCSR: As Listing 2 shows, the decompression of BCSR is similar
to that of CSR, whereas instead of individual non-zero elements, the
non-zero blocks are processed. To initiate the accesses to column
indices and values, one extra access to the offsets is required per
each row of blocks (Listing 2, line 9). The advantage of BCSR over
CSR is that we can distribute the values and column indices over
BRAM blocks and access their elements in parallel, for which, as
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lines 1 and 2 in Listing 2 show, we completely partition the values
and colInx across their second dimension before calling the de-
compression function. This allows us to unroll the for loop (line 12),
the iterations of which access different BRAM blocks in parallel.
The downsids of BCSR, however, are (i) the overhead of transferring
zero elements in the non-zero blocks and (ii) processing all the rows
in the non-zero blocks whether they (the rows) are all zero or not.
The latency of decompressing the blocks in a row depends on the
number of non-zero blocks in that row. On the other hand, since the
values has the longest length (compared to of fsets and colInx),
transferring values defines the memory latency.

1 #pragma HLS array_partition variable=values dim=2
2 #pragma HLS array_partition variable=colInx dim=2
3 function decompressBCSR(A, readInx, oldInx)

4 // A in BCSR: offsets[OFFSET_LENGTH]

5 // colInx[COL_INX_LENGTH]

6 // values[VAL_LENGTHI[VAL_WIDTH]

7 // readInx: current row index

8 // oldInx: last row index

9

numBlocks = offsets[readInx] - offsets[readInx-1]
10 for i=0 to numBlocks:
11 for j=0 to VAL_WIDTH:
12 #pragma HLS unroll
13 drows[j / BLOCK_LENGTH][colInx[oldInx + i]
14 + j mod BLOCK_LENGTH] = values[oldInx + ilI[j]

15 return drows

Listing 2: BCSR-decompression HLS pseudo code

CSC: Listing 3 shows the pseudo code of CSC decompression, in
which the columns are compressed. On the contrary, the hardware
requires rows of the matrix for performing SpMV. Because of this
mismatch, the decompression mechanism must iteratively traverse
all the columns of the matrix to find the values corresponding to
the current row (Listing 3, line 12). Although this mismatch makes
the decompression inefficient, we still include this extreme case
in our evaluation to explore how much performance is hurt if the
format and the hardware are not aligned.

1 function decompressCSC(A, readInx)

2 // A in CSC: offsets[OFFSET_LENGTH]

3 // rowInx [ROW_INX_LENGTH]

4 // values[VAL_LENGTH]

5 // readInx: current row index

6 numVal = offsets[colInx] - offsets[Inx-1]
7 for i=0 to CSC_ROW_INX_LENGTH

8 && colInx < CSC_OFFSETS_LENGTH:
9 startInx = i

10 #pragma HLS pipeline

11 while i < startInx + numVal:

12 if rowInx[i] == read_inx:

13 drow[colInx-1] = values[i]
14 break

15 i++

16 i = offsets[colInx++]

17 return drow

Listing 3: CSC-decompression HLS pseudo code

LIL: The LIL decompression (Listing 4) avoids extra accesses
to BRAM and enables deterministic parallel accesses to the BRAM
blocks for decompressing the non-zero rows of a sparse matrix.
Since the columns of values and indices can always be accessed
in parallel, we partition both of them (Listing 4, lines 1 and 2) before
calling decompression. As a result, no extra read access is required
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to determine the number of next read accesses. Thus, the latency
of processing a matrix depends on the number of non-zero rows. In
other words, creating a non-zero row consists of the latency of one
BRAM access (since the accesses are parallel) plus the latency for
creating the input of the dot product, which is done by a simpler
logic compared to those of CSR or BCSR. To recognize the end of the
non-zero rows, one additional BRAM access is required. Memory
latency for LIL is defined by the number of non-zero rows, the size
of rows, and transferring one additional row for indicating the end
of non-zero rows.

1 #pragma HLS array_partition variable=values dim=2

2 #pragma HLS array_partition variable=Inx dim=2

3 function decompressLIL(A, readInx[], oldInx)

4 // A in LIL: values[HEIGTHILWIDTHI

5 /7 Inx[HEIGHTJLWIDTH]

6 // readInx: current row index

7 // oldInx: last row index

8 minInx = inf

9 for i=0 to WIDTH:
10 #pragma HLS pipeline
11 if readInx[i]<HEIGTH && Inx[readInx[ilI[il<minInx:

12 minInx = Inx[readInx[i]][i]

13 for i=0 to WIDTH:

14 #pragma HLS unroll

15 if Inx[readInx[i]][i] == minInx:
16 drow[i] = values[readInx[i]][i]
17 readInx[i]++

