Age Based Scheduling for
Asymmetric Multiprocessors

Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

{nageshbl, jaekyu.lee, hyesoon}@cc.gatech.edu

ABSTRACT

Asymmetric (or Heterogeneous) Multiprocessors are bengipop-
ular in the current era of multi-cores due to their power éficy
and potential performance and energy efficiency. Howeebedul-
ing of multithreaded applications in Asymmetric Multipessors is
still a challenging problem. Scheduling algorithms for Asyetric
Multiprocessors must not only be aware of asymmetry in pseoe
performance, but have to consider the characteristicspfcgtion
threads also.

1. INTRODUCTION

Multiprocessors are becoming the main stream of computing
platforms and heterogeneous architectures represent@asingly
popular class of multiprocessors. Heterogeneous art¢hiesctyp-
ically include one or more specialized cores or accelesator
gether with the main CPU(s). The specialized cores or aceles
help the CPU to perform certain computations several tirastef
than the CPU could have on its own. Asymmetric Multiproces-
sors (AMPs) represent a new kind of heterogeneous architesct

In this paper, we propose a new scheduling policy, Age based These architectures include CPUs of unequal performaneei- U

scheduling, that assigns a thread with a larger remainiegieion
time to a fast core. Age based scheduling predicts the réngain
execution time of threads based on their age, i.e., wherhteads
were created. These predictions are based on the insighntiet
threads that are created together tend to have similar égealu-
rations. Using Age based scheduling, we improve the ovpeall
formance of several important multithreaded applicatiomcdud-

ing Parsec and asymmetric benchmarks from Splash-1l and-Omp
SCR. Our evaluations show that Age based scheduling improve
performance up to 37% compared to the state-of-the-art Asyin

ric Multiprocessor scheduling policy and on average by %®fdr

the Parsec benchmarks. Our results also show that the Agel bas
scheduling policy with profiling improves the average parfance

by 13.2% for the Parsec benchmarks.

Categories and Subject Descriptors

D.4.1 [Operating System$: Process Management — Schedul-
ing; C.1.3 Processor Architectureg: Other Architecture Styles
— Heterogeneous (hybrid) systems

General Terms
Performance

Keywords

Thread Scheduling, Asymmetric Multiprocessors, Age B&satkdul-
ing

Permission to make digital or hard copies of all or part o thiork for
personal or classroom use is granted without fee providettitpies are not
made or distributed for profit or commercial advantage, &atl topies bear
this notice and the full citation on the first page. Copyrigior components
of this work owned by others than ACM must be honored. Absimgavith
credit is permitted. To copy otherwise, to republish, totpsservers or to
redistribute to lists, requires prior specific permissiod/ar a fee.

SC09 November 14-20, 2009, Portland, Oregon, USA (c) 200MAC8-
1-60558-744-8/09/11... $10.00.

ally, all the CPUs have the same ISA. Asymmetric architexsur
can provide significantly better performance than conwerati, i.e.,
symmetric architectures which occupy the same die areaamd c
sume the same amount of power [20] [16]. These architectures
generally include few fast cores and several slow coresy Eine
meant to provide power-performance effective platformskioth
throughput-oriented applications and applications thechgood
serial performance. However, asymmetric architecturesemt new
challenges to the operating system community, which uotit has
assumed that the hardware underneath the operating systewn i
mogeneous. One of these challenges is scheduling of thoeads
the available processors.

Thread scheduling is one of the most important and fundaahent
services offered by an operating system kernel. Some of #te m
rics an operating system scheduler seeks to optimize araefs,
throughput, turnaround time, response time and efficie@2y.[In
an AMP environment, many of the assumptions based on which
the traditional scheduling policies for multicores/mpitticessors
are designed become untrue. Multiprocessor operatingisygsas-
sume that all cores are identical and offer the same perfocma
In a Symmetric Multiprocessor, since all cores are idettittee
scheduler makes scheduling decisions based solely onddeda
each core. But, in the case of AMPs, not only the loads on the in
dividual cores, but their relative computational powerghcalso
be considered. Balakrishnan et al. [6] showed that haviresgm-
metry unaware scheduler would not only result in bad appéoa
performance, but can also cause application instability.

Figure 1 shows the performance of the Parsec benchmarl{8Liite
for three different machine configurations, namely, aditfehalf-
half and all-slow. All-fast and all-slow are symmetric canfia-
tions, where as half-half is an asymmetric configuration.eseh
configurations are explained in greater detail in sectionTée
scheduler used for this experiment is the Linux Kernel B8dhed-
uler[18], which is not aware of the asymmetry of processkience,
even though half-half has more computing power than alitslo
some applications such as blackscholes, fluidanimate aag-sw
tions perform on half-half as slow as they do on all-slow. sThi

Lthe terms core and processor will be used interchangeably



D All-slow

Execution time (sec)

o . 2 & & & > & <
‘\o\e & é}f & & & é\z’b & @b& &
& IS & & & @b
P RGN &
3 > e &
) Q &

Figure 1. Experiments in the three machine configurations
(Parsec)

is because threads on slow cores become critical threadhwii
crease the execution time of the entire application. TharsAMPs
we need a scheduler that can detect critical threads and theis
performance.

We propose a scheduler that can predict the thread with tigekt
remaining execution time. We predict the remaining executime
of threads based on their relative age i.e., when the thresds
created. Predicting the exact lengths of threads or jobgratime
is extremely challenging. Instead of predicting the ackeradjths of
threads, our mechanism predicts relative execution darsati We
found that threads that are created around the same timetdend
have similar execution durations. We can find examples gfithi
parallel-for structures or applications with fork-join hels. The
main reasons for this similarity across threads are: (1pm-

mers tend to write one piece of code and increase the number of

ulers are not suitable for AMPs. Note that our discussiossag
that all threads have the same priority (or weight).

In a traditional multiprocessor operating system, the dater
tries to provide fairness to the threads in the system. Tdsvar
this goal, the scheduler tries to keep the threads dis&tbatually
among the available cores. This ensures that all threadsoyet
opportunities to execute and also improves the system dgfmmut
since all cores are utilized efficiently. The goal of the eatrLinux
scheduler is the fair and optimal use of the available CPbuess.

2.1 Thread Assignment

In keeping with the fairness and optimal use goals mentioned
earlier, in current operating systems, the decision of eheassign
a thread is made solely based on the load (number of threads as
signed or sum of weights of threads assigned) on each corenWh
ever a new thread is created, it is assigned to the leastdozate,
i.e., the core that has the fewest threads in its run queuénias
policy is used to assign threads that have woken up. Thigyoli
works well on a machine with all identical cores, but doesprot
vide good results in an asymmetric environment [6]. Suppbat
a machine has two cores - one fast core running at 2.5 GHz and a
slow core running at 500 MHz. An application with four thread
is to be run on the machine. In such a situation, how should the
assignment of threads to cores be done? current operatitgnsy
schedulers would assign two threads to each core and letrisds
run on the initially assigned cores till their terminatidrhis would
result in bad application performance since the fast coreldve-
main idle once the threads assigned to it terminate andhrats
would not be able to take advantage of the fast core.

2.2 Load Balancing and Idle Balancing
Multiprocessor operating systems do load balancing [3ler

threads that execute the same code (2) programmers tend t0 dQ.o 1y to ensure that uniform distribution of load across tbees is

static load balancing between threads to utilize all cofegrefore,

though we might not be able to predict how long each threald wil

execute, we can easily predict which thread within a threadg
(explained in section 3.2) is lagging behind, because edkiths in
the same group tend to have similar execution lengths. Tieadh

that is lagging behind can then be made to execute on a fast cor

Scheduling based on the relative age of threads is cafjechased
scheduling

Operating system scheduling for multiprocessor systemsvsl|
researched topic. However, the schedulers proposed fdiprai
cessors are inadequate for asymmetric architectures d8igre of
well known operating systems such as Linux [9] [18] and FI&£BB19]
focus on providing fairness and good response time to ioties
applications; they are not designed and implemented fanasst-
ric architectures. Recent asymmetry aware algorithms $14,3,
17] will be discussed in Section 8.

