
Age Based Scheduling for
Asymmetric Multiprocessors

Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
{nageshbl, jaekyu.lee, hyesoon}@cc.gatech.edu

ABSTRACT
Asymmetric (or Heterogeneous) Multiprocessors are becoming pop-
ular in the current era of multi-cores due to their power efficiency
and potential performance and energy efficiency. However, schedul-
ing of multithreaded applications in Asymmetric Multiprocessors is
still a challenging problem. Scheduling algorithms for Asymmetric
Multiprocessors must not only be aware of asymmetry in processor
performance, but have to consider the characteristics of application
threads also.

In this paper, we propose a new scheduling policy, Age based
scheduling, that assigns a thread with a larger remaining execution
time to a fast core. Age based scheduling predicts the remaining
execution time of threads based on their age, i.e., when the threads
were created. These predictions are based on the insight that most
threads that are created together tend to have similar execution du-
rations. Using Age based scheduling, we improve the overallper-
formance of several important multithreaded applicationsinclud-
ing Parsec and asymmetric benchmarks from Splash-II and Omp-
SCR. Our evaluations show that Age based scheduling improves
performance up to 37% compared to the state-of-the-art Asymmet-
ric Multiprocessor scheduling policy and on average by 10.4% for
the Parsec benchmarks. Our results also show that the Age based
scheduling policy with profiling improves the average performance
by 13.2% for the Parsec benchmarks.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management — Schedul-
ing; C.1.3 [Processor Architectures]: Other Architecture Styles
— Heterogeneous (hybrid) systems

General Terms
Performance

Keywords
Thread Scheduling, Asymmetric Multiprocessors, Age BasedSchedul-
ing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC09 November 14-20, 2009, Portland, Oregon, USA (c) 2009 ACM 978-
1-60558-744-8/09/11... $10.00.

1. INTRODUCTION
Multiprocessors are becoming the main stream of computing

platforms and heterogeneous architectures represent an increasingly
popular class of multiprocessors. Heterogeneous architectures typ-
ically include one or more specialized cores or accelerators to-
gether with the main CPU(s). The specialized cores or accelerators
help the CPU to perform certain computations several times faster
than the CPU could have on its own. Asymmetric Multiproces-
sors (AMPs) represent a new kind of heterogeneous architectures.
These architectures include CPUs of unequal performance. Usu-
ally, all the CPUs have the same ISA. Asymmetric architectures
can provide significantly better performance than conventional, i.e.,
symmetric architectures which occupy the same die area and con-
sume the same amount of power [20] [16]. These architectures
generally include few fast cores and several slow cores. They are
meant to provide power-performance effective platforms for both
throughput-oriented applications and applications that need good
serial performance. However, asymmetric architectures present new
challenges to the operating system community, which until now has
assumed that the hardware underneath the operating system is ho-
mogeneous. One of these challenges is scheduling of threadson
the available processors.

Thread scheduling is one of the most important and fundamental
services offered by an operating system kernel. Some of the met-
rics an operating system scheduler seeks to optimize are: fairness,
throughput, turnaround time, response time and efficiency [22]. In
an AMP environment, many of the assumptions based on which
the traditional scheduling policies for multicores/multiprocessors1

are designed become untrue. Multiprocessor operating systems as-
sume that all cores are identical and offer the same performance.
In a Symmetric Multiprocessor, since all cores are identical, the
scheduler makes scheduling decisions based solely on the load on
each core. But, in the case of AMPs, not only the loads on the in-
dividual cores, but their relative computational power should also
be considered. Balakrishnan et al. [6] showed that having anasym-
metry unaware scheduler would not only result in bad application
performance, but can also cause application instability.

Figure 1 shows the performance of the Parsec benchmark suite[8]
for three different machine configurations, namely, all-fast, half-
half and all-slow. All-fast and all-slow are symmetric configura-
tions, where as half-half is an asymmetric configuration. These
configurations are explained in greater detail in section 6.The
scheduler used for this experiment is the Linux Kernel 2.6.18 sched-
uler [18], which is not aware of the asymmetry of processors.Hence,
even though half-half has more computing power than all-slow,
some applications such as blackscholes, fluidanimate and swap-
tions perform on half-half as slow as they do on all-slow. This

1the terms core and processor will be used interchangeably

0

50

100

150

200

250

300

350

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

fa
ce
si
m

flu
id
an
im
at
e

fr
eq
m
in
e

sw
ap
tio
ns

x2
64

ca
nn
ea
l

st
re
am
cl
us
te
r

de
du
p
AV
G

E
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

All-fast

Half-half

All-slow

Figure 1: Experiments in the three machine configurations
(Parsec)

is because threads on slow cores become critical threads which in-
crease the execution time of the entire application. Thus, for AMPs
we need a scheduler that can detect critical threads and boost their
performance.

We propose a scheduler that can predict the thread with the longest
remaining execution time. We predict the remaining execution time
of threads based on their relative age i.e., when the threadswere
created. Predicting the exact lengths of threads or jobs at run-time
is extremely challenging. Instead of predicting the actuallengths of
threads, our mechanism predicts relative execution durations. We
found that threads that are created around the same time tendto
have similar execution durations. We can find examples of this in
parallel-for structures or applications with fork-join models. The
main reasons for this similarity across threads are: (1) program-
mers tend to write one piece of code and increase the number of
threads that execute the same code (2) programmers tend to do
static load balancing between threads to utilize all cores.Therefore,
though we might not be able to predict how long each thread will
execute, we can easily predict which thread within a thread group
(explained in section 3.2) is lagging behind, because all threads in
the same group tend to have similar execution lengths. The thread
that is lagging behind can then be made to execute on a fast core.
Scheduling based on the relative age of threads is calledage based
scheduling.

Operating system scheduling for multiprocessor systems isa well
researched topic. However, the schedulers proposed for multipro-
cessors are inadequate for asymmetric architectures. Schedulers of
well known operating systems such as Linux [9] [18] and FreeBSD [19]
focus on providing fairness and good response time to interactive
applications; they are not designed and implemented for asymmet-
ric architectures. Recent asymmetry aware algorithms [14,5, 13,
17] will be discussed in Section 8.

The contributions of our paper are as follows:

1. We propose a simple, but very effective relative thread length
prediction mechanism.

2. We propose a new asymmetry aware thread scheduling pol-
icy, which considers the relative length of each thread.

3. We thoroughly analyze a wide range of workloads to provide
an insight into symmetry and asymmetry of workloads.

2. BACKGROUND AND PROBLEMS WITH
CURRENT SCHEDULING ALGORITHMS

In this section, we provide background knowledge about existing
scheduling policies in desktop operating systems using theLinux
scheduler [3, 9, 18] as reference and explain why existing sched-

ulers are not suitable for AMPs. Note that our discussions assume
that all threads have the same priority (or weight).

In a traditional multiprocessor operating system, the scheduler
tries to provide fairness to the threads in the system. Towards
this goal, the scheduler tries to keep the threads distributed equally
among the available cores. This ensures that all threads getequal
opportunities to execute and also improves the system throughput
since all cores are utilized efficiently. The goal of the current Linux
scheduler is the fair and optimal use of the available CPU resources.

2.1 Thread Assignment
In keeping with the fairness and optimal use goals mentioned

earlier, in current operating systems, the decision of where to assign
a thread is made solely based on the load (number of threads as-
signed or sum of weights of threads assigned) on each core. When-
ever a new thread is created, it is assigned to the least loaded core,
i.e., the core that has the fewest threads in its run queue. A similar
policy is used to assign threads that have woken up. This policy
works well on a machine with all identical cores, but does notpro-
vide good results in an asymmetric environment [6]. Supposethat
a machine has two cores - one fast core running at 2.5 GHz and a
slow core running at 500 MHz. An application with four threads
is to be run on the machine. In such a situation, how should the
assignment of threads to cores be done? current operating system
schedulers would assign two threads to each core and let the threads
run on the initially assigned cores till their termination.This would
result in bad application performance since the fast core would re-
main idle once the threads assigned to it terminate and, all threads
would not be able to take advantage of the fast core.