18 return drow

Listing 4: LIL-decompression HLS pseudo code

ELL: Similar to LIL, the representation of matrix A in ELL (List-
ing 5) includes values and indices that can be accessed in parallel
and thus are partitioned and distributed over BRAM blocks (List-
ing 5, lines 1 and 2), which subsequently allows unrolling the for
loop for parallel processing (line 7). The difference between LIL and
ELL, however, is the direction of compression. Although the direc-
tion of compression in ELL enables a simple assignment shown in
line 8, it prevents skipping the all-zero rows that in turn can cause a
performance drop. Since we completely unroll the for loop (line 7),
reducing ELL_MAX_COMP_ROW_LENGTH in the ELL implementation
and using optimizations such as ELL-COO only impact the resource
utilization of FPGA, not the performance.

1 #pragma HLS array_partition variable=values dim=2

2 #pragma HLS array_partition variable=indices dim=2
3 function decompressELL (A)

4 // A in ELL: values[ELL_MAX_COMP_ROW_LENGTH]
5 // indices[ELL_MAX_COMP_ROW_LENGTH]
6 for i=0 to ELL_MAX_COMP_ROW_LENGTH:

7 #pragma HLS unroll

8 drow[indices[i]] = values[i]

9 return drow

Listing 5: ELL-decompression HLS pseudo code

COO: As Listing 6 shows, since COO saves tuples for represent-
ing a matrix, its decompression mechanism is pretty straightfor-
ward, including a simple assignment, shown in Listing 6, line 7.
The downside of COO, however, is that we do not know in advance
how many elements exist in each row. Thus, we cannot partition
and allocate the vector of tuples across the blocks of BRAM to
guarantee parallel accesses. For the same reason, we pipeline the
for loop (line 5) rather than unrolling it. The same procedure is also
applicable to DOK.
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for partition size of 16 X 16. A darker color indicates less sparsity (i.e., higher density).

1 function decompressCOO0(A, row)

2 // A in C00: tuples[COO_NUM_TUPLESI[3]

3 // row: the current row

4 for i=0 to COO_NUM_TUPLES:

5 #pragma HLS pipeline

6 if (tuples[il[@]!=inf && tuples[i][@]==row):
7 drow[tuples[i][1]] = tuples[i][2];

8 return drow

Listing 6: COO-decompression HLS pseudo code

DIA:Line 7 of Listing 7 shows the pseudo code for the decompres-
sion mechanism of DIA, the most domain-specific format studied in
Copernicus. DIA saves matrix A as diags, a two-dimensional ma-
trix including all non-zero diagonals of matrix A. The first element
of each row of diags indicates the diagonal number. To decompress
the rows of matrix A, the decompression function traverses all rows
of diags to find the elements corresponding to the current row.
To this end, we use two helper functions, DiaInxForRow (line 1)
and IsRowOnDiagonal (line 4). As the decompression mechanism
suggests, although in terms of memory footprint DIA should be
beneficial for diagonal matrices, its decompression mechanism is
not quite compatible with even a simple computation such as a
fine-grained parallel SpMV, which subsequently requires rows of
the matrix. Such an overhead worsens when non-zero elements are
scattered over multiple diagonals but do not completely fill them.

1 function DiaInxForRow(row, d)

2 return (row + d < row) ? row + d : row

3

4 function IsRowOnDiagonal(row, d)

5 return d <= WIDTH - 1 - row && d >= -row

6

7 function decompressDIA(A, row)

8 // A in DIA:

9 // diags[NUM_DIAGONALSJ[MAX_DIAGONAL_LEN]

10 // row: the current row

11 for i=0 to NUM_DIAGONALS:

12 #pragma HLS pipeline

13 d = diags[i]l[@]

14 if (!IsRowOnDiagonal(row, d)) continue

15 // column index is the row + d

16 // + 1 since @ element is the diagonal number
17 drow[row+d] = diags[i]J[DiaInxForRow(row,d)+1]

18 return drow

Listing 7: DIA-decompression HLS pseudo code

6 CHARACTERIZATION
6.1 The Overhead of Decompression

This section explores o, the latency overhead of decompression
(Figure 2, @) for SuiteSparse, random, and structured band matrices
in Figures 4, 5, and 6, respectively. In Figures 4, the bars lower than
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Figure 5: Decompression overhead for random matrices: com-
paring the o (lower is betters) of seven sparse formats for
16 X 16 partitions when density varies from 0.0001 to 0.5.