The contributions of our paper are as follows:

1. We propose a simple, but very effective relative threadtle
prediction mechanism.

2. We propose a new asymmetry aware thread scheduling pol-

icy, which considers the relative length of each thread.

3. We thoroughly analyze a wide range of workloads to provide

an insight into symmetry and asymmetry of workloads.

2. BACKGROUND AND PROBLEMS WITH
CURRENT SCHEDULING ALGORITHMS

In this section, we provide background knowledge aboutiexjs
scheduling policies in desktop operating systems usind_ihex
scheduler [3, 9, 18] as reference and explain why existifgdc

maintained. Creation of new threads, termination of thsehtbck-
ing and unblocking of threads result in load imbalance accoses,
so periodic load balancing is required. Load balancing fieidint
from thread context switching and is performed less fretjy¢nan
context switching. Idle balancing is needed when a core gthes
i.e., all the threads that were assigned to the core haverdéhmi-
nated or blocked and the core’s run queue is empty. In casHeof i
or load balancing, threads are pulled from a busy core todlee i
or lightly loaded core. In current operating systems, loathibc-
ing and idle balancing consider only the number of threadboén
calculated using per thread weights) and result in the saoiggm

as asymmetry unaware thread assignment. In AMPs, even &ad b
ancing and idle balancing should be done in an asymmetryeawar
fashion to make optimal use of cores. Often, it may be require
to migrate threads from slow cores to fast cores to ensutddbt
cores do not remain idle.

3. SCHEDULING IN AMPS - AGE BASED
SCHEDULING

3.1 Overview

Age based scheduling assumes that the majority of mulsitted
applications follow a simple fork-join model as shown in trig 22
The main thread forks several child threads and then couldkbl
immediately waiting for the child threads to complete or Idou
block after performing some work. The application threadsym
encounter several barriers during their execution. The gbage

2S0me applications do not follow this model



based scheduling is to schedule threads
such that they all reach their next mile-
stones, which could be either a barrier
or termination, at the same time. It tries
to do this by utilizing all the available
cores, while exploiting the fast cores to
accelerate threads that are lagging be-
hind. Because of the asymmetric na-
ture of the cores, threads that execute
on slow cores automatically lag behind
threads executing on fast cores.

Figure 3 shows an example of fork-
join model in one of the Parsec bench-
marks, blackscholes. The structure of
blackscholes is identical to the appli-
cation model explained above. The
main thread creates several child threads
(pthread_create()) and blocks on the
child threads (pthread_join()), waiting
for them to terminate. Each of the child
threads first reaches a common barrier
(pthread_barrier_wait()), after crossing
the barrier each child thread executes till it terminatesterAall
the child threads have terminated, the main thread corgiiisi@x-
ecution and terminates. Swaptions, also from Parsec, leasatne
code structure as well, except that it contains no barriers.

main thread

fork

i barrier
“/‘77_, N
()

—)4\ : barrier

/]

V join

Figure 2:  Ap-
plication  model
assumed by age
based scheduling

/* function executed by each child thread */
int bs_thread(void *tid_ptr) {

pt hread_barri er_wait(&barrier);
for (j =0; j < NUMRUNS; j++) {
for (i = start; i < end; i++) {
price = Bl kSchl seEqEur oNoDi v(...);
}

return O;

[+ main x/

int main (int argc, char **xargv) {

[+ fork =/
for (i = 0; i < nThreads; i++) {
tids[i] =1i;
pthread_create(& Mi_threadsTabl e[i], NULL,
bs_thread, &ids[i]);
}
[* join */
for (i = 0; i < nThreads; i++) {
pthread_joi n(_MA_threadsTable[i], & Mi_ret);

}

Figure 3: Skeleton code of Blackscholes

3.2 Degree of Symmetry

The key component of Age based scheduling is that threads are

symmetric, i.e., they have equal amount of work, if they aeated

at similar times. To better understand how many applicatactu-
ally have symmetric behavior, we measure the degree of symme
First, we illustrate the concept of thread groups. Figursiiavs 2
different thread groups, the main thread and all child tsedrig-

ure 4b shows 4 thread groups. Threads that are created ¢évgeth
form a thread group.

thread-group

thread-group

thread-grou)

thread-grou|

thread-grou|

case (a) case (b)

Figure 4: Thread-group examples

02

Degree of Symmetry

0.1

0.00002
0

Figure 5: Degree of Symmetry of the Parsec benchmarks

input). The degree of symmetry indicates how symmetric¢héd)
threads of an application are with respect to each other. Ideva
closerto zero indicates a high degree of symmetry, wherbaghar
value indicates a lower degree of symmetry. We regard agujibias
with degree value: 0.1 as symmetric and all others as asymmetric.
The degree of a thread group is calculated as standard idevaHtt
the lengths of threads in the thread group divided by theameer
of the lengths of the threads in the thread group. If an applic
tion has more than one thread group, we then average theedegre
of symmetry of all the thread groups to obtain the final valoe f
the application (note that the main thread is not used in theue
lation of degree of symmetry). From Figure 5 we see that esght
of the twelve shown the Parsec benchmarks are symrr?éfﬂals
symmetry data forms the basis of our insight that threadsatea
created together tend to have similar execution times.

3.3 Details of the Policy

Based on the Age of threads, we proposeAbe Based Longest
Job Fast Core First (LJFCFpolicy. LJFCF is similar to theéongest
Job First (LJF)scheduling policy [22]. LIFCF predicts how far a
thread is from the next barrier, or if no more barriers arengadio
be encountered, its termination. The thread(s) with thgéshpre-
dicted distance(s) to the next milestone is(are) assigméiokt fast
core(s). Predicting the exact distance or execution durab the
next milestone is very difficult. However, for LIFCF, we dotno
have to know the absolute values of distances of differenetis,
we have to know only the relative values of distances of tisea
The prediction of relative values of distances to the nexéstone
is based on the insight that threads that are created tagethally
have the same lengths. Thus, threads that are created ¢oge¢h
predicted to have the same distances to their next milestainthe
time of their creation and threads that are created latgpr@dicted
to have longer distances to their next milestones. Wheneathr
reaches a milestone, its distance to the next milestonestigted
and the newly predicted distance is used for thread to caigras
ment. Note that Age based scheduling could cause more naigsat

Figure 5 shows the degree of symmetry of the Parsec bench-3x264 has a degree of symmetry of zero since it has only onadhre

marks (the degree of symmetry was computed using the simmedi

in each thread group



than other mechanisms. However, our simulation resulterghat
the benefit of Age based scheduling can overcome overhead fro
frequent migrationé.

LJFCF is applied whenever one of the following occurs: (1) a
thread is created, (2) a core goes idle because all the thiesad
signed to the core have either terminated or blocked, or €8} p
odic timer for reassignment expires. A thread may be blodked
several reasons - waiting for a lock, waiting for all threémseach
a barrier, waiting for a child to terminate, waiting for 1/© tom-
plete etc. For LIFCF, we have replaced periodic load batanci
with periodic reassignment. While load balancing is typiicdone
for each core at different points in time, reassignment isedat
the same time for all cores. In our experiments, the reassig
interval was same as the load balancing interval used facipsel
that do load balancing. Reassignment is done periodicalsnt
sure that threads that are lagging behind can catch up;dhidts
in improved application performance. Algorithm 1 summesizhe
LJFCF scheduling algorithm. How to calculaten_eze used in
Algorithm 1 will be explained in Section 3.4.