2.2 Load Balancing and Idle Balancing
Multiprocessor operating systems do load balancing [3] periodi-

cally to ensure that uniform distribution of load across thecores is
maintained. Creation of new threads, termination of threads, block-
ing and unblocking of threads result in load imbalance across cores,
so periodic load balancing is required. Load balancing is different
from thread context switching and is performed less frequently than
context switching. Idle balancing is needed when a core goesidle,
i.e., all the threads that were assigned to the core have either termi-
nated or blocked and the core’s run queue is empty. In case of idle
or load balancing, threads are pulled from a busy core to the idle
or lightly loaded core. In current operating systems, load balanc-
ing and idle balancing consider only the number of threads (or load
calculated using per thread weights) and result in the same problem
as asymmetry unaware thread assignment. In AMPs, even load bal-
ancing and idle balancing should be done in an asymmetry aware
fashion to make optimal use of cores. Often, it may be required
to migrate threads from slow cores to fast cores to ensure that fast
cores do not remain idle.

3. SCHEDULING IN AMPS - AGE BASED
SCHEDULING

3.1 Overview
Age based scheduling assumes that the majority of multithreaded

applications follow a simple fork-join model as shown in Figure 2.2

The main thread forks several child threads and then could block
immediately waiting for the child threads to complete or could
block after performing some work. The application threads may
encounter several barriers during their execution. The goal of Age

2Some applications do not follow this model

�

�

����

�����	�

�����	�

�����	�

�

����
��	��

�

�
����

�����	�

�����	�

Figure 2: Ap-
plication model
assumed by age
based scheduling

based scheduling is to schedule threads
such that they all reach their next mile-
stones, which could be either a barrier
or termination, at the same time. It tries
to do this by utilizing all the available
cores, while exploiting the fast cores to
accelerate threads that are lagging be-
hind. Because of the asymmetric na-
ture of the cores, threads that execute
on slow cores automatically lag behind
threads executing on fast cores.

Figure 3 shows an example of fork-
join model in one of the Parsec bench-
marks, blackscholes. The structure of
blackscholes is identical to the appli-
cation model explained above. The
main thread creates several child threads
(pthread_create()) and blocks on the
child threads (pthread_join()), waiting
for them to terminate. Each of the child
threads first reaches a common barrier
(pthread_barrier_wait()), after crossing

the barrier each child thread executes till it terminates. After all
the child threads have terminated, the main thread continues its ex-
ecution and terminates. Swaptions, also from Parsec, has the same
code structure as well, except that it contains no barriers.

/* function executed by each child thread */
int bs_thread(void *tid_ptr) {

...
pthread_barrier_wait(&barrier);

for (j = 0; j < NUM_RUNS; j++) {
for (i = start; i < end; i++) {

price = BlkSchlsEqEuroNoDiv(...);
...

}
}
return 0;

}
/* main */
int main (int argc, char **argv) {

...

/* fork */
for (i = 0; i < nThreads; i++) {

tids[i] = i;
pthread_create(&_M4_threadsTable[i], NULL,

bs_thread, &tids[i]);
}

/* join */
for (i = 0; i < nThreads; i++) {

pthread_join(_M4_threadsTable[i], &_M4_ret);
}
...

}

Figure 3: Skeleton code of Blackscholes

3.2 Degree of Symmetry
The key component of Age based scheduling is that threads are

symmetric, i.e., they have equal amount of work, if they are created
at similar times. To better understand how many applications actu-
ally have symmetric behavior, we measure the degree of symmetry.
First, we illustrate the concept of thread groups. Figure 4ashows 2
different thread groups, the main thread and all child threads. Fig-
ure 4b shows 4 thread groups. Threads that are created together
form a thread group.

Figure 5 shows the degree of symmetry of the Parsec bench-
marks (the degree of symmetry was computed using the simmedium

case (a)

thread−group

thread−group

case (b)

thread−group

thread−group

thread−group

thread−group

Figure 4: Thread-group examples

����
�

����

���

����

���

����

���

����

�
�
�
��
�
��
��
�
	

�
��
	

������� �������

Figure 5: Degree of Symmetry of the Parsec benchmarks

input). The degree of symmetry indicates how symmetric the (child)
threads of an application are with respect to each other. A value
closer to zero indicates a high degree of symmetry, whereas ahigher
value indicates a lower degree of symmetry. We regard applications
with degree value≤ 0.1 as symmetric and all others as asymmetric.
The degree of a thread group is calculated as standard deviation of
the lengths of threads in the thread group divided by the average
of the lengths of the threads in the thread group. If an applica-
tion has more than one thread group, we then average the degree
of symmetry of all the thread groups to obtain the final value for
the application (note that the main thread is not used in the calcu-
lation of degree of symmetry). From Figure 5 we see that eightout
of the twelve shown the Parsec benchmarks are symmetric.3 This
symmetry data forms the basis of our insight that threads that are
created together tend to have similar execution times.

3.3 Details of the Policy
Based on the Age of threads, we propose theAge Based Longest

Job Fast Core First (LJFCF)policy. LJFCF is similar to theLongest
Job First (LJF)scheduling policy [22]. LJFCF predicts how far a
thread is from the next barrier, or if no more barriers are going to
be encountered, its termination. The thread(s) with the longest pre-
dicted distance(s) to the next milestone is(are) assigned to the fast
core(s). Predicting the exact distance or execution duration to the
next milestone is very difficult. However, for LJFCF, we do not
have to know the absolute values of distances of different threads,
we have to know only the relative values of distances of threads.
The prediction of relative values of distances to the next milestone
is based on the insight that threads that are created together usually
have the same lengths. Thus, threads that are created together are
predicted to have the same distances to their next milestones at the
time of their creation and threads that are created later arepredicted
to have longer distances to their next milestones. When a thread
reaches a milestone, its distance to the next milestone is predicted
and the newly predicted distance is used for thread to core assign-
ment. Note that Age based scheduling could cause more migrations

3x264 has a degree of symmetry of zero since it has only one thread
in each thread group

than other mechanisms. However, our simulation results show that
the benefit of Age based scheduling can overcome overhead from
frequent migrations.4

LJFCF is applied whenever one of the following occurs: (1) a
thread is created, (2) a core goes idle because all the threads as-
signed to the core have either terminated or blocked, or (3) peri-
odic timer for reassignment expires. A thread may be blockedfor
several reasons - waiting for a lock, waiting for all threadsto reach
a barrier, waiting for a child to terminate, waiting for I/O to com-
plete etc. For LJFCF, we have replaced periodic load balancing
with periodic reassignment. While load balancing is typically done
for each core at different points in time, reassignment is done at
the same time for all cores. In our experiments, the reassignment
interval was same as the load balancing interval used for policies
that do load balancing. Reassignment is done periodically to en-
sure that threads that are lagging behind can catch up; this results
in improved application performance. Algorithm 1 summarizes the
LJFCF scheduling algorithm. How to calculaterem_exe used in
Algorithm 1 will be explained in Section 3.4.

3.4 Age Prediction
There are three ways of calculatingrem_exe: oracle, prediction,

and profiling. Oracle method is used to demonstrate the effective-
ness of scheduling policies. The following two sections describe
the LJFCF policy based on prediction and profiling.