one illustrate faster computation than the baseline dense format.
The overhead of the dense baseline, for which ¢ = 1, is computing
and transferring zero eateries, and the overhead of all sparse formats
(only for computations) goes to the decompression. As Figures 4
shows, the overhead of sparse formats can, in some cases, exceed
that of the dense format. The worst-case scenario of decompression
occurs with the CSC format because the orientation of data is
opposite to that of the computation mechanism in hardware.
From Figures 4, we do not observes any relationship between the
density (darkness of the bars in Figures 4) and ¢ in highly sparse
matrices. Thus, Figures 5 clarifies such a relationship for a wider
range of density based on our randomly generated synthetic work-
loads. Likewise, Figure 6 shows the latency of band (and diagonal)
matrices when the width increases. As the two figures illustrate,
although the o of all formats increase with density and width of
band matrices, it more dramatically increases for COO, CSR, and
CSC. Besides, the time to reconstruct the rows of a matrix from
a column-oriented compression format (i.e., CSC) leads to up to
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Figure 6: Decompression overhead for band matrices: compar-
ing the latency overhead, o, of seven sparse formats for par-
tition size of 16 X 16 when the width varies from 1 to 64.
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Figure 7: Decompression overhead for various partition sizes:
comparing the average o (lower is better) of seven sparse
formats for three types of workloads (SuiteSparse, random,
band) and partition sizes of 8, 16, and 32.

21x and 30x slower computation than if we were to process all
zero entries of the dense format, respectively, for random and band
matrices. In such cases, preprocessing the sparse data to a format
compatible with a hardware accelerator is highly suggested.

Figures 7 illustrates the impact of partition size on o. In all work-
loads (i.e., SuiteSparse, random, and structured), the computation
latency of ELL is proportional to that of the dense format and does
not change with the pattern of sparsity. This is because, in ELL, we
are still processing a whole non-zero matrix regardless of its indi-
vidual entries. However, since the length of these new squares (in
our case, six) is smaller than that of the original dense partitions (8,
16, or 32), the computation latency of ELL decreases as the partition
size increases. Seeking a relatively generic sparse format that can
provide moderate computation latency for random and structured
matrices, BCSR could be a fair option. However, it is not as good for
random matrices when the partition size increases. This is because
of the additional dot products that must be done per each non-zero
block regardless of the individual values of the entries.

6.2 Latency & Balance Ratio

Since memory accesses and computation are pipelined, the sum of
their maximum for each partition defines the total latency. There-
fore, the latency overhead (discussed in Section 6.1), which stems
from only the computation, does not provide any information about
which one (computation or memory) defines the total latency. De-
tails in that regard are discussed in this section. Figure 8 shows
both memory and compute latency and thus implicitly shows the
balance ratio: points below the balance line have balance ratio < 1.

Since only non-zero entries of non-zero partitions are transmit-
ted, the latency to transmit data and metadata (i.e., memory latency)
for all sparse formats is much lower than that for the dense format,
as expected. The computation latency of sparse formats, however,
is not always lower than for the dense format. While some of the

of the ELL matrix is slightly smaller than the width of the origi-
nal partition (e.g., the 8x8 case), the computation latency of ELL
is just slightly higher than dense format because of the overhead
of decompression, even though it is small. Similar to random and
structured matrices, the CSC format is the slowest for SuitSparse
workloads with up to 27X higher latency compared to the dense
baseline. All in all, Figure 8 suggests that in terms of latency, COO
or BCSR could be appropriate candidates (even though in some
cases they perform as good as the dense format) to be used for
diverse matrices from scientific and graph applications.

As Figure 8 shows, for all types of matrices (i.e., SuiteSparse,
random, and band), the balance ratio of dense format is higher than
most of the sparse formats. This is because the zero entries impact
both memory and computation latency. In fact, the balance ratio
of dense format is closer to one (the perfect case) — but it moves
toward a memory-bound as partition size (indicated by marker size)
increases. In some formats, such as LIL, increasing the partition size
helps to achieve a better balance, while in some others, such as ELL,
it is the opposite. In random and structured band sparse matrices
(Figures 8b and 8c), higher density and/or larger bandwidth of band
matrices leads to a memory bottleneck for BCSR, LIL, and DIA.
In such cases, if adding more memory bandwidth to the system
is possible, using BCSR or LIL for less sparse application (e.g., for
the inference of neural networks) or using DIA for applications
with diagonal/band matrices is suggested. Otherwise, COO seems
to offer a reasonable balance for various densities as well as the
varieties of band matrices. The same hypotheses for balance ratio
are also applicable for the more diverse SuiteSparse workloads, as
shown in Figure 8a.