3.4 Age Prediction

There are three ways of calculatingn_eze: oracle, prediction,
and profiling. Oracle method is used to demonstrate the teféec
ness of scheduling policies. The following two sectionscdes
the LIJFCF policy based on prediction and profiling.

3.4.1 LJFCF Policy using Prediction

The LIFCF Policy using Prediction [Age(Pred)] uses préatict
to determine the distance of each thread from its next noifest
Age(Pred) predicts that the distance between any two ssivees
milestones (creation, barriers and termination) of angdbris the
same and the common distance value is predicted to be ves. lar
This implies that after crossing a milestone all threadseedicted
to have the same distance to their next milestone. As a thread
executes, the predicted remaining distance to the nexttuoite
reduces according to its progress. When Age(Pred) is irdjoke
the predicted remaining distance to the next milestone ésl @S
rem_exan Algorithm 1 to assign threads to cores.

3.4.2 LJFCF Policy using Profiling

In Age(Pred), it is predicted that any two successive noless
of any thread have the same distance between them, but inFLJFC
Policy using Profiling [Age(Prof)], it is predicted that thiéstance
between any two successive milestones of ongjvanthread are
the same. The distances between successive milestonest éine n
same across threads. By profiling the application with sanpl
puts, the average distance between milestones is detatrfone
each thread. These average distances are fed to the sahaslale
set of ratios before the application is run. Based on thesestahe
remaining distance of each thread to its next milestoneddipted.
Threads with lower ratios are predicted to have shorteadists
between milestones. Thread assignment is done using #igod
using the predicted, ratio based remaining distances.

3.5 Why should Age Based Scheduling Work?

We show why Age based scheduling should work and provide
good application performance by comparing with the stdithe-
art AMP scheduler algorithm, which was proposed by Li et®I][
(referred to as Li's mechanism in this section). The key &def

40ur simulator models all the migration overhead faithftgigd
reduction in number of migrations is one of our future resbar
work

AN
.
\\t\c

8

,\j\\\
WO N DY
\\ AN
0 o \g,
1 2 3] il 7] 3
4 pé fp o 4 1p§ 1; 192

Figure 6: Age based scheduling utilizes all available resooes
(left - Li's mechanism, right - Age based scheduling)

Li's mechanism are Asymmetry-Aware Load Balancing andéfast
Core First Scheduling. Asymmetry-Aware Scheduling enstimat
the load on each core is proportional to its computationalgyp
this provides fairness to the threads of an applicationtefa3ore
First Scheduling assigns threads to fast cores if they ademn
utilized. We use a machine with four cores - one fast core éCor
0) and three identical slow cores (Core 1, Core 2 and Core 8) - a
shown in Figure 6 to illustrate the working of Age based schied
and Li's mechanism. The fast core has four times the perfooma
of each slow core, this is indicated by the 4p inside the blegk
resenting the fast core in the figure.

Li's mechanism has the following limitations:

1. Using the concept of scaled load that is explained in sec-
tion 5.1, Li's mechanism assigns the threads of a multitheea
application as shown in Figure 6left. This results in low uti
lization of the slow cores when there are few threads in the
system. On the other hand, Age based scheduling assigns
threads as shown in Figure 6right, resulting in high utiza
tion of cores.

. Li's mechanism does not exploit fast cores. Since a fagt co
is assigned threads proportional to its computational powe
it is being treated as though it is composed of several slow
cores and eac¥irtual small core is assigned the same load as
areal small core in the system. Also, once threads start exe-
cuting, they continue to execute on the same core till they te
minate, block or are migrated. This may be unfair to threads
executing on the slow cores. Age based scheduling tries to
exploit fast cores by giving all threads (or threads thatage
ging behind) opportunities to accelerate by executing sh fa
cores. In Figure 6, with Li's mechanism, once initial assign
ment of threads is made, threads continue to execute on the
same cores unless some event such as creation, termination
or blocking of a thread occurs. In case of Age based schedul-
ing, threads executing on slow cores are moved to fast cores
at different points in time i.e+ 4 # tp # ¢ in Figure 6, so
that all threads execute on the fast cores.

4. IMPLEMENTING LJFCF POLICY

4.1 Tracking the Progress of a Thread

For each thread, LJFCF predicts the remaining distancesto it
next milestone. As a thread executes, the predicted diststmould
reduce. Thus to predict the remaining distance we have tk tra
the progress of threads accurately. We approximate thergseg
of a thread with the number of instructions executed by it. To
count the number of instructions executed by each threaddx ha
ware mechanism is needed. Today's processors already have a
hardware performance count&fST_COUNTIntel and AMD pro-
cessors provide the performance events INST_RETIRED and RE
TIRED_INSTRUCTIONS respectively, to count the number of re



Algorithm 1 Longest Job Fast Core First Policy (LJFCF)

STEP1

sort the threads in the decreasing order of thein_exe

STEP2

if the number of threads is less than or equal to the number ebttzen

make 1:1 assignment, with threads with longem_exs being assigned to fast cores

end if

STEP3

if the number of threads is greater than the number of dbes
compute the averagem_exehat must be assigned to each core
avg_rem_exe_core; = (rem_exeiorq1/core_per fioral) * core_per f;
for eachthreadthread in sorted ordedo

identify the corecore, for which the difference between them_exedo be assigned and thiem_exeactually assigned is the highest

rem_rem_exe; = QUg_rem_exe_core; — TEM_exre_core;
k = max(rem_rem_exe;)
assignthread; to corey,

if number of threads yet to be assigned is less than or equas twinber of cores without any assignmethisn

make 1:1 assignment of threads to cores
break
end if
end for

end if

tired instructions) to count the number of instructionsaxed [15].
The operating system can simply utilize one such existingl-ha

prof_datais a kernel data structure, user programs cannot access
it directly. So, an interface to update or rgamf_datais provided

ware performance counter. To remember the progress made by athrough an entry in the proc file system. A user or a tool carewri

thread, a new fieldprogressis added to the task/thread data struc-
ture. Operating systems maintain one task structure \aritip
each thread in the system. When a thread is creategrtdggess
field in its task structure is initialized to zero. The opergtsys-
tem updates thprogressfield whenever the thread executes. When
a thread is switched in and starts executiidST_COUNTIs re-
set to zero and incremented for each instruction that is ¢eteq.
Whenever a hardware interrupt or exception occiN§T_COUNT

is disabled i.e., it stops counting and is enabled again wheim-
terrupt or exception handler return§lST_COUNTIis not disabled
when software interrupts are raised. This way, work doneafor
thread inside system calls is not ignored. At every timek,tibe
operating system adds the value accumulatdi®T_COUNTo
progressand resettNST_COUNTo zero.progresss also updated
with INST_COUNTwhen the thread blocks, is switched out or is
even migrated. In this waprogressof each thread is tracked and
the predicted remaining distance is kept updated.

4.2 Passing Profile Information with
Compiler assistance

Applications are profiled during compilation to collectiorior-
mation about the execution of different application theeadhe
information collected during compilation is stored in aalaeg-
ment in the binary. To store profile information of applicets, the
operating system scheduler implemeptsf_datadata structure.
When a binary is loaded, the data segment containing pradiie d
is read angrof_datais updated with profile information. When an
application thread is created, the scheduler rgma datafor pro-
file information of the application. If profile data is avdila, the
scheduler updates the thread’s task structure with thel@mdita.
In case profile information is not available for all threadsated by
the application, the scheduler does extrapolation to deter the
information for the newly created thread.