3.4.1 LJFCF Policy using Prediction
The LJFCF Policy using Prediction [Age(Pred)] uses prediction

to determine the distance of each thread from its next milestone.
Age(Pred) predicts that the distance between any two successive
milestones (creation, barriers and termination) of any thread is the
same and the common distance value is predicted to be very large.
This implies that after crossing a milestone all threads arepredicted
to have the same distance to their next milestone. As a thread
executes, the predicted remaining distance to the next milestone
reduces according to its progress. When Age(Pred) is invoked,
the predicted remaining distance to the next milestone is used as
rem_exein Algorithm 1 to assign threads to cores.

3.4.2 LJFCF Policy using Profiling
In Age(Pred), it is predicted that any two successive milestones

of any thread have the same distance between them, but in LJFCF
Policy using Profiling [Age(Prof)], it is predicted that thedistance
between any two successive milestones of only agiventhread are
the same. The distances between successive milestones are not the
same across threads. By profiling the application with sample in-
puts, the average distance between milestones is determined for
each thread. These average distances are fed to the scheduler as a
set of ratios before the application is run. Based on these ratios, the
remaining distance of each thread to its next milestone is predicted.
Threads with lower ratios are predicted to have shorter distances
between milestones. Thread assignment is done using Algorithm 1
using the predicted, ratio based remaining distances.

3.5 Why should Age Based Scheduling Work?
We show why Age based scheduling should work and provide

good application performance by comparing with the state-of-the-
art AMP scheduler algorithm, which was proposed by Li et al. [17]
(referred to as Li’s mechanism in this section). The key ideas of

4Our simulator models all the migration overhead faithfullyand
reduction in number of migrations is one of our future research
work

�� �� ��

�� �� �� ��

�

� � �

�� �� �� ��

�

� � �

Figure 6: Age based scheduling utilizes all available resources
(left - Li’s mechanism, right - Age based scheduling)

Li’s mechanism are Asymmetry-Aware Load Balancing and Faster-
Core First Scheduling. Asymmetry-Aware Scheduling ensures that
the load on each core is proportional to its computational power,
this provides fairness to the threads of an application. Faster-Core
First Scheduling assigns threads to fast cores if they are under-
utilized. We use a machine with four cores - one fast core (Core
0) and three identical slow cores (Core 1, Core 2 and Core 3) - as
shown in Figure 6 to illustrate the working of Age based scheduling
and Li’s mechanism. The fast core has four times the performance
of each slow core, this is indicated by the 4p inside the blockrep-
resenting the fast core in the figure.
Li’s mechanism has the following limitations:

1. Using the concept of scaled load that is explained in sec-
tion 5.1, Li’s mechanism assigns the threads of a multithreaded
application as shown in Figure 6left. This results in low uti-
lization of the slow cores when there are few threads in the
system. On the other hand, Age based scheduling assigns
threads as shown in Figure 6right, resulting in high utiliza-
tion of cores.

2. Li’s mechanism does not exploit fast cores. Since a fast core
is assigned threads proportional to its computational power,
it is being treated as though it is composed of several slow
cores and eachvirtual small core is assigned the same load as
a real small core in the system. Also, once threads start exe-
cuting, they continue to execute on the same core till they ter-
minate, block or are migrated. This may be unfair to threads
executing on the slow cores. Age based scheduling tries to
exploit fast cores by giving all threads (or threads that arelag-
ging behind) opportunities to accelerate by executing on fast
cores. In Figure 6, with Li’s mechanism, once initial assign-
ment of threads is made, threads continue to execute on the
same cores unless some event such as creation, termination
or blocking of a thread occurs. In case of Age based schedul-
ing, threads executing on slow cores are moved to fast cores
at different points in time i.e.,tA 6= tB 6= tC in Figure 6, so
that all threads execute on the fast cores.

4. IMPLEMENTING LJFCF POLICY

4.1 Tracking the Progress of a Thread
For each thread, LJFCF predicts the remaining distance to its

next milestone. As a thread executes, the predicted distance should
reduce. Thus to predict the remaining distance we have to track
the progress of threads accurately. We approximate the progress
of a thread with the number of instructions executed by it. To
count the number of instructions executed by each thread a hard-
ware mechanism is needed. Today’s processors already have a
hardware performance counterINST_COUNT(Intel and AMD pro-
cessors provide the performance events INST_RETIRED and RE-
TIRED_INSTRUCTIONS respectively, to count the number of re-

Algorithm 1 Longest Job Fast Core First Policy (LJFCF)
STEP1
sort the threads in the decreasing order of theirrem_exe
STEP2
if the number of threads is less than or equal to the number of coresthen

make 1:1 assignment, with threads with longerrem_exes being assigned to fast cores
end if
STEP3
if the number of threads is greater than the number of coresthen

compute the averagerem_exethat must be assigned to each corei
avg_rem_exe_corei = (rem_exetotal/core_perftotal) ∗ core_perfi

for each threadthreadj in sorted orderdo
identify the corecorek for which the difference between therem_exeto be assigned and therem_exeactually assigned is the highest
rem_rem_exei = avg_rem_exe_corei − rem_exe_corei

k = max(rem_rem_exei)
assignthreadj to corek

if number of threads yet to be assigned is less than or equal to the number of cores without any assignmentsthen
make 1:1 assignment of threads to cores
break

end if
end for

end if

tired instructions) to count the number of instructions executed [15].
The operating system can simply utilize one such existing hard-
ware performance counter. To remember the progress made by a
thread, a new field,progress, is added to the task/thread data struc-
ture. Operating systems maintain one task structure variable for
each thread in the system. When a thread is created, theprogress
field in its task structure is initialized to zero. The operating sys-
tem updates theprogressfield whenever the thread executes. When
a thread is switched in and starts executing,INST_COUNTis re-
set to zero and incremented for each instruction that is completed.
Whenever a hardware interrupt or exception occurs,INST_COUNT
is disabled i.e., it stops counting and is enabled again whenthe in-
terrupt or exception handler returns.INST_COUNTis not disabled
when software interrupts are raised. This way, work done fora
thread inside system calls is not ignored. At every timer tick, the
operating system adds the value accumulated inINST_COUNTto
progressand resetsINST_COUNTto zero.progressis also updated
with INST_COUNTwhen the thread blocks, is switched out or is
even migrated. In this way,progressof each thread is tracked and
the predicted remaining distance is kept updated.

4.2 Passing Profile Information with
Compiler assistance

Applications are profiled during compilation to collectioninfor-
mation about the execution of different application threads. The
information collected during compilation is stored in a data seg-
ment in the binary. To store profile information of applications, the
operating system scheduler implementsprof_datadata structure.
When a binary is loaded, the data segment containing profile data
is read andprof_datais updated with profile information. When an
application thread is created, the scheduler readsprof_datafor pro-
file information of the application. If profile data is available, the
scheduler updates the thread’s task structure with the profile data.
In case profile information is not available for all threads created by
the application, the scheduler does extrapolation to determine the
information for the newly created thread.

4.3 Passing Profile Information without
Compiler assistance

To be able to pass profile information to the scheduler without
any aid from the compiler we need a mechanism that allows users
or user applications to communicate with the scheduler. Since

prof_datais a kernel data structure, user programs cannot access
it directly. So, an interface to update or readprof_datais provided
through an entry in the proc file system. A user or a tool can write
the application path, the desired action (add, modify, or delete) and
any needed support data to the proc entry. Whenever the proc entry
is written to, prof_data is updated or read from according to the
specified action.

4.4 Implementation in Operating System
Essentially, Algorithm 1 has to be implemented in the operating

system kernel. The following sections of the scheduler in the op-
erating system have to be changed to implement the algorithm: (1)
initial thread assignment, (2) thread termination, (3) assignment on
thread wake up, and (4) load balancing. Since Algorithm 1 is cen-
tralized, the algorithm could always be executed on the samecore.
It could be the fastest core, or the core with the lowest operating
system assigned id and so on.