6.3 Throughput & Bandwidth Utilization

This section studies throughput and memory bandwidth utilization.
First, Figure 9 explores the relationship between throughput and
the total time to process an 8000 X 8000 matrix. The following
parameters contribute to throughput: (i) the total processed data
consisting of data and metadata and (ii) the total time to process,
which is the maximum of memory latency (data-transfer time) and
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Figure 8: Balance ratio: the relationship between the memory and compute latency for various partition sizes indicated by the
size of markers for (a) SuiteSparse, (b) random workloads, and (c) band matrices. The blue line indicates balance ratio = 1.
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Figure 10: Memory bandwidth utilization for random ma-
trices: comparing seven sparse formats for partition size of
16 X 16 when density varies from 0.0001 to 0.5.

computation latency for each partition. As a result, in a sparse
format such as ELL in which both total latency and data grow
with the same pace, throughput does not change with latency (this
is also the case for the dense baseline). For all formats but ELL,
throughput increases with latency and then reaches a maximum.
As Figure 9 suggests, BCSR, LIL, and DIA reach a higher throughput
compared to the other four formats. Besides, for all formats but
CSC, increasing partition size, shown by the thickness of lines in
Figure 9, results in higher throughput because both latency and
data decrease as the partition size increases. Since throughput does
not reflect the impact of transmitting and computing useful data, we
study throughput along with the utilization of memory bandwidth.

Memory bandwidth utilization and its relationship with density,
width of band matrices, and partition size are shown in Figures 10,11,
and 12, respectively. As they all indicate, the memory bandwidth uti-
lization of COO is always 0.3 since it always transmits two indices
per one non-zero entry. Besides, as Figure 11 indicates, the memory
bandwidth utilization of DIA for diagonal matrices is close to one —
the slight difference occurs because of saving the diagonal number
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Figure 11: Memory bandwidth utilization for band matrices:
comparing seven sparse formats for partition size of 16 X 16
when the width varies from 1 to 64.
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Figure 12: Memory bandwidth utilization for various parti-
tion sizes: comparing the average memory bandwidth uti-
lization (higher is better) on SuiteSparse, random, band

workloads for partition sizes of 8, 16, and 32.
for the main diagonal. As partition size grows, this memory band-

width utilization approaches full utilization. However, for other
band matrices, we see that the DIA format does not offer better
memory bandwidth compared to more generic formats such as COO,
ELL, or LIL, among which LIL is a better candidate to cover more
extreme sparseness as well as a wider variety of random matrices
(Figure 10) while offering a better balance ratio at larger partitions
compared to COO and ELL. Finally, Figure 12 demonstrates that,
as expected, for all formats but COO, the memory bandwidth uti-
lization of denser matrices (density > 0.1) and structured ones is
higher than that of extremely sparse matrices (e.g., SuiteSparse).

6.4 Resource Utilization & Power Consumption

Table 2 compares FPGA resource utilization and the dynamic power
consumption. We must dedicate enough BRAM blocks to envision
the worst-case scenarios even though they occur rarely. The other
factor impacting the BRAM utilization is the degree of parallelism.
To enable parallelism, we partition the matrices and distribute them
to BRAM blocks. Because of these two factors, we see that CSR and
CSC utilized the lowest number of BRAM blocks, whereas BCSR
utilizes the same blocks as the dense implementation does. In some
cases, such as ELL, smaller partitions (i.e., 8 and 16) use more flip
flops (FFs) compared to larger partitions (i.e., 32). This is because, in
a small partition size, the buffering is automatically implemented
using FFs rather than BRAM blocks. It is also demonstrated by the
fewer BRAM blocks utilized by the 8x8 ELL.

The dynamic power consumption listed in Table 2 suggests that
while larger partition sizes cause higher power consumption in
some formats (i.e., CSR, BCSR, COO, and LIL), for the others (i.e.,
dense, CSC, ELL, and DIA), the maximum power is consumed at
the 16X 16 partition size and the minimum case may occur at 8x8
(e.g., dense and CSC) or at 32x32 (e.g., ELL and DIA). To clarify,
Figure 13a, 13b, and 13c illustrate the dynamic power consumed
by logic, BRAM, and signals, respectively. As Figure 13 shows, the
power consumption of logic always increases or stays steady as par-
tition size increases, while that of BRAM may decrease (e.g., dense
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Table 2: Resource utilization and the total dynamic power
consumption for three partition sizes (8, 16, and 32).