4.3 Passing Profile Information without
Compller assistance
To be able to pass profile information to the scheduler withou
any aid from the compiler we need a mechanism that allowssuser
or user applications to communicate with the scheduler. ceSin

the application path, the desired action (add, modify, ¢etd¢ and
any needed support data to the proc entry. Whenever the ptoc e
is written to, prof_datais updated or read from according to the
specified action.

4.4 Implementation in Operating System

Essentially, Algorithm 1 has to be implemented in the opegat
system kernel. The following sections of the scheduler edp-
erating system have to be changed to implement the algarighm
initial thread assignment, (2) thread termination, (3)grement on
thread wake up, and (4) load balancing. Since Algorithm %isc
tralized, the algorithm could always be executed on the seore
It could be the fastest core, or the core with the lowest dpeya
system assigned id and so on.

4.5 Scalability

LJFCF has a complexity of O(nlogn + pn), where n is the num-
ber of threads and p is the number of cores. For a machine with a
small number of cores the complexity of LJFCF becomes Ofijlog
When we have a large number of threads or a large number of core
the algorithm can be extended in a hierarchical fashion. lgoA
rithm 1, the scheduler sorts all threads based on their m@nti
execution time. Instead of globally sorting all the threadlach
core or a group of cores can sort threads locally first. Onéy th
longest job from each core or group can be a candidate foragjlob
migration. The rest of the threads are scheduled locally.

5. OTHER SCHEDULING POLICIES

A complete scheduling mechanism specifies three main pslici
- policy for initial assignment, policy for wake up assigrmend
policy for load balancing. The roles of these policies wexe e
plained in section 2. Below, we briefly explain the differpoticies
that were used for each category of policy in our evaluatiofge
based scheduling.

5.1 Thread Assignment Policies

Asymmetry Unaware Assignment (AUA)[3, 9, 18]: This is
the assignment policy used by current operating systenis.niit



aware of asymmetry of cores and it assigns threads to thetlcare
has the least number of threads.

Fast Core First Assignment (FCA)}°: This policy assigns a
thread to a fast core first if a fast core is idle. If not, it gesi a
thread to the next idle core.

Asymmetry Aware Assignment (AAA) [17]: It defines what
is called as scaled lodd for each core. The performance of the
slowest core is taken as 1 and the performance of a core tkat is
times faster than the slowest core is takerfr&sS, whereSis the
scaling factor. For simplicity, it is taken to be a constahvalue
less than 1. The scaled load for each core is equal to its ranegu
length divided by its performance.

the number of threads assigned to each core (or based ontae to
weight of threads assigned to each core).
Round Robin Balancing (RRB)": This policy migrates threads
to a fast core in a round-robin fashion. This policy tries toyide
fair access to the fast cores for the threads in the system.
Asymmetry Aware Balancing (AAB) [17]: The Load Balanc-
ing policy tries to ensure that the difference between theima
mum scaled load y,qz in the system and the minimum scaled load
L,nin INthe system s less than or equal to 1 i®naz — L,,,;, < 1.
This results in threads being assigned to cores in a fair Brann

5.4 Combining Policies

When a new thread is to be assigned a temporary scaled load The policies explained above can be combined in differeryswa
is computed for each core assuming that the new thread has bee to obtain many different combinations. For the rest of thpepa
assigned to the core. The thread is then assigned to the ditre w we represent different scheduling policies obtained by ltioing

the lowest temporary scaled load. In the event that two oremor

cores have the lowest temporary scaled load, the threadtisoséne
slowest of the tied cores. This assignment ensures that émead
runs on a fast core if it is underutilized and also allows iplét
threads to run on the fast cores.

5.2 Wake up Assignment Policies

one policy of each category by joining their names using leysh
From left to right, the names are specified in the order - tthies
signment policy, thread wake up policy, and load balancioigcp.

For example, AUA-IW-AUB means that AUA thread assignment
policy, IW thread wake up policy and AUB load balancing pwlic
This is the current Linux scheduling policy and is called LiiN
our discussions. The mechanism proposed by Li et al. is AAA-

cores. Threads can block waiting for a child to finish, wajtfor a
lock or waiting for some other events. When the event on which
thread is waiting, occurs, the thread is woken up and asgitma
core.

Previous Core (PWY): When a thread is woken up, it is assigned
to the core on which it was previously running. This polidgs$rto
reduce the overhead due to thread migration. This policytman
effective if threads are woken up after a short wait and tlegipus
core is not occupied by other threads. However, if the previo
core is already running other threads, this policy can callead
imbalance problem.

Faster Core (FW)*: When a thread is woken up, it is assigned
to the least loaded fast core. This policy is trying to insethe
utilization factor of fast cores. However, this can resitts/ery
severe load imbalance problems.

Idle Core (IW) [3, 9, 18]: The idle core (IW) policy is similar
to the policy in the Linux scheduler. When a thread is wokenitup
is assigned to an idle core, if one is available, else it iggassl to
the previous core on which it was running. This policy is thesth
for solving load imbalance problem.

Suitable Core (SWJour proposed mechanism]: This policy is
the most sophisticated policy. The suitable core (SW) paliecks
if any idle fast cores are available, if so, the thread isgassil to an
idle fast core. When looking for idle fast cores prefererxgiven
to the core on which the thread was previously running if teae
was a fast core. If no fast cores are available, a check fodlan i
slow core is made in the same way as the check for an idle fest co
If an idle slow core is found, the thread is assigned to the idire.
Preference is given to the core on which the thread was prsiyjio
running because the initial overhead (cache misses) emqexd by
the thread will be low if it is assigned to the same core irdstafza
different core. The simulator models this effect as well.

5.3 Load Balancing Polices

Asymmetry Unaware Balancing (AUB)[3, 9, 18]: This is the
load balancing used by current operating system scheduleis

not aware of asymmetry of cores and it does balancing based on

5 indicates a policy that might not be used in an operatingesys
but we discuss it just to complete all the possible basicpadi

based policy is used as the third policy (load balancingcpdlin
a combination, it actually performs periodic reassignmasex-
plained in 3.3 instead of periodic load balancing.

Table 1 summarizes the performance of the different polioy-c
binations. (-) means low performance and (+) means highoperf
mance. The number mentioned for each policy combinatiorain T
ble 1 specifies the reason for categorizing the performantiead
policy combination as either (-) or (+). The list of reasosigjiven
below. We found that wake up assignment policies do not tiffiec
overall performance significantly compared to other pajdeence
there are no separate entries for different wake up policies

1. Since both initial assignment and load balancing poléres
asymmetry unaware, the performance would be very low.

2. Since load balancing policy is asymmetry unaware, perfor
mance would be low.

3. Since the initial assignment is asymmetry unaware, perfo
mance could be low.

4. Asymmetry aware assignment and load balancing shoutd pro
vide good performance.

5. Since initial assignment is not intelligent, performaiould
be low.

6. Age based assignment and asymmetry aware load balancing
should provide good performance.

7. Asymmetry unaware initial assignment and a simple round
robin mechanism would result in low performance.

8. Simple round robin would result in low performance.

9. Asymmetry aware scheduling in combination with age based

balancing should provide good performance.

Age based assignment and scheduling should provide good

performance.

10.

Certain combinations of policies in Table 1 will be refertedn
the evaluation section using names shown in Table 2.