4.5 Scalability
LJFCF has a complexity of O(nlogn + pn), where n is the num-

ber of threads and p is the number of cores. For a machine with a
small number of cores the complexity of LJFCF becomes O(nlogn).
When we have a large number of threads or a large number of cores,
the algorithm can be extended in a hierarchical fashion. In Algo-
rithm 1, the scheduler sorts all threads based on their remaining
execution time. Instead of globally sorting all the threads, each
core or a group of cores can sort threads locally first. Only the
longest job from each core or group can be a candidate for global
migration. The rest of the threads are scheduled locally.

5. OTHER SCHEDULING POLICIES
A complete scheduling mechanism specifies three main policies

- policy for initial assignment, policy for wake up assignment and
policy for load balancing. The roles of these policies were ex-
plained in section 2. Below, we briefly explain the differentpolicies
that were used for each category of policy in our evaluation of Age
based scheduling.

5.1 Thread Assignment Policies
Asymmetry Unaware Assignment (AUA) [3, 9, 18]: This is

the assignment policy used by current operating systems. Itis not

aware of asymmetry of cores and it assigns threads to the corethat
has the least number of threads.

Fast Core First Assignment (FCA)*5: This policy assigns a
thread to a fast core first if a fast core is idle. If not, it assigns a
thread to the next idle core.

Asymmetry Aware Assignment (AAA) [17]: It defines what
is called as scaled loadL for each core. The performance of the
slowest core is taken as 1 and the performance of a core that isF
times faster than the slowest core is taken asF * S, whereS is the
scaling factor. For simplicity, it is taken to be a constant of value
less than 1. The scaled load for each core is equal to its run queue
length divided by its performance.

When a new thread is to be assigned a temporary scaled load
is computed for each core assuming that the new thread has been
assigned to the core. The thread is then assigned to the core with
the lowest temporary scaled load. In the event that two or more
cores have the lowest temporary scaled load, the thread is sent to the
slowest of the tied cores. This assignment ensures that a newthread
runs on a fast core if it is underutilized and also allows multiple
threads to run on the fast cores.

5.2 Wake up Assignment Policies
These policies are used to assign newly woken up threads to

cores. Threads can block waiting for a child to finish, waiting for a
lock or waiting for some other events. When the event on whicha
thread is waiting, occurs, the thread is woken up and assigned to a
core.

Previous Core (PW)*: When a thread is woken up, it is assigned
to the core on which it was previously running. This policy tries to
reduce the overhead due to thread migration. This policy canbe
effective if threads are woken up after a short wait and the previous
core is not occupied by other threads. However, if the previous
core is already running other threads, this policy can causea load
imbalance problem.

Faster Core (FW)*: When a thread is woken up, it is assigned
to the least loaded fast core. This policy is trying to increase the
utilization factor of fast cores. However, this can resultsin very
severe load imbalance problems.

Idle Core (IW) [3, 9, 18]: The idle core (IW) policy is similar
to the policy in the Linux scheduler. When a thread is woken up, it
is assigned to an idle core, if one is available, else it is assigned to
the previous core on which it was running. This policy is the best
for solving load imbalance problem.

Suitable Core (SW)[our proposed mechanism]: This policy is
the most sophisticated policy. The suitable core (SW) policy checks
if any idle fast cores are available, if so, the thread is assigned to an
idle fast core. When looking for idle fast cores preference is given
to the core on which the thread was previously running if thatcore
was a fast core. If no fast cores are available, a check for an idle
slow core is made in the same way as the check for an idle fast core.
If an idle slow core is found, the thread is assigned to the idle core.
Preference is given to the core on which the thread was previously
running because the initial overhead (cache misses) experienced by
the thread will be low if it is assigned to the same core instead of a
different core. The simulator models this effect as well.

5.3 Load Balancing Polices
Asymmetry Unaware Balancing (AUB) [3, 9, 18]: This is the

load balancing used by current operating system schedulers. It is
not aware of asymmetry of cores and it does balancing based on

5* indicates a policy that might not be used in an operating system,
but we discuss it just to complete all the possible basic policies

the number of threads assigned to each core (or based on the total
weight of threads assigned to each core).

Round Robin Balancing (RRB)*: This policy migrates threads
to a fast core in a round-robin fashion. This policy tries to provide
fair access to the fast cores for the threads in the system.

Asymmetry Aware Balancing (AAB) [17]: The Load Balanc-
ing policy tries to ensure that the difference between the maxi-
mum scaled loadLmax in the system and the minimum scaled load
Lmin in the system is less than or equal to 1 i.e.,Lmax − Lmin ≤ 1.
This results in threads being assigned to cores in a fair manner.

5.4 Combining Policies
The policies explained above can be combined in different ways

to obtain many different combinations. For the rest of the paper,
we represent different scheduling policies obtained by combining
one policy of each category by joining their names using hyphens.
From left to right, the names are specified in the order - thread as-
signment policy, thread wake up policy, and load balancing policy.
For example, AUA-IW-AUB means that AUA thread assignment
policy, IW thread wake up policy and AUB load balancing policy.
This is the current Linux scheduling policy and is called LINin
our discussions. The mechanism proposed by Li et al. is AAA-
IW-AAB and will be referred to as SCALELD. Note that if an Age
based policy is used as the third policy (load balancing policy) in
a combination, it actually performs periodic reassignmentas ex-
plained in 3.3 instead of periodic load balancing.

Table 1 summarizes the performance of the different policy com-
binations. (-) means low performance and (+) means high perfor-
mance. The number mentioned for each policy combination in Ta-
ble 1 specifies the reason for categorizing the performance of that
policy combination as either (-) or (+). The list of reasons is given
below. We found that wake up assignment policies do not affect the
overall performance significantly compared to other polices, hence
there are no separate entries for different wake up policies.

1. Since both initial assignment and load balancing policesare
asymmetry unaware, the performance would be very low.

2. Since load balancing policy is asymmetry unaware, perfor-
mance would be low.

3. Since the initial assignment is asymmetry unaware, perfor-
mance could be low.

4. Asymmetry aware assignment and load balancing should pro-
vide good performance.

5. Since initial assignment is not intelligent, performance could
be low.

6. Age based assignment and asymmetry aware load balancing
should provide good performance.

7. Asymmetry unaware initial assignment and a simple round
robin mechanism would result in low performance.

8. Simple round robin would result in low performance.
9. Asymmetry aware scheduling in combination with age based

balancing should provide good performance.
10. Age based assignment and scheduling should provide good

performance.

Certain combinations of policies in Table 1 will be referredto in
the evaluation section using names shown in Table 2.