LUT (x1000) DY Power(W)

BRAM_18K ‘ FF (x1000)

part.size: |8 16 32 | 8 16 32| 8 16 32| 8 16 32
DENSE 8 16 32 |15 19 43|07 07 12002 008 0.03
CSR 2 2 8 07 08 38|09 09 11004 0.04 007
BCSR 8 16 32 |16 24 44|12 14 22005 006 0.06
CSC 1 1 9 0.9 1 2.7 1 12 1.1 ]0.01 005 0.03
LIL 4 4 6 |29 58 91|16 27 48005 008 007
ELL 17 9|2 32 0909 1 08006 010 006
COO |3 3 8 |18 13 32|12 25 54002 004 004
DIA 3 03 11|22 5 92|15 28 46007 012 005
Total | 140 | 106.4 | 532 | N/A

and BCSR). Therefore, comparing Figure 13 against the dynamic
power listed in Table 2 indicates that the trend of overall dynamic
power consumption partially depends on BRAM, but more gener-
ally follows the same trend as the power consumption of signals
(Figure 13c). By evaluating total latency and power consumption
together, we see that for SuitSparse matrices, not only does COO
consume the least dynamic power, but also it is the fastest in terms
of total latency. However, if achieving high throughput at lower
power is the goal, BCSR is a better fit. On the other hand, for struc-
tured matrices, LIL and ELL are the fastest in terms of latency and
throughput, among which ELL performs better for band matrices
with wider bandwidths and consumes less power. The static power
consumption of dense, CSR, BCSR, LIL, and ELL is 0.121W and that
of CSC, COO, and DIA is 0.103W. The static energy, which depends
on time, can be an issue for those slower sparse formats that require
less amount of dynamic energy.

7 RELATED WORK

Proposing DSAs for SpMV in various application domains have
been the topic of several recent studies [7, 9, 10, 17, 33-36], in which
sparse formats play a key role. While SIGMA [33], Two-Step [36],
and ExTensor [9] use popular sparse formats such as CSR, CSC,
and COO, others tailor a sparse format to their DSA [7, 34] or
propose new formats [10, 17, 35] as follows: SpArch [34] proposes
a condensed format, which is equivalent to storing a matrix in the
CSR format and fetching the elements with the same index for all
rows; Alrescha [7] modifies BCSR so that data follow a desired order
dictated by DSA; Tensaurus [35] proposes compressed interleaved
sparse slice (CISS) format, which allows accessing sparse data in a
vectorized and streaming manner; SparTen [17] suggests a bitmask
representation, in which a sparse tensor is a two tuple of a bit mask,
called SparseMap, and a set of non-zero values; and SMASH [10]
presents a hierarchical bitmap compression that uses a non-zero
values array (NZA) for holding the values.
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8 INSIGHTS & CONCLUSIONS

Copernicus investigated the performance implication of HLS-based
FPGA implementations of seven sparse formats. We hope our results
lead architects to knowingly choose the required sparse format
and tailor their FPGA designs for sparse applications. Figure 14
summarizes all the six metrics for three group of workloads by
normalizing each metric to its maximum achieved number so that
"1" represents the best case and "0" represents the worst case. Here,
we overview some of the key insights:

« Unlike a common belief, the memory bandwidth is not always the
bottleneck; hence the performance sparse problems cannot always
be improved by simply adding more memory bandwidth to the
system. Thus, when using a format such as CSR to efficiently use
storage, a lower-bandwidth low-cost memory is sufficient. Oth-
erwise, the implementation of the computations must be further
improved (if possible).

« Although in scientific
computation and graph
analytics (Figure 14a), o on
the common patterns of

sparse matrices are di-

agonal and band, our Recource
study shows that a non- prlaton
specialized format such
as COO performs faster
and better utilizes the
memory bandwidth com-
pared to a specialized for-
mat such as DIA. This is
because of the compati- Jocource
bility of more generic for-

mats with a generic hard-
ware for common compu-
tations. Besides, a generic
format better tolerate the
variations in the distri-
bution of non-zero en-
tries. If power consump-
tion and FPGA resource
utilization must also be
considered, LIL or BCSR
are other candidates.

« For structured band
matrices (Figure 14c), a show best and worst, respectively.
pattern-specific format such as DIA, near-perfectly utilizes the
memory bandwidth and does it better as the partition size increases.
However, to allow such utilization to effectively impact the other
performance metrics, the computation engine must also be tailored
to the format if DIA must be used in a particular application. Oth-
erwise, the mismatch would create a computation bottleneck.

« For less sparse (density > 0.1) applications such as the inference
of neural network, optimizations beyond simple partitioning of
size 8x8 or at most 16x16 hurt the performance even though it
might help reduce the memory footprint (possibly, not too much).
Extracting the non-zero partitions from the neural network can be
done with the aid of structure pruning schemes [3, 39-42].
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