6. EXPERIMENTAL METHODOLOGY
6.1 Simulation Methodology

We use an in-house, cycle accurate simulator for our experi-
ments. The simulator is a hybrid incorporating features athb



Table 1: Performance of different possible policies and theeason

Load Balancing Policy|

AUA AAA FCA Age(Oracle) Age(Pred)
PWIFWITWISW | PW/EWITWISW | PWIEWITWISW | PWIFWITWISW | PWIFWITWISW

Age(Prof)
PWIEWITWISW

AUB 1(0) 2() 2() 2(0) 2(0) 2(0)
AAB 3(-) 4(+) 5(-) 6 (+) 6 (+) 6 (+)
RRB 7() 8(0) 8(0) 8() 8() 8()
Age(Oracle) 3(-) 9(+) 5(-) 10 (+) 10 (+) 10 (+)
Age(Pred) 3(-) 9 (+) 5(-) 10 (+) 10 (+) 10 (+)
Age(Prof) 3(-) 9(+) 5() 10 (+) 10 (+) 10 (+)

Table 2: Scheduling mechanisms

Combination Name Comment

AUA-IW-AUB LIN Scheduling policy in Linux

AAA-IW-AAB SCALELD Scheduling policy proposed by Li et al.

AUA-IW-RRB RR Threads are moved to fast cores in a Round-Robin manner

FCA-SW-Age(Pred) FCA-AGE Fast Core First assignment with Prediction based LIFCF
Age(Oracle)-SW-Age(Oracle] AGE(ORACLE) Oracle based LIFCF

Age(Pred)-SW-Age(Pred) AGE Prediction based LJFCF
Age(Prof)-SW-Age(Prof) AGE(PROF) Profiling based LIFCF

trace driven and execution driven simulators. The architecsim-
ulations are done using the trace driven part, but all theaipey
system relevant events are precisely modeled using opgrsyis-
tem algorithms through the execution driven part.

The simulator performs initial assignment, wake up assigmmn
load and idle balancing according to the specified parametér
also performs time slicing between the threads in a readyejugy
default, a time slice of 10 ms is assumed. Even context swvaitch
migration overheads are simulatBdAll threads of an application
are assumed to have the same static and dynamic prioritigsal E
static priorities means that all threads are allocated #meestime
slice and because of equal dynamic priorities all threads dgive
ready queue are executed in a round-robin fashion.

The traces for simulation are generated using a Pin tool. The
traces provide information about each application thraealle form
of sections. Each section can be either a critical sectionoor
critical section. In addition to the type of the section, kegth of
the section is also included. Information about the lockoested
with critical sections and the various barriers and joinscemtered
by a thread are also included in the traces. The inclusioryef s
chronization information enables us to simulate threagrattions
accurately.

6.2 Real Machine System

To verify our simulator, we compared the simulator’s resulith
results from a real machine system. We &m@eedStepechnol-
ogy [4] withcpuf req gover nor s [2] to emulate an AMP. Our
test machine has Dual Quad Core Intel Xeons [1] with 8 GB RAM
and runs RHEL 5.1 Desktop (Linux Kernel 2.6.18). Table 3 show
the machine configurations in detail. Our experiments wiél r
machines use an unmodified RHEL 5.1 Desktop kernel as baselin
All experiments with the real machine use 8 threads.

Table 3: Three machine configurations

6.3 Benchmarks

Our experimental benchmarks include Parsec [8] with ful-ex
cution of simmedium input set. To test the robustness ofdudiey
policies, we select asymmetric workloads from various bemarks
suites for evaluation. Our asymmetric benchmarks (bencksna

6The simulated overhead includes slowdown caused by initial
cache misses that occur when a thread is context switched-or m
grated. Migration is assumed to cause more cache missesdhan
text switch

that do not belong to the Parsec suite) are from Splash-I], [23
SuperLU [11] - an Asynchronous Parallel Supernodal Aldnonit
for Sparse Gaussian Elimination, and OmpSCR [12]. The léetai
characteristics of the evaluated benchmarks are desciib@d-
ble 4. For experiments with Age(Prof), for the Parsec beraiis)
we use simsmall input for profiling. Since smaller input setsnot
available for other benchmarks, we use the same inputs foreo
ecution and profiling. For Splash-1l and OmpSCR, we use tse ba
or standard inputs provided along with the benchmarks. Fkor S
perLU, we use cg20.cua, g4.rua and g5.rua input files.

7. RESULTS

7.1 Problem Demonstration in the Simulator

To verify how accurately our simulator models the real sysse
behavior, we compare our simulation results with Figure ig- F
ure 7 shows the performance of the Parsec benchmarks on three
different machine configurations using the default Linukgoand
the performance on half-half configuration using the Ageebas
policies. We use a 4 fast-4 slow configuration and a 2:1 freque
ratio for the half-half configuration to demonstrate the hpeon.
The all-fast configuration has 8 cores with frequency 2x dred t
all-slow configuration has 8 cores with frequency 1x. Evesutth
the absolute execution time for each benchmark is diffefiemn
the real machine, the trends in the simulation results shaithe
simulator models the real system accurately. For examiperatio
of performance of blackscholes on all-fast, half-half atieslaw
configurations on the real machine is 1:1.92:1.96. For theiki-
tor, this ratio is 1:1.95:1.99, which is quite accurate. @tbklow-
limited benchmarks such as facesim and fluidanimate shovasim
performance on half-half and all-slow configurations onhbtbite
real machine and the simulator. Since the current Linuxcyab
asymmetry unaware, it could assign threads to the fast awvd sl

all-fast All 8 cores are running 1.87GHz cores in any order. To report results for the default LinuXigyo
all-slow All 8 cores are running 1.60GHz we run two simulations - one with threads being assigned ¢o th
half-half | 4 cores are running 1.87GHz, 4 cores are running 1.60GHz  fast cores first and another in which threads are assignebeto t

slow core first - and average the results for the two simutetio
There is a minor discrepancy between the two graphs for bench
marks such as canneal and fluidanimate because of the litgtabi
the benchmarks. For the rest of the benchmarks, the perfaena
on half-half is between all-slow and all-fast on both reakhiae
and simulator. Based on these results, we can safely canttad
our simulator can model asymmetric processor behaviorrately.
The simulator results also show that the performance of éiede
benchmarks on half-half configuration using Age based Eslits
much similar to the performance of the Parsec benchmarkben t



Table 4: Benchmark cha

acteristics

Application Suite Description Inst. Count Locks Barriers | # of Threads| # of Thread Groups|
blackscholes Parsec [8] Financial Analysis 152352819 39 8 9 2
bodytrack Parsec Computer vision 670415058 40465 1192 9 2
canneal Parsec Engineering 292696036 50 0 9 2
dedup Parsec Enterprise Storage | 1065257131 | 26640 0 25 4
facesim Parsec Animation 12261654384 14580 0 8 2
ferret Parsec Similarity Search 799250302 | 7367532 0 35 5
fluidanimate Parsec Animation 570968537 | 4168875| 31998 9 2
freqgmine Parsec Data Mining 3435161189 3083 0 8 2
streamcluster Parsec Data Mining 837572613 311 103984 17 3
swaptions Parsec Financial Analyis 503683305 39 0 9 2
vips Parsec Media Processing 1886383414 | 14876 0 11 3
X264 Parsec Media Processing 482957580 3973 0 64 64
c_fit OmpSCR [12] Parallel FFT 1809116600 17 0 8 3
c_ffté OmpSCR Parallel FFT 2963158985 17 0 8 3
c_gsort OmpSCR Parallel Quicksort 1040129080 17 0 8 4
cg20.cua SuperLU [11] Sparse Direct Solver | 2933192658 | 25568 0 9 7
g4.rua SuperLU Sparse Direct Solver| 992345600 5559 0 9 9
g5.rua SuperLU Sparse Direct Solver| 1517742541 28830 0 9 8
barnes Splash-2 [23] [ N-body method (3-D)| 8309648058 [ 1098755 136 8 5
cholesky Splash-2 Cholesky factorization| 12888835049 22049 32 8 7
fmm Splash-2 N-body method (2-D) | 9758572445 [ 637614 272 8 6
lu_contiguous Splash-2 LU decomposition 3117508 25 88 8 8
lu_non_contiguous| Splash-2 LU decomposition 2263332 25 88 8 7
radiosity Splash-2 Iterative diffusion 4362156729 | 1657844 128 8 5
raytrace Splash-2 3D sense rendering [ 100535964 74380 8 8 6

all-fast configuration than on the half-half configuratioBn av-
erage, AGE and AGE(PROF) are only 15% and 9% slower than
all-fast while the default Linux policy is about 59% slower.