6. EXPERIMENTAL METHODOLOGY

6.1 Simulation Methodology
We use an in-house, cycle accurate simulator for our experi-

ments. The simulator is a hybrid incorporating features of both

Table 1: Performance of different possible policies and thereason
AUA AAA FCA Age(Oracle) Age(Pred) Age(Prof)Load Balancing Policy

PW/FW/IW/SW PW/FW/IW/SW PW/FW/IW/SW PW/FW/IW/SW PW/FW/IW/SW PW/FW/IW/SW

AUB 1 (–) 2 (–) 2 (–) 2 (–) 2 (–) 2 (–)
AAB 3 (–) 4 (+) 5 (–) 6 (+) 6 (+) 6 (+)
RRB 7 (–) 8 (–) 8 (–) 8 (–) 8 (–) 8 (–)

Age(Oracle) 3 (–) 9 (+) 5 (–) 10 (+) 10 (+) 10 (+)
Age(Pred) 3 (–) 9 (+) 5 (–) 10 (+) 10 (+) 10 (+)
Age(Prof) 3 (–) 9 (+) 5 (–) 10 (+) 10 (+) 10 (+)

Table 2: Scheduling mechanisms
Combination Name Comment

AUA-IW-AUB LIN Scheduling policy in Linux
AAA-IW-AAB SCALELD Scheduling policy proposed by Li et al.
AUA-IW-RRB RR Threads are moved to fast cores in a Round-Robin manner

FCA-SW-Age(Pred) FCA-AGE Fast Core First assignment with Prediction based LJFCF
Age(Oracle)-SW-Age(Oracle) AGE(ORACLE) Oracle based LJFCF

Age(Pred)-SW-Age(Pred) AGE Prediction based LJFCF
Age(Prof)-SW-Age(Prof) AGE(PROF) Profiling based LJFCF

trace driven and execution driven simulators. The architecture sim-
ulations are done using the trace driven part, but all the operating
system relevant events are precisely modeled using operating sys-
tem algorithms through the execution driven part.

The simulator performs initial assignment, wake up assignment,
load and idle balancing according to the specified parameters. It
also performs time slicing between the threads in a ready queue. By
default, a time slice of 10 ms is assumed. Even context switchand
migration overheads are simulated.6 All threads of an application
are assumed to have the same static and dynamic priorities. Equal
static priorities means that all threads are allocated the same time
slice and because of equal dynamic priorities all threads ina give
ready queue are executed in a round-robin fashion.

The traces for simulation are generated using a Pin tool. The
traces provide information about each application thread in the form
of sections. Each section can be either a critical section ornon-
critical section. In addition to the type of the section, thelength of
the section is also included. Information about the locks associated
with critical sections and the various barriers and joins encountered
by a thread are also included in the traces. The inclusion of syn-
chronization information enables us to simulate thread interactions
accurately.

6.2 Real Machine System
To verify our simulator, we compared the simulator’s results with

results from a real machine system. We useSpeedSteptechnol-
ogy [4] withcpufreq governors [2] to emulate an AMP. Our
test machine has Dual Quad Core Intel Xeons [1] with 8 GB RAM
and runs RHEL 5.1 Desktop (Linux Kernel 2.6.18). Table 3 shows
the machine configurations in detail. Our experiments with real
machines use an unmodified RHEL 5.1 Desktop kernel as baseline.
All experiments with the real machine use 8 threads.

Table 3: Three machine configurations
all-fast All 8 cores are running 1.87GHz
all-slow All 8 cores are running 1.60GHz
half-half 4 cores are running 1.87GHz, 4 cores are running 1.60GHz

6.3 Benchmarks
Our experimental benchmarks include Parsec [8] with full exe-

cution of simmedium input set. To test the robustness of scheduling
policies, we select asymmetric workloads from various benchmarks
suites for evaluation. Our asymmetric benchmarks (benchmarks

6The simulated overhead includes slowdown caused by initial
cache misses that occur when a thread is context switched or mi-
grated. Migration is assumed to cause more cache misses thancon-
text switch

that do not belong to the Parsec suite) are from Splash-II [23],
SuperLU [11] - an Asynchronous Parallel Supernodal Algorithm
for Sparse Gaussian Elimination, and OmpSCR [12]. The detailed
characteristics of the evaluated benchmarks are describedin Ta-
ble 4. For experiments with Age(Prof), for the Parsec benchmarks,
we use simsmall input for profiling. Since smaller input setsare not
available for other benchmarks, we use the same inputs for both ex-
ecution and profiling. For Splash-II and OmpSCR, we use the base
or standard inputs provided along with the benchmarks. For Su-
perLU, we use cg20.cua, g4.rua and g5.rua input files.

7. RESULTS

7.1 Problem Demonstration in the Simulator
To verify how accurately our simulator models the real system’s

behavior, we compare our simulation results with Figure 1. Fig-
ure 7 shows the performance of the Parsec benchmarks on three
different machine configurations using the default Linux policy and
the performance on half-half configuration using the Age based
policies. We use a 4 fast-4 slow configuration and a 2:1 frequency
ratio for the half-half configuration to demonstrate the problem.
The all-fast configuration has 8 cores with frequency 2x and the
all-slow configuration has 8 cores with frequency 1x. Even though
the absolute execution time for each benchmark is differentfrom
the real machine, the trends in the simulation results show that the
simulator models the real system accurately. For example, the ratio
of performance of blackscholes on all-fast, half-half and all-slow
configurations on the real machine is 1:1.92:1.96. For the simula-
tor, this ratio is 1:1.95:1.99, which is quite accurate. Other slow-
limited benchmarks such as facesim and fluidanimate show similar
performance on half-half and all-slow configurations on both the
real machine and the simulator. Since the current Linux policy is
asymmetry unaware, it could assign threads to the fast and slow
cores in any order. To report results for the default Linux policy
we run two simulations - one with threads being assigned to the
fast cores first and another in which threads are assigned to the
slow core first - and average the results for the two simulations.
There is a minor discrepancy between the two graphs for bench-
marks such as canneal and fluidanimate because of the instability of
the benchmarks. For the rest of the benchmarks, the performance
on half-half is between all-slow and all-fast on both real machine
and simulator. Based on these results, we can safely conclude that
our simulator can model asymmetric processor behavior accurately.
The simulator results also show that the performance of the Parsec
benchmarks on half-half configuration using Age based policies is
much similar to the performance of the Parsec benchmarks on the

Table 4: Benchmark characteristics
Application Suite Description Inst. Count Locks Barriers # of Threads # of Thread Groups
blackscholes Parsec [8] Financial Analysis 152352819 39 8 9 2

bodytrack Parsec Computer vision 670415058 40465 1192 9 2
canneal Parsec Engineering 292696036 50 0 9 2
dedup Parsec Enterprise Storage 1065257131 26640 0 25 4

facesim Parsec Animation 12261654384 14580 0 8 2
ferret Parsec Similarity Search 799250302 7367532 0 35 5

fluidanimate Parsec Animation 570968537 4168875 31998 9 2
freqmine Parsec Data Mining 3435161189 3083 0 8 2

streamcluster Parsec Data Mining 837572613 311 103984 17 3
swaptions Parsec Financial Analyis 503683305 39 0 9 2

vips Parsec Media Processing 1886383414 14876 0 11 3
x264 Parsec Media Processing 482957580 3973 0 64 64
c_fft OmpSCR [12] Parallel FFT 1809116600 17 0 8 3
c_fft6 OmpSCR Parallel FFT 2963158985 17 0 8 3

c_qsort OmpSCR Parallel Quicksort 1040129080 17 0 8 4
cg20.cua SuperLU [11] Sparse Direct Solver 2933192658 25568 0 9 7
g4.rua SuperLU Sparse Direct Solver 992345600 5559 0 9 9
g5.rua SuperLU Sparse Direct Solver 1517742541 28830 0 9 8
barnes Splash-2 [23] N-body method (3-D) 8309648058 1098755 136 8 5

cholesky Splash-2 Cholesky factorization 12888835049 22049 32 8 7
fmm Splash-2 N-body method (2-D) 9758572445 637614 272 8 6

lu_contiguous Splash-2 LU decomposition 3117508 25 88 8 8
lu_non_contiguous Splash-2 LU decomposition 2263332 25 88 8 7

radiosity Splash-2 Iterative diffusion 4362156729 1657844 128 8 5
raytrace Splash-2 3D sense rendering 100535964 74380 8 8 6

all-fast configuration than on the half-half configuration.On av-
erage, AGE and AGE(PROF) are only 15% and 9% slower than
all-fast while the default Linux policy is about 59% slower.

