Introduction

e Parallel Programming is hard
— Why? It’s just hard
* What if there are good programming tools?
— Profilers, Debuggers, Tester, ...
— Tools specialized parallel programming?
e State-of-the-art tools for parallel programming

— Intel Parallel Studio -
— CriticalBlue Prism \»

— VectorFabrics vfAnalyst N f

 What problems can Parallel Programming
Tools help? =

Z—rd

— Where to parallelize?

* Which code section do | need to look at?

— |Is this effective?
* What would be the projected speedup?
 What would be the optimal parallel machine?

—[How can | parallelize the code?] Focus of
* |s the code embarrassingly parallel? the paper

e Otherwise, must guarantee safe parallelization

* The root cause: data dependences
 Parallelizable code should have no dependences

— Except parallelizable reductions

e How can we analyze data dependences?

— Compilers can do the job, but limitations due to the
pointer-to analysis problem

e An alternative: Data-Dependence Profiler
— Dynamically analyze data dependences
 How it works?

for (1 = 1; 1 < N; ++1i) {

.. = A[1 - 1];

Ati] = ...

Prospector
Loop-Carried

Dependences { %
A

— If there is no dependences it’s potentially
embarrassingly parallelizable

— Otherwise, we report the details of discovered
dependences for the parallelization

Problems

 However, current data-dependence profilers
— Too much memory and time overheads
— Limits features of parallel programming tools

. sk\\'gk\\'gk\\' ;E\\';E\\' ;E\\' ;E\\' ;E\\';E\\'gk\\'gk\\'ik\\'

MB

m Native

(

(o))
o
-
o

Advisor

ion

4000

$

N
o
)
o
|
|
|
|
|
|
|
|
|
|
|
|
|

Memory Consumpt
o
e _l
||
1

Memory Overheads of The Dependence Profiling of Intel Parallel Advisor, SPEC 2006(train)

Overview of Prospector

* Prospector

— Parallel programming assistant tool based on a
dynamic data-dependence profiler
* Finds potentially parallelizable loops
* Provides detailed dependence information
* Exploring hidden parallelism

— Embarrassingly parallelizable? Yes, Prospector guides how to
change the code

— Otherwise, is there possibility to apply other types of
parallelism?

— Need a scalable and rich dependence profiler

e Even a large and long application can be profiled with
detailed information

-

Input Program

eSource code
eBinary

Feedback
from
Programmers

/ Prospector

» Instrumentation-

Extracting loops

~

. . Data-Dependence Profiling:
Time Analysis: »
Detailed information

\ 4

Parallelism Explorer:
Easily parallelizable?
Pipeline parallelism? Other models?
How to avoid dependences?
Hints for code modification ...

5
o

4

<
v

4[Programmers

Scalable Dependence Profiler

 Memory-Scalable Algorithm

—

-

— Key observation: Find compressible patterns
— Stride-based Dependence Checking Algorithm
— (1) Detects strides and compresses them

[10, 14, 18, ...30 =» [10+4*i],0<=i<=5 J

— (2) Computes data dependences with strides
* A new algorithm: Dynamic-GCD

— (3) Effectively handles stride-based structures
with non-stride structures

* Time-Scalable Algorithm

— Key observation

* Dependence profiling itself can be parallelizable _

— A Hybrid Parallelization Model

e Pipelined parallelization + Data-level Parallelism

— Additional algorithms for the stride handling

. Loop/Stride Data-Dependence
{ pace Cencration J '{ Profiling J '{ Profiling J

v ¢'_l v

[Address space is divided for each task] Task Task = .. | Task

]

More than 20x

B Native

B Pairwise

i SD3(1-Task)
m SD3(8-Task)

NV3INO0ID
exulyds-zgy
wq|'oLy
0Olu0l'q9y

L

Overheads of Prospector

X|jno|ea 'y sy
Aeanod gqy
[l1eaP"L¥Y
pweu iy
peEalsSaI'LEY
Snyed>'gsy
SJewWo4d GEY

dwsnaz ysy
Jwreey
ssawes 9Ty
Jwagoue|ex g8y
ddisuwo /vy

$RI792Y 79V
wnjuenbql|'zoy

duals'gsy
Jawwy-9st
NWqos Sy
pwezy
. zdizq'ToP
O O O O O o
o O O O O
o O O O O
m 00 OW <

(9IN) uondwnsuo) Atowa A

4.5x Speedup (8-core)]

m SD3(Serial)

i SD3(8-Core)
m SD3(32-Core)
M Infinite CPUs

300

250

o O o
o wn O
N - -

(X) sumopmols

50 -

0 -

NV3INO3IO
exulyds-zgy
wql'oLy
0luoy' g9
X|[no|ea 'y Sy
Aeanod- gqy
[H1eap"L¥Y
pweu'yiy
pe3NISaI'LEY
Sn1edx gsy
soewo48'gsy
dwsnazysy
JIWEEY
ssawes 9Ty
Juqoue|ex-egy
ddisuwo /vy
$2479CY 9
wnjuenbql|'zoy
8uals'gsy
JAwwy-9sy
NWqod Syy
Pweey
¢dizq'ToP

An lllustration of Prospector

OCooO~NOUTE,WN =

{

: q

for (j
for
pa

ma

if

Yy 7/ éﬁd of for-i

. 70: void reset nodes()
: void match() 71: {
72: for (i=0;i<numfls;i++) {
reset nodes(); 73: f1 layer[tid][i].W = 0.0;
while (!matched) { 74: Y[tid][i].y = 0.0;
int match cnfd = simtest2();

if (

pass flag = 1;

: void scan recognize(startx, starty, endx, endy, stride)
/[Hot Loop]

#pragma omp for private (i,k,m,n)

= starty; j < endy; j += stride)
(i = startx; i < endx; i += stride) . .
{ Parallelizable after Reduction]
ss flag = 0;
tch();
(pass_flag == 1) {

if (set high[tid][0] == TRUE) {
highx[tid][0] = i, highy[tid]1[0] = j;

set high[tid][0] = FALSE;
} . , Y{ Loop-carried WAW: Privatization]
if (set high[tid][1] == TRUE) {

(match _cnfd) > rho) {

if (match cnfd > highest confidence[tid][winner]){

highest confidence[tid][winner] = match cnfd;
set high[tid][winner] = TRUE; ~—

}

Loop-carried RAW:

Parallel Reduction MAX

Conclusion

* We claim the Dynamic Dependence Profiler
— Will be a basis tool that assistants parallel
programming
* We present Prospector

— Parallelism extraction and parallel programming
guiding tool

— Based on a scalable data-dependence profiler
— Predict parallelizable loops if no dependences
— Guides code change to avoid dependences

Future Work

* What about hard-to-parallelize loops?

— Can Prospector guide parallelization for loops
which have true dependences?

* |deally, we want to provide hints such as “insert locks
or use transactional memory at this point to parallelize
the loop”

— Can Prospector give advice on parallelization

methodologies?

e Use multicores for this loop with OpenMP or TBB, but
try to GPGPU or SIMD for that loop