= All-Fast

= Half-Half

= All-Slow

= AGE

= AGE(PROF)

200

Execution time(Millions of cycles)

4
&
N
<@

SN

S &
é;lf" °§\
&

Figure 7: Behavior of default Linux scheduler and Age based
policies on three machine configurations in Table 3

7.2 Evaluation

In this section, we present the results of our simulatione W
compare Age based scheduling with the state-of-the-amamtry
aware thread scheduling algorithm, SCALELD (Li's mechanis
We also compare results with the current Linux policy (LINIpo
icy). The results we present for the Linux policy are an agera
of faster core first and slower core first simulations as arpléin
section 7.1. However, since the Linux policy performs cdasi
ably worse than SCALELD, we often omit its results. Most tesu
are presented as percentage reduction in execution tin@ipar-
ison to SCALELD. The base AMP machine configuration used for
all experiments is 1 fast core and 7 slow cores with the ratio o
the frequencies (performance) of the fast and slow coresgifil
unless otherwise specified.

7.2.1 LJFCF Policies vs. Others

Figure 8 compares the performance of different LJFCF pesici
with other scheduling polices. The other evaluated pdiciee
LIN, RR and FCA-AGE (Fast Core First assignment with Age base
load balancing). The results are presented as percentdge-re
tion in execution time compared with SCALELD. Age based poli

cies generally take less than half of the execution time df due

to LIN being asymmetry unaware. The RR policy also performs
badly in comparison with SCALELD and Age based policies. For
Parsec, compared with SCALELD, AGE shows 10% reduction in
execution time, while AGE(PROF) and AGE(ORACLE) show 13%
and 15% reduction in execution time, respectively. For aiinadl

the Parsec applications, Age based mechanisms eithervefite
performance or give about the same performance in compariso
with SCALELD. Benchmarks such as streamcluster and boclytra
which have frequent barriers (short distances betweerstoites)
provide little scope for improvement. Canneal has a veryllsma
parallel section, hence does not show much benefit. Blackssh
does not provide any benefit since the default timesliceevalk+
signed to each thread is very large for reassignment to lmappe
Reassignment gives each thread an opportunity to executieeon
fast cores. By reducing the time slice value we can obtain im-
provement for blackscholes. Note that all experiments ubked
same time slice value as mentioned in section 6. The rightgf F
ure 8 shows the reduction in execution time with differenfqes

for asymmetric benchmarks. For asymmetric benchmarks, AGE
AGE(PROF) and AGE(ORACLE) provide an improvement of 8%,
9% and 13% respectively, with c_fft, c_fft6, cg20.cua (SwhH

and cholesky showing significant improvement. Though Ageeta
scheduling assumes that the threads of an application armetr

ric, even asymmetric benchmarks show significant improveme
with the Age based policies. This is because Age based skhgdu
gives opportunities to different threads to execute ondasts by
migrating threads to and from fast cores and does not keegathe
threads assigned to fast cores as SCALELD. In general, FG&-A
performs similar to AGE because the Fast Core First assighme
policy of FCA-AGE is used only when new threads are created,
thereafter, AGE is used for reassignment of threads on s\&rah

as core going idle, reassignment timer expiry and so on. &hes
trigger events for reassignment happen frequently enolghthe
effects of poor initial assignment by FCA are not very visibl

7.2.2 Idle Cycles

Figure 9 shows the idle cycles of each core for differentqes
for each Parsec benchmark. By analyzing this idle cycleridist
bution we can conclude how much each policy utilizes fasesor



=UN
=RR
=FCA-AGE
=AGE

= AGE(PROF)
= AGE(ORACLE))

% Reduction in Execution Time

% Reduction in Execution Time

-105.0%

=FCA-AGE
=AGE

=AGE(PROF)
=AGE(ORACLE)

\)‘1
o S
10— 5 & e .\>°° Qo\? S
ST FT T T & FEW
S O w s S A S & @& & ¥
R

Figure 8: Age based policy with other scheduling policies (eft: Parsec benchmarks, Right: Asymmetric benchmarks)

The Age based policies try to utilize fast cores as much asilples
Since the Linux scheduler distributes threads equallysscoores,

it results in under utilization of fast cores (Core 0 is thetfeore

in this configuration). Both SCALELD and the Age based pekci
keep the fast core busy at all times. While SCALELD keeps the
same threads assigned to the fast cores, the Age base@pdtticio
give all threads opportunities to execute on the fast cdtiegire 10
shows the reduction in total idle cycles of all cores for tlzed@c
benchmarks for AGE, AGE(PROF) and AGE(ORACLE) policies
in comparison with SCALELD. On average, AGE, AGE(PROF)
and AGE(ORACLE) result in 29%, 40% and 48% reduction in to-
tal idle cycles. This shows that the Age based policies hateb
core resource utilization.

= core7
= core6
= coreS
= core4
= core3
= core2
= corel
= core0

Idle cycle distribution

Figure 9: Normalized distribution of idle cycles for each coe
- The column order from left is LIN, SCALELD, AGE and
AGE(ORACLE) policies

[
15}
S

=AGE
T = AGE(PROF)
1 = AGE(ORACLE

©
=3

% Reduction in Total No. of Idle Cycles

Figure 10: Total idle cycles of all cores

counts, SCALELD performs relatively well. But, SCALELD al-
lows threads that have been assigned to fast cores remaintthe
like the Age based policies, which give different threadparnu-
nities to execute on the fast cores and thus exploit fassduetter.

7.2.4 Prediction Accuracy

Figure 11 and Figure 12 show the prediction accuracy of the
Age based policies for the Parsec and asymmetric benchmarks
The accuracy is calculated as ratio of the number of correet a
signments made to the number of assignments made. An assign-
ment of a thread to a core is correct if the thread is assigoed t
the same kind of core (fast or slow) as it would have been by
AGE(ORACLE) i.e., oracle based poliéyAge based policies per-
form assignment of threads when (1) a thread is created, ¢@j)ea
goes idle, or (3) when the periodic reassignment timer espiFor
the Parsec benchmarks, AGE has an accuracy of 73%. Expect-
edly, AGE(PROF) has better accuracy than AGE since it makes
predictions based on profile information; its accuracy fier Parsec
benchmarks being 88%. AGE and AGE(PROF) have accuracies of
72% and 84% respectively for asymmetric benchmarks.