0

25

50

75

100

125

150

175

200

225

250

E
xe

cu
tio

n
tim

e(
M

ill
io

ns
 o

f c
yc

le
s)

All-Fast
Half-Half
All-Slow
AGE
AGE(PROF)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

30
6

M
40

9
M

Figure 7: Behavior of default Linux scheduler and Age based
policies on three machine configurations in Table 3

7.2 Evaluation
In this section, we present the results of our simulations. We

compare Age based scheduling with the state-of-the-art asymmetry
aware thread scheduling algorithm, SCALELD (Li’s mechanism).
We also compare results with the current Linux policy (LIN pol-
icy). The results we present for the Linux policy are an average
of faster core first and slower core first simulations as explained in
section 7.1. However, since the Linux policy performs consider-
ably worse than SCALELD, we often omit its results. Most results
are presented as percentage reduction in execution time in compar-
ison to SCALELD. The base AMP machine configuration used for
all experiments is 1 fast core and 7 slow cores with the ratio of
the frequencies (performance) of the fast and slow cores being 8:1
unless otherwise specified.

7.2.1 LJFCF Policies vs. Others

Figure 8 compares the performance of different LJFCF policies
with other scheduling polices. The other evaluated policies are
LIN, RR and FCA-AGE (Fast Core First assignment with Age based
load balancing). The results are presented as percentage reduc-
tion in execution time compared with SCALELD. Age based poli-

cies generally take less than half of the execution time of LIN due
to LIN being asymmetry unaware. The RR policy also performs
badly in comparison with SCALELD and Age based policies. For
Parsec, compared with SCALELD, AGE shows 10% reduction in
execution time, while AGE(PROF) and AGE(ORACLE) show 13%
and 15% reduction in execution time, respectively. For almost all
the Parsec applications, Age based mechanisms either improve the
performance or give about the same performance in comparison
with SCALELD. Benchmarks such as streamcluster and bodytrack
which have frequent barriers (short distances between milestones)
provide little scope for improvement. Canneal has a very small
parallel section, hence does not show much benefit. Blackscholes
does not provide any benefit since the default timeslice value as-
signed to each thread is very large for reassignment to happen.
Reassignment gives each thread an opportunity to execute onthe
fast cores. By reducing the time slice value we can obtain im-
provement for blackscholes. Note that all experiments usedthe
same time slice value as mentioned in section 6. The right of Fig-
ure 8 shows the reduction in execution time with different polices
for asymmetric benchmarks. For asymmetric benchmarks, AGE,
AGE(PROF) and AGE(ORACLE) provide an improvement of 8%,
9% and 13% respectively, with c_fft, c_fft6, cg20.cua (SuperLU)
and cholesky showing significant improvement. Though Age based
scheduling assumes that the threads of an application are symmet-
ric, even asymmetric benchmarks show significant improvement
with the Age based policies. This is because Age based scheduling
gives opportunities to different threads to execute on fastcores by
migrating threads to and from fast cores and does not keep thesame
threads assigned to fast cores as SCALELD. In general, FCA-AGE
performs similar to AGE because the Fast Core First assignment
policy of FCA-AGE is used only when new threads are created,
thereafter, AGE is used for reassignment of threads on events such
as core going idle, reassignment timer expiry and so on. These
trigger events for reassignment happen frequently enough that the
effects of poor initial assignment by FCA are not very visible.

7.2.2 Idle Cycles

Figure 9 shows the idle cycles of each core for different policies
for each Parsec benchmark. By analyzing this idle cycle distri-
bution we can conclude how much each policy utilizes fast cores.

-40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30
35
40
45

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e

LIN
RR
FCA-AGE
AGE
AGE(PROF)
AGE(ORACLE)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

-5
2.

86

-2
31

.0
1

-3
51

.3
9

-1
05

.4
4

-1
03

.7
3

-9
3.

5

-7
0.

87

-1
42

.0
0

-8
6.

43

-1
05

.0
7

-6
7.

74

-1
69

.7
2

-5
2.

41

-6
2.

00

-5
8.

93

-10

-5

0

5

10

15

20

25

30

35

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e

FCA-AGE
AGE
AGE(PROF)
AGE(ORACLE)

ba
rn

es

c_
fft

c_
fft

6

c_
qs

or
t

cg
20

.cu
a

ch
ole

sk
y

fm
m

g4
.ru

a

g5
.ru

a

lu_
co

nt
igu

ou
s

lu_
no

n_
co

nt
igu

ou
s

ra
dio

sit
y

ra
ytr

ac
e

AVG

Figure 8: Age based policy with other scheduling policies (Left: Parsec benchmarks, Right: Asymmetric benchmarks)

The Age based policies try to utilize fast cores as much as possible.
Since the Linux scheduler distributes threads equally across cores,
it results in under utilization of fast cores (Core 0 is the fast core
in this configuration). Both SCALELD and the Age based policies
keep the fast core busy at all times. While SCALELD keeps the
same threads assigned to the fast cores, the Age based policies try to
give all threads opportunities to execute on the fast cores.Figure 10
shows the reduction in total idle cycles of all cores for the Parsec
benchmarks for AGE, AGE(PROF) and AGE(ORACLE) policies
in comparison with SCALELD. On average, AGE, AGE(PROF)
and AGE(ORACLE) result in 29%, 40% and 48% reduction in to-
tal idle cycles. This shows that the Age based policies have better
core resource utilization.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Id
le

 c
yc

le
 d

is
tr

ib
ut

io
n

core7
core6
core5
core4
core3
core2
core1
core0

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

Figure 9: Normalized distribution of idle cycles for each core
- The column order from left is LIN, SCALELD, AGE and
AGE(ORACLE) policies

-20

-10

0

10

20

30

40

50

60

70

80

90

100

%
 R

ed
uc

tio
n

in
 T

ot
al

 N
o.

 o
f I

dl
e

C
yc

le
s AGE

AGE(PROF)
AGE(ORACLE)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

Figure 10: Total idle cycles of all cores

7.2.3 Comparison between Age Based Scheduling and
Other Policies

Table 5 shows the comparison between the current scheduling
policy in Linux, Li’s mechanism and the Age based policies on
AMPs. While the Linux scheduling policy performs badly on all

counts, SCALELD performs relatively well. But, SCALELD al-
lows threads that have been assigned to fast cores remain there un-
like the Age based policies, which give different threads opportu-
nities to execute on the fast cores and thus exploit fast cores better.

7.2.4 Prediction Accuracy

Figure 11 and Figure 12 show the prediction accuracy of the
Age based policies for the Parsec and asymmetric benchmarks.
The accuracy is calculated as ratio of the number of correct as-
signments made to the number of assignments made. An assign-
ment of a thread to a core is correct if the thread is assigned to
the same kind of core (fast or slow) as it would have been by
AGE(ORACLE) i.e., oracle based policy.7 Age based policies per-
form assignment of threads when (1) a thread is created, (2) acore
goes idle, or (3) when the periodic reassignment timer expires. For
the Parsec benchmarks, AGE has an accuracy of 73%. Expect-
edly, AGE(PROF) has better accuracy than AGE since it makes
predictions based on profile information; its accuracy for the Parsec
benchmarks being 88%. AGE and AGE(PROF) have accuracies of
72% and 84% respectively for asymmetric benchmarks.

0

10

20

30

40

50

60

70

80

90

100

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

AGE
AGE(PROF)
AGE(ORACLE)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

am
ea

n

Figure 11: Prediction accuracy of Age based policies for the
Parsec benchmarks

7.2.5 Longest Job First vs. Shortest Job First

We evaluate whether Longest Job First (LJF) to fast core or Short-
est Job First (SJF) to fast core is suitable for Age based scheduling
on AMPs. SJF [22] is typically used in batch systems to increase
system throughput. In our context, a job represents the remaining
execution distance until the next milestone. To eliminate the effect

7For accuracy results, we allow a tolerance of -5% to +5%. For
example, instead of thread A, if another thread B whose remaining
execution time is at least 95% or at most 105% of A is assigned,
we consider it to be an accurate assignment

Table 5: Comparison between Policies on AMPs
Scheduling policy Fairness Utilization of fast cores Exploitation of fast cores Application stability

LIN No No No No
SCALELD Yes Yes No Yes

Age based polices Yes Yes Yes Yes

0

10

20

30

40

50

60

70

80

90

100

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

AGE
AGE(PROF)
AGE(ORACLE)

ba
rn

es

c_
fft

c_
fft

6

c_
qs

or
t

cg
20

.cu
a

ch
ole

sk
y

fm
m

g4
.ru

a

g5
.ru

a

lu_
co

nt
igu

ou
s

lu_
no

n_
co

nt
igu

ou
s

ra
dio

sit
y

ra
ytr

ac
e

am
ea

n

Figure 12: Prediction accuracy of Age based policies for Asym-
metric benchmarks

of predicting task/thread distances inaccurately, we use the oracle
to find threads with the longest and the shortest distances inthis
section. Figure 13 shows the simulation results for both Agebased
Longest Job Fast Core First (LJFCF or LFJ based Age scheduling)
and Shortest Job Fast Core First (SJFCF or SJF based Age schedul-
ing) policies. For each policy, we run experiments with bothIdle
Core wake up (IW) and Suitable Core wake up (SW) assignment
policies. Though for certain benchmarks such as blackscholes and
streamcluster there is negligible performance differencebetween
LJFCF and SJFCF, on the whole, LJFCF performs considerably
better than SJFCF. For the Parsec benchmarks, LJFCF performs
about 15% better than the baseline, where as SJFCF is only about
3% better than the baseline. Similar behavior is shown by LJFCF
and SJFCF for asymmetric benchmarks also. Hence, we conclude
that on AMPs, longest job fast core first is a better policy formulti-
threaded applications. Figure 13 also shows that on average, there
is not much difference between using IW and SW wake up assign-
ment policies.

7.2.6 Milestones Used by LJFCF for Predictions

In LJFCF, we can predict the remaining execution time (or dis-
tance) either to the next BT (barrier or termination) or to the next
BCJT (barrier, critical section, join and termination). Figure 14
shows the results for LJFCF using different combinations ofBT
and BCJT for thread assignment and reassignment. The oraclepro-
vides the distance to the next milestone for both BT and BCJT.The
results show that using BT is slightly better than BCJT (15% per-
formance benefit vs. 12% for the Parsec benchmarks). The main
reason is that in BCJT, for benchmarks like dedup that have many
locks, most threads are treated as having short distances tomile-
stones due to locks. Since most (more than 90% for the Parsec
benchmarks) locks can be acquired without contention i.e.,without
the thread getting blocked, treating a thread that has many locks as
having short distances could result in the thread not getting suffi-
cient opportunities to execute on the fast cores, resultingin appli-
cation slowdown compared to BT. On top of that, predicting BTis
simpler than BCJT. Hence, we decide to use BT as our remaining
execution time calculation method.8 The policies used for this set
of experiments are shown in Table 6.

8Except for the experiments in this section, our experimentswith
LJFCF always use BT

Table 6: Scheduling mechanisms

Name Combination
AGE(ORACLE)-B Age(Oracle) with BT for assignment and BCJT for reassignment
B-AGE(ORACLE) Age(Oracle) with BCJT for assignment and BT for reassignment

B-AGE(ORACLE)-B Age(Oracle) with BCJT for both assignment and reassignment

7.3 Microarchitecture Sensitivity Study
To know how sensitive our scheduling policy is to the hetero-

geneity of asymmetric configurations, we vary different parameters
of the asymmetric configurations.

7.3.1 Different Number of Fast and Slow Cores

In Figure 15, we vary the number of fast and slow cores. While
the relative performance of the Linux scheduler (not shown in Fig-
ure 15) degrades considerably as we reduce the number of fast
cores from 4 to 1, the Age based scheduling policies show bet-
ter relative performance as the number of fast cores is reduced.
Though Age based policies are better than SCALELD at exploit-
ing fast cores, as the number of number of fast cores is increased
more threads get to take advantage of fast cores in SCALELD,
hence the performance difference between Age based policies and
SCALELD reduces as the number of fast cores is increased. Re-
member that in SCALELD once a thread is assigned to a core, it
continues to execute on the same core. We believe AMPs will have
very few number of fast cores and several slow cores, and for such
configurations the Age based policies are a better alternative than
SCALELD. Note that the performance of Age based policies for
each configuration is normalized to the performance of SCALELD
for the same configuration.

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e

AGE(4f-4s)
AGE(PROF)(4f-4s)
AGE(2f-6s)
AGE(PROF)(2f-6s)
AGE(1f-7s)
AGE(PROF)(1f-7s)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

Figure 15: Different combinations of AMPs

7.3.2 Different Frequency Ratio between Fast and
Slow Cores

Figure 16 shows the result of varying the frequency ratio between
fast cores and slow cores. In Figure 16, PAR and ASY represent
the average of the normalized execution times for the Parsecand
the asymmetric benchmarks, respectively. As we make the cores
more asymmetric, performance of LIN degrades drastically when
compared with SCALELD or the Age based policies. When the
frequency ratio is 2:1, the Age based policies perform similar to
SCALELD but as we make cores more asymmetric, the benefit of
Age based policies increases. The results show that as we have
higher asymmetric characteristics, the need for asymmetryaware

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e

SJF with Idle Core wake up
SJF with Suitable Core wake up
LJF with Idle Core wake up
LJF with Suitable Core wake up

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

-15

-10

-5

0

5

10

15

20

25

30

35

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e

SJF with Idle Core wake up
SJF with Suitable Core wake up
LJF with Idle Core wake up
LJF with Suitable Core wake up

ba
rn

es

c_
fft

c_
fft

6

c_
qs

or
t

cg
20

.cu
a

ch
ole

sk
y

fm
m

g4
.ru

a

g5
.ru

a

lu_
co

nt
igu

ou
s

lu_
no

n_
co

nt
igu

ou
s

ra
dio

sit
y

ra
ytr

ac
e

AVG

Figure 13: Performance comparison between LJFCF and SJFCF (Left: Parsec benchmarks Right: Asymmetric benchmarks)

-10

-5

0

5

10

15

20

25

30

35

40

45

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e AGE(ORACLE)
AGE(ORACLE)-B
B-AGE(ORACLE)
B-AGE(ORACLE)-B

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

AVG

-5

0

5

10

15

20

25

30

35

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

T
im

e AGE(ORACLE)
AGE(ORACLE)-B
B-AGE(ORACLE)
B-AGE(ORACLE)-B

ba
rn

es

c_
fft

c_
fft

6

c_
qs

or
t

cg
20

.cu
a

ch
ole

sk
y

fm
m

g4
.ru

a

g5
.ru

a

lu_
co

nt
igu

ou
s

lu_
no

n_
co

nt
igu

ou
s

ra
dio

sit
y

ra
ytr

ac
e

AVG

Figure 14: Remaining execution time calculation method BT or BCJT (Left: Parsec benchmarks, Right: Asymmetric benchmarks)

thread scheduling increases and also that Age based scheduling per-
forms better than SCALELD.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

LIN
AGE
AGE(PROF)

2/
1-

PAR

2/
1-

ASY

4/
1-

PAR

4/
1-

ASY

6/
1-

PAR

6/
1-

ASY

8/
1-

PAR

8/
1-

ASY

Figure 16: Different frequency configurations for AMPs

8. RELATED WORK
Many researchers have looked at several different aspects of thread

scheduling on AMPs. Balakrishnan et al. [6] evaluated the per-
formance of multithreaded applications on SMPs and AMPs and
showed that application performance becomes unstable and less
scalable on AMPs. They also showed that an operating system
(or an user level scheduler) that is aware of the asymmetry incore
performance can eliminate unpredictability in application perfor-
mance. Another important result of their work was that AMPs can
give better performance than a SMP with all slow cores. Though
they implemented an asymmetry aware scheduling algorithmsfor
AMPs for their experiments, their main idea was not thread schedul-
ing, hence they did not focus on designing strong schedulingalgo-
rithms.