EFNFFEFEEITEER
HEENR IEmN

100+

90+
80+
704
604
504
404
304

Prediction accuracy (%)

GE(PROF)
GE(ORACLE

Figure 11: Prediction accuracy of Age based policies for the
Parsec benchmarks

7.2.5 Longest Job First vs. Shortest Job First

We evaluate whether Longest Job First (LJF) to fast core ortSh
est Job First (SJF) to fast core is suitable for Age baseddsding
on AMPs. SJF [22] is typically used in batch systems to ineeea

7.2.3 Comparison between Age Based Scheduling argstem throughput. In our context, a job represents theirénga

Other Policies

Table 5 shows the comparison between the current scheduling
policy in Linux, Li's mechanism and the Age based policies on
AMPs. While the Linux scheduling policy performs badly oh al

execution distance until the next milestone. To eliminhiedffect

"For accuracy results, we allow a tolerance of -5% to +5%. For
example, instead of thread A, if another thread B whose neimgi
execution time is at least 95% or at most 105% of A is assigned,

we consider it to be an accurate aSS|gnment



Table 5: Comparison between Policies on AMPs

Scheduling policy| Fairness| Utilization of fast cores| Exploitation of fast core§ Application stability
LIN No No No No
SCALELD Yes Yes No Yes
Age based policeg  Yes Yes Yes Yes

Prediction accuracy (%)

AGE(PROF)
AGE(ORACLE

Figure 12: Prediction accuracy of Age based policies for Asy-

metric benchmarks

of predicting task/thread distances inaccurately, we beeotacle

to find threads with the longest and the shortest distancésisn
section. Figure 13 shows the simulation results for both Bamged
Longest Job Fast Core First (LJFCF or LFJ based Age schegulin
and Shortest Job Fast Core First (SIFCF or SJF based Agausched
ing) policies. For each policy, we run experiments with blatle
Core wake up (IW) and Suitable Core wake up (SW) assignment
policies. Though for certain benchmarks such as blacksshard
streamcluster there is negligible performance differebegveen
LJFCF and SJFCF, on the whole, LIJFCF performs considerably
better than SJFCF. For the Parsec benchmarks, LIFCF parform
about 15% better than the baseline, where as SJFCF is only abo
3% better than the baseline. Similar behavior is shown bydBEF
and SJFCF for asymmetric benchmarks also. Hence, we canclud
that on AMPs, longest job fast core first is a better policyrfuti-
threaded applications. Figure 13 also shows that on avetiage

is not much difference between using IW and SW wake up assign-

ment policies.

7.2.6 Milestones Used by LIFCF for Predictions

In LJIFCF, we can predict the remaining execution time (or dis
tance) either to the next BT (barrier or termination) or te tiext
BCJT (barrier, critical section, join and termination). giie 14
shows the results for LJIFCF using different combination8df
and BCJT for thread assignment and reassignment. The qnacle
vides the distance to the next milestone for both BT and BTHE.
results show that using BT is slightly better than BCJT (1586 p
formance benefit vs. 12% for the Parsec benchmarks). The main
reason is that in BCJT, for benchmarks like dedup that haweyma
locks, most threads are treated as having short distancedde

stones due to locks. Since most (more than 90% for the Parsec

benchmarks) locks can be acquired without contentiorviighput

the thread getting blocked, treating a thread that has naokglas
having short distances could result in the thread not geinffi-
cient opportunities to execute on the fast cores, resulitirappli-
cation slowdown compared to BT. On top of that, predictingiB8T
simpler than BCJT. Hence, we decide to use BT as our remaining
execution time calculation meth&dThe policies used for this set

of experiments are shown in Table 6.

8Except for the experiments in this section, our experimevits
LJFCF always use BT

Table 6: Scheduling mechanisms

Name

Combination

AGE(ORACLE)-B

Age(Oracle) with BT for assignment and BCJT for reassignim|

en

B-AGE(ORACLE)

Age(Oracle) with BCJT for assignment and BT for reassignm|

en

B-AGE(ORACLE)-B

Age(Oracle) with BCJT for both assignment and reassignmg

In Figure 15, we vary the number of fast and slow cores. While
the relative performance of the Linux scheduler (not shawhig-

ure 15) degrades considerably as we reduce the number of fast
cores from 4 to 1, the Age based scheduling policies show bet-
ter relative performance as the number of fast cores is etluc
Though Age based policies are better than SCALELD at exploit
ing fast cores, as the number of number of fast cores is isetta
more threads get to take advantage of fast cores in SCALELD,
hence the performance difference between Age based pohcie
SCALELD reduces as the number of fast cores is increased. Re-
member that in SCALELD once a thread is assigned to a core, it
continues to execute on the same core. We believe AMPs widl ha
very few number of fast cores and several slow cores, andifdr s
configurations the Age based policies are a better altentian
SCALELD. Note that the performance of Age based policies for
each configuration is normalized to the performance of SCADE

for the same configuration.

407

7.3 Microarchitecture Sensitivity Study

To know how sensitive our scheduling policy is to the hetero-
geneity of asymmetric configurations, we vary differenigraeters
of the asymmetric configurations.

7.3.1 Different Number of Fast and Slow Cores

= AGE(4f-s)
= AGE(PROF)(4f-4s)
= AGE(2f-65)
= AGE(PROF)(2f-6s]
= AGE(1f-7s)
209= AGE(PROF)(1f-7s)
15 ™

357
307
253

% Reduction in Execution Time

5 |
; JHL. 1l
LR | i
5
10
15 !
20 @ ¢ o &
- N s &L XN N > S NS ™
9 & & L @& ¢ @ O L
S M S R I S U
‘o\q,(a & ¥ @ IS &

Figure 15: Different combinations of AMPs

Slow Cores

Figure 16 shows the result of varying the frequency rativieen

fast cores and slow cores. In Figure 16, PAR and ASY represent
the average of the normalized execution times for the Paardc
the asymmetric benchmarks, respectively. As we make thescor
more asymmetric, performance of LIN degrades drasticatignv
compared with SCALELD or the Age based policies. When the
frequency ratio is 2:1, the Age based policies perform simid
SCALELD but as we make cores more asymmetric, the benefit of
Age based policies increases. The results show that as we hav
higher asymmetric characteristics, the need for asymmeatigre

7.3.2 Different Frequency Ratio between Fast and

nt



= SJF with Idle Core wake up
[ | =SJF with Suitable Core wake u|
— = LJF with Idle Core wake up
|| =LJF with Suitable Core wake u|

% Reduction in Execution Time

<
-15 Ny 2 & o K R X @\ < \\’h@ 06 ™
O & & L« & ¢ PO @
& N & I\ N N ' & S )
N S N & Y & & X a A\
Q\?’o § N IS & € K\Q\b @ é&'b (9& + v

= SJF with Idle Core wake up
= SJF with Suitable Core wake up
= LJF with Idle Core wake up

= LJF with Suitable Core wake u

30

254 —

20

LIl

\)O
R e
& F FE F &
&‘Qb‘g’&w\@gﬁv
NG ®
\Q/

% Reduction in Execution Time
1

-10

15 ¥

Figure 13: Performance comparison between LIFCF and SJFCHft: Parsec benchmarks Right: Asymmetric benchmarks)

404 = AGE(ORACLE)

351 = AGE(ORACLE)-B
1 | = B-AGE(ORACLE)
= B-AGE(ORACLE)-B|

% Reduction in Execution Time

-10 2 = é\@ & \)@ =
N > & K BN > - & O R »
& & F S F @S ¢ @ O L
NCIN ME 9 & & X SR &
O > & & < R & i

& S & K IO &

= AGE(ORACLE)

= AGE(ORACLE)-B
=B-AGE(ORACLE)
=B-AGE(ORACLE)-B|

N
o

15+

10+

@

% Reduction in Execution Time

=)

&
O
& & o y
S
& &o@ *‘@ ©
T &F & ¥
7/

Figure 14: Remaining execution time calculation method BT oBCJT (Left: Parsec benchmarks, Right: Asymmetric benchmaks)

thread scheduling increases and also that Age based siitepei-
forms better than SCALELD.

4.0

= LIN
—AGE
| | =AGE(PROF)

3.51+—

w
2.

N
n

Normalized execution time
N
l{! [=}

[
il

°
il

°
2,

<Y ;3 ¥ g

X ¥ S 3 ; :
,‘>'\« ,]>’\/ D\‘\/ w & b\'\/ Q}N %\’\/

Figure 16: Different frequency configurations for AMPs

8. RELATED WORK

Many researchers have looked at several different asp&itisead
scheduling on AMPs. Balakrishnan et al. [6] evaluated the pe

cluded that an asymmetry aware scheduling algorithm can pro
vide considerable savings in energy while maintainingqennce
comparable to a SMP with all fast cores. Their focus was oigdes
ing a power efficient algorithm for Hyper-Threaded AMPs ehil
providing good application performance. Our goal is to desi
scheduling algorithm for AMPs that provides high performan

Cai et al. [10] described a mechanism called meeting pdirats t
dynamically detects critical threads in a parallel regiod &ies to
boost the application performance by giving priority to ttri-
cal thread in an SMT. Their mechanism is not suitable for gane
thread scheduling and works only for parallel regions. Armamam
et al. [5] applied EPI throttling techniques to show thatdertain
applications an AMP can provide better performance thanMR S
that consumes the same amount of power as the AMP. Their goal
was to maximize the performance of an AMP for a given power
budget.

Fedorova et al. [13] proposed a self-tuning algorithm based
reinforcement learning for thread scheduling. Our worksloet
use any machine learning techniques and their work also niates
include any experimental results for comparison.

Scheduling using Architectural Signatures [21] assigmedtis

formance of multithreaded applications on SMPs and AMPs and g cores based on the information contained in the architatt

showed that application performance becomes unstable emsd |

signatures, This kind of scheduling results in only few &t get-

scalable on AMPs. They also showed that an operating systemtjng the opportunity to execute on fast cores, unlike in Agsed

(or an user level scheduler) that is aware of the asymmetcpiia
performance can eliminate unpredictability in applicatigerfor-
mance. Another important result of their work was that AMBa ¢
give better performance than a SMP with all slow cores. Thoug
they implemented an asymmetry aware scheduling algorifioms
AMPs for their experiments, their main idea was not thredudal-
ing, hence they did not focus on designing strong schedaligg-
rithms.

Grant and Asfahi [14] studied the power-performance efficje
of AMPs using a new scheduling algorithm for AMPs and con-

scheduling where all threads get opportunities to execuotéast
cores.

Becchi and Crowley [7] propose an IPC driven dynamic assign-
ment of threads for Heterogeneous Multiprocessors. Theirhm
anism switches threads between fast and slow cores andarsnit
the IPC of threads on both kinds of cores to decide which ttgea
should be assigned to fast cores. Kumar et al. [16] proposecam
anism which does sampling of application behavior on dfier
cores before deciding on the assignment of threads to cohese



mechanisms require monitoring of execution of application dif-
ferent cores with lot of switching or migrations and they atso
incomplete in that they does not deal with issues such asdakd
ancing.

The closest to our work is the work by Li et al. [17]. They pro-
posed asymmetry aware thread assignment and load balgrading
cies that follow the faster core first principle and try to peke load
on each core proportional to its compute power. Their pdii®s
to ensure that the fast cores are not underutilized, but doetske
any measures to ensure that critical threads or threadsut@dag-
ging behind get an opportunity to make faster progress ahaap.

Our policy recognizes that in an AMP threads will not make uni
form progress and some threads will lag behind others. Wiige
critical threads or threads that are lagging behind andyagkiem
to fast cores so that they can catch up and all threads canletamp
at the same time.

9. CONCLUSION AND FUTURE WORK

We have proposed and evaluated a new asymmetry aware thread13]

scheduling policy for AMPs. The two variations (predictiand
profiling) of our scheduling policy, Age Based Longest JolstFa
Core First, more than double the performance compared &yted
Linux scheduler. The prediction based mechanism providéma

provement of 10.4% on average for the Parsec benchmarks and

7.6% for the asymmetric benchmarks over the state-of-thasgm-
metry aware thread scheduling policy. On the other handrtbié-

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08, Princeton
University, 2008.

[9] D. P. Bovet and M. Cesatiunderstanding the Linux Kernel,
Third Edition O’Reilly, 2005.

[10] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chapaaral
A. Gonzalez. Meeting points: Using thread criticality to
adapt multicore hardware to parallel regionsP&CT '08
New York, NY, USA, 2008. ACM.

[11] J. W. Demmel, J. R. Gilbert, and X. S. Li. An Asynchronous
Parallel Supernodal Algorithm for Sparse Gaussian
Elimination.SIAM J. Matrix Analysis and Applications
20(4):915-952, 1999.

[12] A.J. Dorta, C. Rodriguez, F. D. Sande, and

A. Gonzalez-Ecsribano. The OpenMP Source Code

Repository: an Infrastructure to Contribute to the

Development of OpenMP.

A. Fedorova, D. Vengerov, and D. Doucette. Operating

System Scheduling On Heterogeneous Core Systems.

Technical report, Sun Microsystem, 2007.

[14] R. Grant and A. Afsahi. Power-Performance Efficiency of
Asymmetric Multiprocessors for Multi-threaded Scientific
Applications. InIPDPS 2006.

[15] Intel Corporationlintel VTune Performance Analyzers
http://ww.intel.conlvtune/.

ing based mechanism provides improvements of 13.2% and.9.4% [16] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Joupm, an

Using the proposed policy, we are able to obtain a benefit of up

to 37% over the state-of-the-art asymmetry aware scheglplat-

icy. We evaluate our scheduling policy using various woakle and
various machine configurations with a wide range of appbeest

We also thoroughly characterize the workload to providenaigit

on how much the workloads are symmetric and asymmetric.

Future work can be the development of a run-time feedback sys

tem to monitor the progress of threads. The prediction meisha
can be further improved to improve the performance benefits.

Acknowledgments

We thank the anonymous reviewers for their comments. We also
thank Tong Li, Aater Suleman and Aniruddha Dasgupta forrthei
feedback on improving the paper. We thank Richard Vuduc for

providing us with the SuperLU benchmark. We gratefully amkh
edge the support of Intel Corporation and Microsoft Redearc

10. REFERENCES

[1] Intel xeon processor.
http://www.intel.com/support/processors/xeon/.
[2] Linux kernel CPUfreq subsystem.

http://www.kernel.org/publ/linux/utils/kernel/cpufyepufreq.html.

[3] O(1) Scheduler. http://joshaas.net/linux/.

[4] Enhanced Intel SpeedStep Technology for the Intel Benti
M Processor-White Paper, March 2004.

[5] M. Annavaram, E. Grochowski, and J. Shen. Mitigating
Amdahl’'s Law through EPI Throttling. IIECA-32 2005.

[6] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging Multicore
Architectures. INSCA-32 2005.

[7] M. Becchi and P. Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor ArchitecturesPmceedings
of the 3rd conference on Computing Frontie2606.

K. I. Farkas. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
ISCA-31 2004.

[17] T.Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficien
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architecture. InProceedings of Supercomputing
07, 2007.

[18] R. Love.Linux Kernel Development, Second Editidlovell
Press, 2005.

[19] M. K. McKusick and G. V. Neville-Neil. Thread Scheduiin
in FreeBSD 5.2Queue 2(7):58—-64, 2004.

[20] T.Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and
E. AyguadAl. Performance, Power Efficiency and
Scalability of Asymmetric Cluster Chip Multiprocessors.
Computer Architecture Letter§(1), 2006.

[21] D. Shelepov and A. Fedorova. Scheduling on Heteroganeo
Multicore Processors Using Architectural Signatures. In
WIOSCA 2008.

[22] A.S. Tanenbaum and A. S. Woodhu@perating Systems
Design and Implementation, Third EditioRrentice Hall,
2006.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. IBCA-22