Grant and Asfahi [14] studied the power-performance efficiency
of AMPs using a new scheduling algorithm for AMPs and con-

cluded that an asymmetry aware scheduling algorithm can pro-
vide considerable savings in energy while maintaining performance
comparable to a SMP with all fast cores. Their focus was on design-
ing a power efficient algorithm for Hyper-Threaded AMPs while
providing good application performance. Our goal is to design a
scheduling algorithm for AMPs that provides high performance.

Cai et al. [10] described a mechanism called meeting points that
dynamically detects critical threads in a parallel region and tries to
boost the application performance by giving priority to thecriti-
cal thread in an SMT. Their mechanism is not suitable for general
thread scheduling and works only for parallel regions. Annavaram
et al. [5] applied EPI throttling techniques to show that forcertain
applications an AMP can provide better performance than an SMP
that consumes the same amount of power as the AMP. Their goal
was to maximize the performance of an AMP for a given power
budget.

Fedorova et al. [13] proposed a self-tuning algorithm basedon
reinforcement learning for thread scheduling. Our work does not
use any machine learning techniques and their work also doesnot
include any experimental results for comparison.

Scheduling using Architectural Signatures [21] assigns threads
to cores based on the information contained in the architectural
signatures, This kind of scheduling results in only few threads get-
ting the opportunity to execute on fast cores, unlike in Age based
scheduling where all threads get opportunities to execute on fast
cores.

Becchi and Crowley [7] propose an IPC driven dynamic assign-
ment of threads for Heterogeneous Multiprocessors. Their mech-
anism switches threads between fast and slow cores and monitors
the IPC of threads on both kinds of cores to decide which threads
should be assigned to fast cores. Kumar et al. [16] propose a mech-
anism which does sampling of application behavior on different
cores before deciding on the assignment of threads to cores.These

mechanisms require monitoring of execution of applications on dif-
ferent cores with lot of switching or migrations and they arealso
incomplete in that they does not deal with issues such as loadbal-
ancing.

The closest to our work is the work by Li et al. [17]. They pro-
posed asymmetry aware thread assignment and load balancingpoli-
cies that follow the faster core first principle and try to keep the load
on each core proportional to its compute power. Their policytries
to ensure that the fast cores are not underutilized, but doesnot take
any measures to ensure that critical threads or threads thatare lag-
ging behind get an opportunity to make faster progress or catch up.

Our policy recognizes that in an AMP threads will not make uni-
form progress and some threads will lag behind others. We identify
critical threads or threads that are lagging behind and assign them
to fast cores so that they can catch up and all threads can complete
at the same time.

9. CONCLUSION AND FUTURE WORK
We have proposed and evaluated a new asymmetry aware thread

scheduling policy for AMPs. The two variations (predictionand
profiling) of our scheduling policy, Age Based Longest Job Fast
Core First, more than double the performance compared to today’s
Linux scheduler. The prediction based mechanism provides an im-
provement of 10.4% on average for the Parsec benchmarks and
7.6% for the asymmetric benchmarks over the state-of-the-art asym-
metry aware thread scheduling policy. On the other hand, theprofil-
ing based mechanism provides improvements of 13.2% and 9.4%.
Using the proposed policy, we are able to obtain a benefit of up
to 37% over the state-of-the-art asymmetry aware scheduling pol-
icy. We evaluate our scheduling policy using various workloads and
various machine configurations with a wide range of applications.
We also thoroughly characterize the workload to provide an insight
on how much the workloads are symmetric and asymmetric.

Future work can be the development of a run-time feedback sys-
tem to monitor the progress of threads. The prediction mechanism
can be further improved to improve the performance benefits.

Acknowledgments
We thank the anonymous reviewers for their comments. We also
thank Tong Li, Aater Suleman and Aniruddha Dasgupta for their
feedback on improving the paper. We thank Richard Vuduc for
providing us with the SuperLU benchmark. We gratefully acknowl-
edge the support of Intel Corporation and Microsoft Research.

10. REFERENCES
[1] Intel xeon processor.

http://www.intel.com/support/processors/xeon/.
[2] Linux kernel CPUfreq subsystem.

http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html.
[3] O(1) Scheduler. http://joshaas.net/linux/.
[4] Enhanced Intel SpeedStep Technology for the Intel Pentium

M Processor–White Paper, March 2004.
[5] M. Annavaram, E. Grochowski, and J. Shen. Mitigating

Amdahl’s Law through EPI Throttling. InISCA-32, 2005.
[6] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The

Impact of Performance Asymmetry in Emerging Multicore
Architectures. InISCA-32, 2005.

[7] M. Becchi and P. Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures. InProceedings
of the 3rd conference on Computing Frontiers, 2006.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08, Princeton
University, 2008.

[9] D. P. Bovet and M. Cesati.Understanding the Linux Kernel,
Third Edition. O’Reilly, 2005.

[10] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro,and
A. Gonzalez. Meeting points: Using thread criticality to
adapt multicore hardware to parallel regions. InPACT ’08,
New York, NY, USA, 2008. ACM.

[11] J. W. Demmel, J. R. Gilbert, and X. S. Li. An Asynchronous
Parallel Supernodal Algorithm for Sparse Gaussian
Elimination.SIAM J. Matrix Analysis and Applications,
20(4):915–952, 1999.

[12] A. J. Dorta, C. Rodriguez, F. D. Sande, and
A. Gonzalez-Ecsribano. The OpenMP Source Code
Repository: an Infrastructure to Contribute to the
Development of OpenMP.

[13] A. Fedorova, D. Vengerov, and D. Doucette. Operating
System Scheduling On Heterogeneous Core Systems.
Technical report, Sun Microsystem, 2007.

[14] R. Grant and A. Afsahi. Power-Performance Efficiency of
Asymmetric Multiprocessors for Multi-threaded Scientific
Applications. InIPDPS, 2006.

[15] Intel Corporation.Intel VTune Performance Analyzers.
http://www.intel.com/vtune/.

[16] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
ISCA-31, 2004.

[17] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architecture. InProceedings of Supercomputing
07, 2007.

[18] R. Love.Linux Kernel Development, Second Edition. Novell
Press, 2005.

[19] M. K. McKusick and G. V. Neville-Neil. Thread Scheduling
in FreeBSD 5.2.Queue, 2(7):58–64, 2004.

[20] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and
E. AyguadÃl’. Performance, Power Efficiency and
Scalability of Asymmetric Cluster Chip Multiprocessors.
Computer Architecture Letters, 5(1), 2006.

[21] D. Shelepov and A. Fedorova. Scheduling on Heterogeneous
Multicore Processors Using Architectural Signatures. In
WIOSCA, 2008.

[22] A. S. Tanenbaum and A. S. Woodhull.Operating Systems
Design and Implementation, Third Edition. Prentice Hall,
2006.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. InISCA-22.

